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Rigidity transitions that separate elastic phases in glasses are studied in the case where the local structure is
not fully determined from the macroscopic concentration. It is shown that the location of the rigidity transi-
tions, and the intermediate phase that separates flexible from stressed rigid glasses, depend crucially on the way
local structures are selected, a selection usually termed speciation. Broadening of the intermediate phase is
obtained for networks combining a large amount of flexible local structural units and extensive medium range
order. This applies to systems of the form �1−x�SiX2−xM2X �X=O,S,Se, M =Li,Na,K� and opens additional
perspectives for the observation of self-organized fast ionic conductors or geomaterials.
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I. INTRODUCTION

A variety of different physical behaviors can be observed
in structural glasses that are related to the connectedness of
their backbones. On a microscopic level, nearest-neighbor
bonding interactions between atoms �bond bending and bond
stretching� can be visualized as Lagrangian mechanical
constraints1 to predict the elastic behavior of glassy net-
works. The enumeration nc of these constraints per atom,
when compared to the number of degrees of freedom, defines
then underconstrained �flexible� or overconstrained �stressed
rigid� glasses. A vibrational analysis2 shows that these flex-
ible and stressed rigid glasses are separated by an elastic
phase transition when the network mean coordination num-
ber r̄ reaches the critical value r̄c=2.38. In stressed rigid
networks �r̄� r̄c�, the number of zero-frequency �floppy� vi-
brational modes �which acts as the order parameter of the
transition� goes to zero and the elastic constants display a
power-law behavior with r̄. At the transition, glassy networks
are optimally constrained �isostatically rigid, nc=3�.1

The underlying nature of this peculiar transition has been
reinvestigated recently because two transitions at different
mean coordination numbers r̄c�1� and r̄c�2� have been found3

experimentally in a certain number of glasses. These define
an intermediate phase �IP� between the flexible and the
stressed rigid phases where glasses display some remarkable
properties such as absence of aging4 or stress,5 or selection
of isostatically rigid local structures.3 The two boundaries of
the IP have been characterized from numerical
calculations,6,7 cluster analysis,8 and energy adaptation9 on
self-organized networks and identified as being a rigidity
transition at low r̄ and a stress transition at high r̄. In the
mean-field approach or in random networks both transitions
coalesce into a single one. In network glasses, the short-
range order and the mean coordination number are imposed
by the macroscopic concentration of the atoms involved
�e.g., r̄=2+2x in the archetypal GexSe1−x�.3,4 In this case,
self-organization is achieved through the nucleation of
weakly stressed rigid medium-range-order elements such as
small rings6 that delay the onset of stressed rigidity.

Links between the IP and protein folding,10 high-
temperature superconductors,11 or computational phase

transitions12 have been stressed that go much beyond simple
analogies. The understanding of the IP in glasses where the
structure can be steadily changed with composition is there-
fore of general interest.

If now the macroscopic concentration does not fully de-
fine the short-range-order elements, can new local structural
degrees of freedom contribute to stress avoidance of the net-
work? And in what manner? Here it is shown how the selec-
tion of more flexible local structural units shifts the stress
transition to higher r̄, and leads to the broadening of the IP,
independently of the degree of medium-range order. The lat-
ter contributes, however, to the increase of �r̄= r̄c�2�− r̄c�1� as
well. On the other hand, the possibility of the system to
select local structures in order to lower the constraint free
energy in the stressed rigid phase leads to a situation that
resembles very much the sodium silicates. Taken together,
these results provide benchmarks to study IP’s in multicom-
ponent glass systems such as geomaterials or fast ionic con-
ductors where the elastic nature of the network crucially de-
termines physical and electric or mass transport properties.

The recent discovery of an IP in silicates13 illustrates this
challenging issue. Spectroscopic studies have indeed shown
that, e.g., lithium silicate glasses �with network former SiO2
and network modifier Li2O� are made of several lithium sili-
cate species, distinguished by their number of bridging oxy-
gen atoms.14 Thus the local structures �or species� present at
low modifier concentration are SiO4/2 �the tetrahedron that
forms silica�, LiSiO5/2, and Li2SiO6/2 usually named as Q4,
Q3, and Q2 “species,” respectively �Fig. 1�. For each Qn, n is
the number of bridging oxygen atoms that connect silicon
tetrahedra to the rest of the network. The relative abundance
of these local structures and the way they behave with the
modifier concentration �or temperature, or pressure in geo-
logical studies� is usually termed14,15 as speciation. The fact
that the variation of the relative abundance of the species
with composition is not trivial now contributes to r̄ in a
nonlinear fashion. A simple model to highlight the effect of
the speciation is solved, and combined with cluster-
constraint calculations applied to silicate or thiosilicates of
the form �1−x�SiX2−xM2X with X=O,S,Se and M
=Li,Na,K which are optimally constrained �nc=3� at x
=0.20.16
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In binary sodium silicates �X=O, M =Na�, speciation �i.e.,
the Qn distribution with x� is very simple because the modi-
fier cation M creates almost only Q3 units at low x so that the
probability of finding the latter is R=2x / �1−x�. This means
that the disproportionation reaction17

2Q3 � Q4 + Q2 �1�

involving the species Qn is shifted to the left side. Equation
�1� can be considered as an equilibrium reaction with an
equilibrium constant defined from the probabilities of finding
the different species:

Ke =
p4

�1�p2
�1�

p3
�1�p3

�1� �2�

since �i� NMR supports18 the existence of a limited number
of chemical species in the glass and the melt and �ii� ln Ke is
linear with 1/T �van’t Hoff’s equation� and has a reaction
enthalpy that is correlated19 to the ionization potential of the
metal cation M. On the other hand, chalcogenides20 �X
=S,Se� can be made out of Q4 and Q2 species only �which
leads to a shift of �1� to the right� or, at least, of a mixture of
all Qn’s which happens in systems with modifier cations of
smaller sizes.21 Noteworthy is the fact that global constraint
counting1 does not distinguish between the aforementioned
systems, although the location of the rigidity and stress tran-
sitions should be obviously changed.

II. MODELING NON-MEAN-FIELD RIGIDITY

A. Classification of the interaction forces

Historically, the modeling of elastic properties of amor-
phous solids has been mostly based on the imposition of
distance constraints to replace bonding forces1,2 between at-
oms. In this constraint approach, the restriction to the inter-
action of only nearest-neighbor bond-bending and bond-
stretching forces deserves some comments with respect to
simulated glass structures and experiment.

In toy models of glasses2 with vibrational Hamiltonians,
the mean coordination change is achieved by a �random or
selective� removal of bonds between atoms of the network.

This implicitely assumes that interactions between noncon-
nected atoms are forced to be exactly zero. Furthermore,
even for connected atoms, dihedral interactions or even more
weaker forces �van der Waals, hydrogen� are not taken into
account �see, however, Ref. 22�. By imposing constraints on
the strongest interactions only, it is implicitly assumed that
higher-frequency motions are quenched and one expects that
rigid structures have no vibrational modes on long �experi-
mental� time scales. The separation into strong and weak
forces is therefore central in the constraint approach and be-
comes meaningful when the difference between the strong
and weak interactions display a significant gap. The ne-
glected weaker forces have an experimental signature from
inelastic neutron scattering, however.23 Studies on the vibra-
tional density of states show that the floppy mode energy
supposed to be zero in the toy models has a finite value, i.e.,
it is blueshifted, forming a peak at around 4 meV in a Ge-
As-Se system, although the frequency of the peak remains
constant for mean coordination numbers up to r̄=2.4. The
area of the peak obtained from a deconvolution gives a spec-
tral weight that is exactly equal to the floppy mode fraction f .
In pure selenium, this spectral weight is close to 1/3, a value
that one would expect simply from a constraint counting
based on nearest-neighbor interactions. The shortcoming of
the approach is therefore revealed in the shift from zero to a
finite frequency of f but, as the area of the peak does not
depend on the network mean coordination number, one can
assume that the neglect of residual forces will only introduce
a constant drift in the constraint counting. Application of
constraint counting over the years have shown that it can
predict precisely the location of elastic thresholds for very
different systems,3,4,13,16 oxides or chalcogenides, network or
binary conducting glasses.

The nonobservation24 of the predicted increase in elastic
constants as a power law2 with composition in the rigid
phase from ultrasonic data has been another stressed limita-
tion of the constraint approach even though it has been
shown that this was mostly resulting from the weak excita-
tion laser power.25 At low laser excitation, Brillouin scatter-
ing measurements on sodium silicates13 finally showed the
anticipated power-law variation for the longitudinal and
transverse acoustic modes, in harmony with the constraint
approach. It suggests that in oxide glasses nearest-neighbor
forces far exceed the more-distant-neighbor interactions in
contrast with lone-pair-bearing chalcogenides.

A natural question emerging from a theoretical viewpoint
would be in this case how accurately force-field molecular
dynamics or tight-binding methods can describe the onset of
rigidity in glasses by taking into account more distant inter-
actions. Although the structure and physical properties of
stoichiometric chalcogenides have been studied with ap-
proximate ab initio methods26 or density-functional-based
tight-binding methods,27 glasses with changing composition
using these tools have been considered only very recently28

but not in the present context. On the other hand, classical
molecular dynamics simulations using a Born-Mayer-
Huggins-like potential have been able to show onset of rigid-
ity under pressure in silica and germania29,30 with low-
frequency modes appearing in the vibrational densities of
states in low-pressurized glasses. Compositionally driven ri-

FIG. 1. Example of a network of �1−x�SiX2−xM2X with three
kinds of species �Q2, Q3, and Q4, defined in the marked circles�.
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gidity transitions using ab initio fitted force-field models31

have been considered only very recently. Although two- and
three-body interatomic interactions are considered, the calcu-
lated mechanical behavior is optimized32 at the mean coor-
dination number r̄=2.4.

The latter results suggest that bond distance constraints
capture a large part of the picture. They certainly do not one
allow one to have a full description of the structural or physi-
cal properties as would be obtained from simulations using
force-field methods, but they succeed in predicting accu-
rately the location of the transitions. However, one has to
keep in mind that the vibrational and mechanical properties
cannot be fully described using these methods. In the follow-
ing, we therefore concentrate only on the location of the two
transitions defining the intermediate phase.

B. Cluster construction

To describe non-mean-field rigidity, size-increasing clus-
ter approximations �SICAs� can be used to infer the effect of
the speciation on the location and the width of the interme-
diate phase. These methods were first introduced to study the
medium-range order of amorphous insulators33 and the
growth of fullerenes.34 They have been used in the context of
floppy to rigid transitions for group IV chalcogenides.8

We consider a network of large N with tetrahedra Q4, Q3,
and Q2 having respective probabilities p4

�l=1�, p3
�1�, and p2

�1�.
The behavior of the pi

�1�’s with modifier concentration x can
be determined from the normalization condition

p4
�1� + p3

�1� + p2
�1� = 1, �3�

a charge conservation law

R =
2x

1 − x
= p3

�1� + 2p2
�1�, �4�

and the definition of the equilibrium constant18 of the reac-
tion �1�. With these equations, the speciation is fully deter-
mined with respect to x �or R� and given by

p3
�1� =

R�2 − R�
1 + ��1 − R�2 + 4KeR�2 − R�

�5�

out of which is obtained p2
�1�= �R− p3

�1�� /2 and p4
�1�=1− p3

�1�

− p2
�1�.
Starting from this short-range-order distribution pi

�1� �the
basic SICA unit at l=1�, one constructs the 12 possible struc-
tural corner- �6� and edge-sharing �6� arrangements of two
basic units �l=2�, i.e., Q4-Q4, Q4-Q3, Q4-Q2, Q3-Q3, etc.
Three energy gains Estress, Eiso, and Eflex are defined follow-
ing the mechanical nature of the created cluster �stressed
rigid, isostatically rigid, and flexible�. Edge-sharing tetrahe-
dra �EST� involve an energy gain EES. The probabilities of
the created clusters �l=2� are given by

pkj
�2� =

Wkj

Z
pk

�1�pj
�1� exp�− Ei/kBT� �6�

with i=stress , iso , flex, or ES. Wkj is a statistical factor tak-
ing into account the number of equivalent ways to connect

two �l=1� units together.35 Z normalized the step-l probabili-
ties to 1.

Constraint counting is then applied on each of the �l=2�
clusters and this leads to the number of floppy modes2 of the
network given by

f �2� = 3 − nc
�2� = 3 −

�
k,j

nc�kj�pkj
�2�

�
k,j

Nkjpkj
�2�

, �7�

where Nkj and nc�kj� are, respectively, the number of atoms
and the number of constraints, arising from bond-bending
and bond-stretching forces, of the cluster with probability
pkj

�2�. For an r-folded atom, the number of bond-stretching
and bond-bending mechanical constraints is, respectively,
r /2 and �2r−3�. Because of extra constraints, ring structures
have to be counted following a different scheme.2,8 Using
these counting algorithms, one is then able to evaluate the
mechanical nature of the created cluster �nc

�l��0 or nc
�l��0 or

nc
�l�=0� and this defines the energies Ei. For instance, on this

basis Q4-Q4 connections are stressed rigid �nc=3.67�
whereas Q4-Q3 connections are isostatically rigid �stress-
free�.

Once this is set and starting from a flexible network where
stressed rigid dendritic Q4-Q4 connections are absent and
decreasing x, one can investigate at what concentration xc�1�
the network will have a vanishing of f �2� �rigidity transition�
according to Eq. �7�, and at what concentration xc�2� the net-
work will not be able to avoid any more dendritic stressed
rigidity. Here stressed rigidity is achieved by corner-sharing
Q4’s. This point in composition is the stress transition. The
whole calculation is performed for a given amount of
medium-range order characterized by the fraction � of edge-
sharing tetrahedra in the base glass because � can be simply
related8 to the Boltzmann factor eES=exp�−EES /kBT� in the
basic network-forming limit �x=0, p4

�1�=1�.

III. RESULTS

With the construction established, one can now investi-
gate how the mechanical nature of the network changes with
modifier concentration, for various equilibrium constants Ke
and edge-sharing fractions �.

A. Width of the intermediate phase

Figure 2 shows the location of the transitions. Large equi-
librium constants Ke �corresponding to a Q2-rich glass� will
induce a large width for the IP. However, one observes that
Ke mostly affects the location xc�2� of the stress transition
whereas the location of the rigidity transition xc�1� remains
almost constant. Noteworthy is also the shift from the mean-
field �MF� rigidity transition at xc=0.20 to lower x that arises
from the presence of weakly stressed Q4 EST �nc=3.33 per
atom, due to the ring correction2,8�. With a weaker rigidity
due to the presence of the latter, part of the strain is captured
in the EST, and onset of flexibility can happen at lower
modifier concentration x. As for IV-VI network glasses,8 the
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width �x=xc�2�−xc�1� of the IP increases with the fraction �
of EST due to the shift of the location of the stress transition
�Fig. 2�. The change in speciation from a Q3-rich to a Q2-rich
glass contributes, however, to an additional broadening of
the IP.

The trend with Ke observed in Fig. 2 can be further char-
acterized from the computation of the probability of stressed
rigid and isostatically rigid clusters �Fig. 3�. When the reac-
tion �1� is shifted to the left side �low Ke, i.e., a Q3-rich
glass�, each modifier molecule will create mostly two flex-
ible Q3 units �nc=2.55 per atom� which serve to accumulate
isostatically rigid subregions of the network, as Q4-Q3 con-
nections �nc�43� /N43=3� are likely to appear. These are maxi-
mum at the stress transition �solid line, Fig. 3�, consistently
with numerical simulations.6 On the other hand, a higher

value of Ke leads to the growth of even more flexible units
�Q2’s, nc=2.0 per atom� at the expense of Q3’s, and will
produce a stress transition at lower x �broken line, Fig. 3�.
Indeed, increasing Ke at fixed x decreases the network mean
coordination number and favors flexible Q4-Q2 instead of
isostatically rigid Q4-Q3 bondings. As a result, with growing
concentration x, the network will lose stress earlier and will
display a lower isostaticity in the IP. Thus xc�2� is shifted to
lower x. One should finally note that within this model the
rigidity transition is not directly observable from the struc-
tural cluster probabilities, whereas it has a clear signature in
free energy �see below�. Experimentally, both transitions are
detected from calorimetric measurements3,4 while structural
correlations in diffraction36 acknowledge only the stress tran-
sition at xc�2�.

B. Constraint free energy

The constraint-related free energy is now considered, fol-
lowing the approach initially reported by Naumis.37 The free
energy of the system is given by

F�2��x,Ke� = − f �2� + kBT�
k,j

pkj
�2� ln pkj

�2�, �8�

where −f �2� is the stress energy equal to the number of re-
dundant constraints, i.e., additional constraints that cannot be
balanced by the degrees of freedom, and which vanish for
x�xc�1�.

Figure 4 shows that the stress transition at x=xc�2� is first
order for any Ke. However, with respect to the mean-field
case �thick solid line� where xc�1�=xc�2�, the jump of the first
derivative �F�2��x ,Ke� /�x at x=xc�2� decreases with growing
Ke. In the MF case, this jump is equal to 75.2±0.5, whereas
it is only 45.3±0.3 for Ke=2.5. This suggests that the tran-
sition broadens when the equilibrium �1� shifts to the right,

FIG. 2. Location of the rigidity xc�1� and the stress transition
xc�2� �right axis� as a function of the equilibrium constant Ke for
three fractions � of edge-sharing tetrahedra in the base glass ��
=0.04, solid line; �=0.33, broken line; �=0.50, dotted line�. With
increasing � and Ke, the width �x=xc�1�−xc�2� becomes larger, as
seen from the inset.

FIG. 3. Probability of finding stressed rigid and isostatically
rigid clusters with respect to the modifier concentration x for two
different equilibrium constants: Ke=0.1 �solid line� and 2.5 �broken
line�. Note that the stressed rigid cluster probability extrapolates to
xc=0.20 in the MF description �thick line�. The dotted vertical lines
serve to define the two transitions and the intermediate phase for
Ke=0.1. Here �=0.33.

FIG. 4. Free energy F�2��x ,Ke�−F�2��0,Ke� of the system as a
function of the modifier concentration x in the mean-field case
�thick solid line�, and for two different equilibrium constants Ke

=0.1 �solid, line� and 2.5 �broken line�, both for �=0.33. The ar-
rows indicate the stress and rigidity transitions for Ke=2.5. The
inset shows the same quantity with x rescaled to its stress transition
composition xc�2�, together with the free energy �dots� minimized by
Ke. In all, kBT=1.
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leading to a Q2-rich glass. On the other hand, the change in
character of the rigidity transition with Ke is weak and sec-
ond order. Finally, some chemical self-organization of the
network is allowed through an adaptative speciation. As
stress costs energy, it is natural to imagine that the glass
network will try to self-organize in the stressed rigid phase to
decrease the energy by rewiring and reset some weaker
bonds such as the ionic M-X ones that will lead to a Qn

species recombination. In the present description, this means
that at a given concentration x�xc�2�, the minimization of the
free energy can be accomplished with respect to Ke. The
equilibrium constant Ke minimizing F�x ,Ke� provides then
an estimation of the speciation via Eq. �5�.

This leads to a stress transition at x=xc�2�=0.17 and a free
energy �dots in the inset of Fig. 4� that is very close to the
Ke=0.1 speciation model and to sodium silicates.19

IV. SUMMARY AND CONCLUSIONS

In summary, there are different ways for a flexible system
to self-organize in order to avoid stress, either by nucleating

weakly stressed edge-sharing tetrahedra such as in network
glasses �GexSe1−x� or by producing also more flexible species
�Q2’s� in multicomponent systems, that serve to balance the
addition of new constraints. Both delay the onset of stressed
rigidity. As a conclusion, we provide a prediction of the IP
for sodium seleniosilicates �M =Na, X=Se� that have an EST
fraction of �=0.50 in the base network former SiSe2,38 and
an equilibrium constant Ke=0.15.20 According to the present
approach, one therefore expects a stress transition at xc�2�
=0.11, a rigidity transition at xc�1�=0.18, and a width for the
intermediate phase of about �x=0.07. Larger structural cor-
relations �l�2� will probably refine this picture and are un-
der consideration.
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