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We propose that the molar volume minimum observed in barium silicate glasses �1−x�SiO2−xBaO is related
to the onset of an adaptative rigid glassy network. We obtain in the compositional window 29%�x�33% a
dramatic decrease in stressed rigid local units from the Raman analysis and at x=31% the onset of barium ionic
conduction. A random bond model �J. Barré et al., Phys. Rev. Lett. 94, 208701 �2005�� and constraint counting
algorithms permit defining of the free energy of the system, and analyzing of the elastic nature of three
compositional ranges of interest: a stressed rigid phase at low x, a flexible phase at high x, and a stress-free
intermediate phase where space filling is optimized.
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I. INTRODUCTION

The molar volume of binary-alloy liquids and glasses
does not always display a monotonic behavior with alloy
composition. For instance, molar volume minima have been
reported for a certain number of glassy systems that under-
score the tendency of a network to densify its structure in
selected compositional ranges.1 While this is a rather well
documented and debated issue in alkali germanates,2 little is
known about the same tendency in silicate glasses and
liquids3 although the precise knowledge and the origin of
compositional trends in molar volume have some obvious
implications in geochemistry and Earth Sciences in general.

In the literature, a principle for compactness optimum has
been invoked from an elegant argument stating that a me-
chanical stability4 is reached when the number density of
mechanical constraints nc arising from interatomic bond-
bending and bond-stretching forces equals the number of de-
grees of freedom. This mechanical stability criterion has
been later identified with a rigidity transition5 at which the
number density of �low-frequency� floppy modes f =3−nc
vanishes. It implies that the volume contraction is linked
with tight bonding and shorter bond lengths when the num-
ber density of constraints matches exactly the number of de-
grees of freedom. However, space-filling tendency is obvi-
ously the consequence of a collective behavior and cannot be
simply handled from global �or mean-field� approaches.4,5 In
chalcogenide network glasses, it has been observed that
space-filling compositional windows6,7 were correlated with
thermally reversing windows �or rigid intermediate phases
�IP�� obtained from complex heat-flow measurements at the
glass transition.8 These windows are located around the net-
work mean coordination number r̄=2.4, and are found be-
tween the flexible �where nc�3� and the stressed rigid phase
�nc�3� of glasses.9–13

Do such correlations exist in other types of networks such
as the oxides or ionic conductors? Recent molecular-
dynamics simulations of densified silicas have shown14,15

that the balance between two structural mechanisms accom-

modating low �flexible� and high �stressed rigid� pressure
applications could lead to a space-filling window, clearly re-
lated with a pressure-induced rigidity transition. Here it is
shown that the correlation between space-filling windows
and the intermediate phase also exist in rigidity induced by
composition for an archetypal silicate system, the barium
based glass. Our results therefore underscore the commonal-
ity of the physics driving the formation of intermediate
phases in covalent-chalcogenide and ionic-oxide glasses, and
the way �composition and pressure� space-filling windows
can be achieved.

We describe experimental and theoretical results on
barium silicates of the form �1−x�SiO2−xBaO from Raman
spectroscopy, ionic conduction, and a random bond model,11

which show that the observed molar volume minimum is
located in the intermediate phase which results from the net-
work adaptation leading to a rigid and almost stress-free net-
work within the compositional window 29%�x�33%. In
this respect, barium silicates display very common features
with chalcogenide network glasses. Beyond this main issue,
the present paper shows also how the intermediate phase in
glasses can be detected when its most obvious signature from
heat-flow measurements cannot be provided. Barium sili-
cates and geological glasses in general have glass transition
temperatures that exceed by far the highest accessible tem-
perature of the calorimetric setup8 used for the heat-flow
measurements. One has therefore to find alternative experi-
mental signatures for the intermediate phase in these peculiar
high-temperature glassy systems. Barium silicate glasses and
melts have received little attention compared to alkali sili-
cates although the role of alkaline-earth silicates tends to be
even more important as network modifiers in natural systems
than alkali metals. Any new insight into the structure, the
thermal behavior, and/or the electrical transport behavior is
therefore welcome.

The present paper is organized as follows: in Sec. II, we
show the molar volume results, and describe the experimen-
tal data obtained in Raman scattering and conductivity mea-
surements together with the estimate of the total number den-
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sity of mechanical constraints from Maxwell counting.
Section III is devoted to the application of an adaptative
random model11 to the present barium silicates. Results of
the model are put in contrast with the experimental findings.
We discuss the latter in Sec. IV and collected molar volume
data for various oxide and chalcogenide glasses are shown.
They highlight the fact that the present enunciated relation-
ship between molar volume minimum and the intermediate
phase is not restricted to the present investigated system. We
finally summarize our results and sketch some more general
conclusions.

II. EXPERIMENTAL

A. Results

A set of glasses has been prepared by mixing SiO2
�99.99%� and BaCO3 �99.99%� powders in the stoichio-
metric proportions. For each composition, the mixture was
melted in a platinum crucible at 1650 °C for 2 h, and
quenched by pressing the melt between two copper plates.
The glass transition temperatures were found at about
720 °C.

The complex electrical conductivity was measured on Pt-
metallized disks �1 mm in thickness and 12 mm in diameter�
using a Solartron SI 1260 impedance meter in the frequency
range of 1 Hz–1 MHz from room temperature up to
Tg+60 °C. Raman spectra were obtained on a Jobin-Yvon
T64000 spectrometer with charge-coupled device �CCD� de-
tection and BX40 Olympus microscope. The excitation
wavelength was the 514.532 nm argon line of a Coherent
Innova 70 Spectrum laser.

The starting point of the present study is the behavior of
the molar volume �measured by buoyancy method� with
composition displayed in Fig. 1. Our results show a mini-
mum at 33% barium content with a molar volume of
24.1 cm3 /mol at this composition. Precursive behavior is

already found in the liquid17 at 1700 °C �inset of Fig. 1�. The
Raman spectra for various compositions �Fig. 2�a�� have
been deconvoluted to obtain Fig. 2�b�. Details of the method
and measurements �Bose-Einstein correction, peak deconvo-
lution, logarithmic-normal law for low frequencies, etc.� can
be found elsewhere.18,19 We specifically focus on the bands
at 1110, 1070, and 920 cm−1 that are, respectively, identified
�see also Ref. 20� with the population of Q4, Q3, and Q2 units
corresponding, respectively, to the SiO4/2 �the basic tetrahe-
dron of silica�, BaSiO5/2, and Ba2SiO3 units. The superscript
in Qn stand here for the number n of bridging oxygens �BOs�
connecting the network whereas oxygen connected to barium
atoms �one on a Q3, two on a Q2, see also Fig. 2�a�� are
usually termed as nonbridging oxygens �NBOs�. The inte-
grated intensity of these Raman bands �proportional to their
probability of occurrence� is represented in Fig. 2�b� as a
function of barium content. It shows that the population of
Q4 species decreases dramatically between the barium com-
positions of 29% and 33%, whereas the Q2 unit increases
substantially inside the same compositional interval, and up
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FIG. 1. Molar volume of barium silicate glasses
�1−x�SiO2−xBaO as a function of barium composition. Additional
data are from Bansal and Doremus �Ref. 16�. Error bars are of the
size of the symbols. The inset shows the molar volume �Ref. 17� of
the liquid at 1700 °C.
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to 35% before starting to decrease as Q1 units start to appear.
Finally, Fig. 3 shows the dc conductivity of vitreous barium
for different temperatures. Around the composition of 31%,
one observes a sudden increase in the conductivity which is
multiplied by a factor of four with only 5% addition more of
BaO.

From the three figures, we can define three barium com-
positional intervals: a first one for x�29%–31% where the
network is made of a majority of Q4 and Q3 units, and where
the ionic conductivity is weak. An intermediate region
29%–31%�x�33% where the local structure is changed in
a rather deep fashion and where the molar volume decreases
to its minimum. Finally, a third compositional interval is
found for x�33% where the abrupt decrease in Q4 units
found between 29% and 33% barium is reduced. This sug-
gests that the underlying nature of the network has been sub-
stantially modified. We identify these compositional inter-
vals, respectively, with the stressed rigid, the intermediate,
and the flexible phases of glasses.

The location of the IP deserves some additional com-
ments. In thermal measurements such as those reported in
Ref. 8, it is rather hard to determine accurately the wall lo-
cation of the intermediate phase unless one has many com-
positions over narrow composition ranges. This remains also
true for conductivity measurements and distinct changes in
regime over the three elastic phases, which seems at present
only allowed for highly silver conductive glasses.21 Our con-
ductivity results �Fig. 3� are three orders of magnitude lower
than those reported in Ref. 21, and therefore only parallels
the behavior of silver electrolytes in the stressed and the
flexible phases, i.e., an almost constant value for � in the
stressed rigid phase, and a rapid increase in the flexible
phase.

In many systems,22,23 it is difficult to measure the bound-
aries of the IP from Raman scattering. This is mostly the case
when modes are not clearly resolved, making mode fre-
quency measurements less reliable. Fortunately, the behavior
with composition of our resolved frequency modes clearly
shows two changes in behavior, and defines the boundaries
of an intermediate phase between 29% and 33%. In this re-
spect, the behavior is very close to that observed in Si-Se and
Ge-Se network glasses24,25 where the IP is better fixed from
Raman elastic thresholds than from the reversibility windows

�i.e., from calorimetry�. These thresholds correspond, as best
as one can tell, to the walls of the reversibility windows.

In summary, from Fig. 1, one can conclude that an IP is
found between 31% and 33%, and from Fig. 2 between 29%
and 33%. In contrast with the data on silver phosphate
conduction,21 a single threshold composition is found for the
barium conductivity at 31%.

B. Global Maxwell counting

A preliminary piece of evidence for our proposal is given
by global Maxwell �bond-stretching, �, and bond-bending,
�� constraint counting that leads to the estimation of the
mean-field location of the rigidity transition.5 We consider
the BaO-SiO2 system as a network of N atoms with three
kinds of atoms with a given coordination number and con-
centration given by stoichiometry. One has first to remark
that, although the structure is modified in a rather deep fash-
ion by network depolymerization, the SiO4/2 tetrahedral en-
vironment is preserved in these glasses because of the sp3

hybridization of silicon. This defines rather accurately the
silicon and oxygen bondings, and leads to sharp O-Si-O and
Si-O-Si angular distributions, respectively, peaked26 at 109°
and 144°. Modifier ions do not follow such strong chemical
bonding conditions and they distribute therefore over much
broader angular ranges.27 This means that corresponding
bond-bending restoring forces are stronger for silicon and
oxygen than for barium. A more detailed examination of the
bond angle distributions shows that barium centered and
barium-oxygen connected bond angles display wide
excursions28 around their mean value as manifested by, e.g.,
the full width at half maximum �i−j−k of the angular distri-
bution ��O-Ba-O=90° against �Si-O-Si=25°�. This implies that
barium mechanical constraints should be restricted simply to
bond stretching with their bond-bending constraints being
broken.

Furthermore, the NBOs connected to bariums should have
broken bond-bending constraints as well. Indeed, a sequence
of atoms Si-O-Ba-O-Si forms a chain �Fig. 4� with O-Si-O
angles being maintained �sp3 hybridization�, and it seems
rather unlikely that the bond angle Si-O-Ba is fixed by a
constraint with the allowed bending motion of the barium
atoms. This can also be detected from the Si-Ba-Si �and
similarly with the Ba-Si-Ba� bond angle distributions28

which display rather large full widths at half maximum, very
similar to the one of O-Ba-O. With this in mind, and taking
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the coordination numbers of silicon, barium,29 and oxygen
as, respectively, four, two, and two, one can evaluate the
fraction of floppy modes per atom. From the chemical for-
mula �1−x�SiO2−xBaO, one can compute the number of at-
oms of the network which is N= �3−x�N /mol of chemical
formula, and the number of � and � constraints30 is
Nc= �11x−10�N. Here N stands for Avogadro’s number. This
leads to

f = F/N =
1

N
�3N − Nc� = 3 − nc =

7x − 2

3 − x
, �1�

which vanish at x=xc=2 /7, i.e., at 28.5% barium. Maxwell
constraint counting therefore predicts a rigid to flexible tran-
sition at a barium concentration of 28.5%. Glass forming
tendency is optimized4 at this composition in harmony with
current experimental observation.33

III. ADAPTATIVE SILICATE NETWORKS

Using the preliminary result of Eq. �1�, our first piece of
evidence for the intermediate phase comes from a random
bond model that builds on the counting scheme above, and
the approach introduced for III-I networks.11 From the statis-
tics �xn� of the Qn �n=2,3 ,4� with coordination number
r=n displayed in Fig. 2�b�, we consider all possible bonding
types, i.e., between the two 4 species �4–4�, one 4 and one 3
�4–3�, etc. In the randomly bonded case, it is rather simple to
obtain the probabilities for the Qi−Qj bonds,

pij =
�2 − �ij�ijxixj

��
i=2

4

ixi	2 = pij
� , �2�

leading, for instance, to

p43 =
24x4x3

�4x4 + 3x3 + 2x2�2 = p43
� , �3�

p42 =
16x4x2

�4x4 + 3x3 + 2x2�2 = p42
� �4�

for, respectively, a Q4−Q3 and a Q4−Q2 bonding type. Here,
the symbol � in the right-hand side of Eq. �2� denotes the
fact that it is a random distribution without any energetical
influence, the probabilities being just given by combinatorial
factors arising from the local connectivity of the species.

Since we have identified �from, e.g., Fig. 3� that the silica-
rich and barium-rich glasses were, respectively, stressed rigid
and flexible, the network stress should increase when the
barium concentration is decreased. We can write this more
precisely by defining a stress energy U�x� �stress costs en-
ergy� for a given network configuration that will be propor-
tional to the number density of redundant constraints in the
system, i.e., −f , which are constraints that cannot be fulfilled.
Moreover since in the flexible phase, there are no redundant
constraints, the stress energy should be zero at high barium
concentration when all constraints can be fulfilled. Note that
a perfectly symmetric approach can be used by defining a

floppy mode energy instead of a stress energy.34 In this case,
it is proportional to f and vanishes when the network be-
comes rigid. A more precise description of the stress energy
that would go beyond the general framework introduced in
Ref. 11 is rather difficult. In fact, measurements on the elas-
tic properties �bulk modulus, shear modulus, and sound ve-
locities� of barium silicates35 have been only performed for
one composition �33% barium� and cannot be used to esti-
mate the stress energy as a function of barium content �or
cross-link density�.

In general, one needs to establish a hierarchical approach
for the computation of the stress energy as it is well known
that bond-bending energies are weaker when compared to
bond-stretching energies.36 This separates stress energy into
two main contributions: stretching and bending with other
contributions arising from more weaker forces being
ignored.37 Based on the Maxwell counting scheme, in the
present barium system, the corresponding contributions nc

�

and nc
� to the stress energy are

U�x� = nc
��x� + nc

��x� − 3 =
4 − 2x

3 − x
+ �

7 − 8x

3 − x
− 3, �5�

with � supposed to be less than one, i.e., signifying that
bending forces should be weaker than stretching forces. We
have checked that, in order to have a vanishing of f �or U�x��
in the barium compositional region of interest �i.e., approxi-
mately between �0.1, 0.4��, one needs to have a weight be-
tween stretching and bending contributions of approximately
1:0.8, i.e., �
0.8. This is not very surprising. Indeed, as the
weak angular constraints involving barium or NBOs are bro-
ken, the major contribution to nc

� comes from the silicon
angular constraints, which have a rather high energy, as tet-
rahedral ordering �sp3 hybridization� needs to be maintained.
Thus it is reasonable to treat the remaining bending �Si and
BO� and the stretching energies as about the same in the
barium system. One has therefore to keep in mind that, if a
distinction is made between stretching and bending energies
�i.e., taking ��1�, the location of the rigidity transition
given by Eq. �1� will be shifted to lower concentrations, the
same as the results given below.

For a given configuration of the network, an entropy can
be defined. This finally leads to the definition of the free
energy F�l� of the system that takes into account both the
configurational entropy of the network and the stress energy.
This free energy can be computed for different types of ap-
proximations l. In fact, the crudest approximation �l=0, i.e.,
concentration based� involves only the macroscopic concen-
tration x. In this case, the stress energy follows the counting
that leads to f from Eq. �1�, and the ideal-gas entropy:

F�0��x� = − f + kBT�x ln x + �1 − x�ln�1 − x�� , �6�

where T represents the fictive temperature, i.e., the tempera-
ture of formation of the network.38 This temperature is usu-
ally slightly higher than the glass transition temperature
�here Tg
720 °C for all compositions, i.e., 85 meV�. In the
present construction, however, kBT is dimensionless, such as
f or F�0�. The vibrational free energy coming from the
harmonic-oscillator contributions of the Qi species with their
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corresponding mode frequencies �i=1110, 1070, and
920 cm−1 depends rather weakly on the barium composition
because T and �i are nearly constant. In the forthcoming, we
therefore do not consider this particular contribution and fo-
cus only on an energy arising from extra constraints and on
the configurational entropy.

The next approximation �l=1, i.e., specie based� involves
the distribution of local structures �Qn �n=2,3 ,4�, Fig. 2�b��.
The number of redundant constraints leading to a stress en-
ergy can be computed from the statistics �xn� and the entropy
follows a Bragg-Williams-type expression,

U�1��x� =

�
i=2,3,4

nc�i�xi

�
i=2,3,4

nixi

− 3, �7�

F�1��x� =

�
i=2,3,4

nc�i�xi

�
i=2,3,4

nixi

− 3 + kBT �
i=2,3,4

xi ln xi, �8�

where nc�i� are the number of constraints computed on the
species Qi and ni their number of atoms �e.g., nc�4� /n4
=3.67 for the stressed rigid Q4�. Finally, we can use the
distribution �pij� whose expressions in the random case are
given by Eq. �2�. It is a bond based �l=2� approximation, and
one has, similarly to Eq. �8�

F�2��x� =

�
i,j=2,3,4

�nc�i� + nc�j��pij
�

�
i=2,3,4

�ni + nj�pij
�

− 3 + kBT �
i,j=2,3,4

pij
� ln pij

� .

�9�

Results for the free energy are displayed in Fig. 5. They
show for F�0� and F�1� a minimum in the region 30%–35% of
barium, close to the threshold observed experimentally. For
the random bond case �solid line of F�2� in Fig. 4�, deviation
from randomness needs to be achieved in order to shift the
free-energy minimum to higher concentrations. Obviously,
the random bond case underestimates the stress present in the
network as the vanishing of the stress energy occurs at lower
x. The probability of stress needs to be rescaled.

The level of organization of the network can therefore be
tuned by introducing a parameter �= �p44+ p43� / �p44

� + p43
� �

that changes the probability of finding stressed rigid bonding
types �4–4 and 4–3�, and � denotes in this case a measure of
the network adaptation �Fig. 5, broken lines� as it rescales
the random probability of having stress. In fact, an enumera-
tion of mechanical constraints shows that, among all possible
bonding types Qi−Qj, only two are stressed rigid: the
Q4−Q4 �nc=3.67 per atom, see Table I� and the Q4−Q3

bonding types �nc=3.21 per atom�. Figure 5 shows in fact
that the location of the rigidity transition is closer to the
observed threshold at 29% barium when � is smaller than
one. The inset of the figure furthermore shows that the in-
crease in � leads to a shift of the rigidity transition compo-
sition xR to higher x. Finally, we note that, for ��1, the

region where f is close to zero and where the configurational
entropy is maximum coincides with a maximum in stress-
free �isostatically rigid� bonding types �Fig. 5, right axis�. At
around 35% barium, around 75% of the network is isostati-
cally rigid and the free energy of the system remains con-
stant. Note also that, for higher barium concentrations
�x�45%�, one cannot neglect Q1 units �a Ba3Si2O3 unit�
anymore so that the minimum seen in F�2��x� at around 47%
barium highlights the limitation of the approach.

IV. DISCUSSION

A. Evidence for stress from experiments

Concerning the order of the underlying phase transitions
that bound the intermediate phase, it has been stressed that

TABLE I. Number of constraints of all possible Qi–Qj pairs.
Note that only the 4–4 and 4–3 pairs are stressed rigid.

Qi−Qj pair Constraints/atom Elastic nature

4–4 3.67 Stressed

4–3 3.21 Stressed

4–2 2.88 Flexible

3–3 2.88 Flexible

3–2 2.61 Flexible

2–2 2.40 Flexible
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see text for details�. Right axis: probability of finding isostatically
rigid bonding types for �=0.5.
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the higher-coordinated side should be a first-order stress tran-
sition while the lower coordinated side is a second-order ri-
gidity transition.25 Chalcogenide network glasses show in-
deed a jump in some characteristic Raman mode frequencies
	 at the stress transition,39 in agreement with theory.13 Fur-
thermore, the corresponding optical elasticities 	2 display a
power-law variation5 in �r̄− r̄c� or �x−xc� with an exponent
close to 1.5. Here, we obtain from theory for the higher-
coordinated side �i.e., low barium content� a second-order
stress transition only, corresponding to the vanishing of the
stress energy. This contrasts with the previous findings in the
chalcogenides. However, our Raman results �Fig. 2� show
clearly that there is no jump in typical mode frequencies,
linewidth, or integrated intensity at the observed thresholds
of 29% and 33%. The typical lines shown in Fig. 2�a� have
frequencies �or linewidths� that show neither threshold be-
havior at the composition of interest nor a jump at the 29%
barium stress transition.

Evidence for an intermediate phase in the compositional
region 0.29�x�0.33 is also provided by the Qn statistics
displayed in Fig. 2. Enumeration of Lagrangian constraints
on the different types shows that the Q4 species are stressed
rigid �nc=3.67� whereas Q2 and Q3 are flexible �respectively,
nc=2.40 and nc=2.88�. For the latter, one should note that it
is still rather close to the optimal constrained structure of
nc=3. The dramatic decrease in the Q4 starting from
x
29% implies the breakdown of stressed rigidity. On the
other hand, with a large fraction of Q3 species present in the
network in the compositional range of 29%–32%, one sees
that the network can be considered close to the intermediate
state �nc
3�. From the behavior of the stressed rigid unit Q4,
one can clearly conclude that stress is decreasing in the IP, in
harmony with previous findings.9,39

Our last piece of evidence is provided by the conductivity
measurements of Fig. 3 that parallels to some extent results
on silver phosphate systems.21 Distinct regimes in ionic con-
duction can indeed be found depending on the nature of the
network backbone �flexible, intermediate, stressed rigid�, and
the location of the boundaries map onto the boundaries of the
thermally reversing window. In the flexible phase, conduc-
tivity onsets due to occurrence of floppy modes that facilitate
the motion of the cations within the structure. Figure 3 shows
this kind of onset at a composition slightly higher than the
one that would be expected from the Raman analysis.

B. Space-filling and intermediate phases

Can these conclusions be put in connection with the ob-
served molar volume minimum? In oxide systems such as
SiO2 based glasses, space-filling tendencies can be hardly
inferred from a purely structural basis. In fact, because of the
restricted range of permissible intertetrahedral Si-O-Si angles
that lead also to a limited tolerance in the O-O bond distance,
it appears to be rather difficult to build model random net-
works that are able to fill optimally space. In molecular
simulations, this can be only achieved from a local distortion
of the SiO4/2 tetrahedron under pressure.14 However, the
transformation of BO to NBO with increasing modifier com-
position usually gives rise to contraction as manifested40,41

by the reduction in length between a metal-BO distance and
a metal NBO. But as the fraction of metal-NBO bonds
steadily increases at the expense of metal-BO bonds, there is
no obvious reason why the glass should display a contraction
maximum.

In Fig. 6 �top�, we have represented as a function of the
network mean coordination number r̄, the molar volume V
and the nonreversing heat flow 
Hnr of a Ge-Se system.
Clearly, the trends are similar and the composition at which
V and 
nr are minimum is close. Also since the interval
where 
Hnr is minimum corresponds to the intermediate
phase �whose boundaries are also determined from vibra-
tional thresholds, as discussed previously�, one can conclude
that an argument based on partial molar volume combined
with the contraction of bond lengths cannot account for the
observed minimum in V. Moreover, there is no observed
bond distance contraction in Ge-Se with composition.48

In silicates, it has been also often stressed that since the
partial molar volume of SiO2 was decreasing with network

15 20 25 30 35 40 45 50
Concentration x (%)

2.2 2.3 2.4 2.5 2.6 2.7
Mean coordination number r

17.7

17.8

17.9

18

18.1

18.2

18.3

M
ol

ar
vo

lu
m

e
[g

/c
m

3 ]

��

�
�

�

��
���
��
����
��
�
�

�

�
�

��

��
��

0.5

1

1.5

2

2.5

N
on

-r
ev

er
si

n g
he

at
fl

ow
[1

03 J/
kg

]

SiO
2
-Na

2
O

GeO
2
-Na

2
O

SiO
2
-BaO

Ge-Se

As-Se

Ge-Se
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concentration of modifier atom �or molecule�: Na2O, BaO, Ge, and
As.

BOURGEL et al. PHYSICAL REVIEW B 79, 024201 �2009�

024201-6



depolymerization �or modifier content�, one would expect
the molar volume to decrease with the fraction of Q4 units.3

Moreover as usual modifiers have a partial molar volume
larger than the molar volume of SiO2, there must be a special
point in composition where a molar volume minimum is
reached. This argument runs against the observed behavior in
network chalcogenides which display a molar volume de-
crease �Fig. 6, top� although the network is polymerized by,
e.g., germanium or arsenic atoms, i.e., it is increasing its
connectivity.

Another reason put forward49 deals with the free volume
of a glass defined by Vf =
�Tg, where 
� is the difference
in thermal-expansion coefficient between the supercooled
liquid and the glass. In fact, for a glass having a large free
volume in the base network, there can be a possibility that
the system will display space filling for selected composi-
tions at which local stresses induced by differences in atomic
sizes are able to allow compaction. One would therefore ex-
pect that base glasses with a large free volume will compact
more easily. Observation of Fig. 6 �bottom� shows that this
argument cannot account for glasses displaying very differ-
ent free volumes for the basic network former. Silica and
germania have a respective free volume Vf of about 0.001
�Ref. 50� and 0.04 �Ref. 49� much smaller than chalco-
genides 0.1 �Ref. 51� although all can lead to space filling
with addition of a modifier atom or molecule. However, one
can notice from Fig. 6 that compositional windows where the
nonreversing heat flow vanishes �the intermediate phase�
correlate with the composition for which a molar volume
minimum is found. In chalcogenides, the minimum is found
on the higher-coordinated �stressed� side of the IP whereas in
oxide glasses, its location lies rather on the flexible side.

V. SUMMARY AND CONCLUSIONS

We have shown that a molar volume minimum can be
found in barium silicate glasses, a very important system in
Earth Sciences. A random bond model shows that a stress on
the flexible transition occurs in the vicinity of the molar vol-
ume minimum composition. Raman spectroscopy shows evi-
dence for the rapid loss of stressed rigidity in the interval
29%�x�33%, whereas onset of conduction is found at
31%. Adaptative networks are necessary at the one bond ap-
proximation level to recover the location of the rigidity tran-
sition and the IP. Free energy minimum and rigidity transi-
tion coincide in the intermediate phase were the network is
mostly isostatically rigid. The rapid increase in the conduc-
tivity at larger barium compositions is a signature that the
network flexibility is now promoting conduction.

Finally, it opens also a perspective that goes beyond net-
work glassy materials. Indeed, since rigidity can be also
found in soft solids and52 in relationship with close packing
of �soft or hard� spheres, characterizing the connection be-
tween the absence of stress and the space-filling properties in
glasses should help for a better understanding of other non-
covalent glassy materials such as colloids.
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