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Intermediate Phase in Molecular Networks
and Solid Electrolytes

M. Micoulaut1

There is growing evidence that electronic and molecular networks present some common
universal properties, among which is the existence of a self-organized intermediate phase. In
glasses, the latter is revealed by the reversibility window obtained from complex calorimetric
measurements at the glass transition. Here we focus on amorphous networks and we show
how this intermediate phase can be understood from a rigidity percolation analysis on size
increasing clusters. This provides benchmarks and guidance for an electromechanical analogy
with high temperature superconductors.
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1. INTRODUCTION

In the recent years, more and more studies de-
voted to the understanding of the metal–insulator
transition (MIT) have stressed the possible existence
of a self-organized electronic phase [1,2] that may ex-
plain the superconducting state. In these studies, in
addition to the prediction or the measurement of a
critical dopant concentration nc1, it is noteworthy to
stress that although the mobile charge carrier concen-
tration should tend to zero at the MIT and therefore
also the interaction between the carriers, the tempera-
ture Tc . . . should tend to zero, in contrast with current
observation. Moreover, a second anomalous behav-
ior is observed at a concentration nc2 from the super-
conductive phase to the nonsuperconductive Fermi
liquid. This second transition is much more abrupt
and seems first order in character [3]. Illustrative ex-
amples of these behaviors can be found in LSCO
(La2−xSrxCuO4) from measurements of the filling fac-
tors by Meissner volume (i.e. measuring the fraction
of the material that is superconductive) and the tran-
sition temperature Tc(x) with respect to Sr concentra-
tion [4]. The nature of this intermediate phase in the
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dopant region nc1 < n < nc2 therefore still needs to
be understood. However, beyond the details of mod-
elling [6], a general consensus emerge, which puts for-
ward the idea of the formation of modulated spatial
patterns of mesoscopic length scale as being respons-
able for HTSC [2,5].

Much more simpler examples of self-
organization and the existence of an intermediate
phase can be provided by network glasses [6]. Here,
instead of following the concentration of mobile
carriers, focus is made on elastic deformations
of an amorphous network. Thus, instead of MIT,
percolative stiffness transitions [7] are obtained
upon changing the number of possible deformations,
which, in turn, can be related to the connectivity of
the molecular network. In order to describe these
deformations, one simple and elegant idea is to
translate the covalent interatomic valence forces of
the atoms in bond-stretching and bond-bending me-
chanical constraints (nαc and nβc ), using (mean-field)
Maxwell constraint counting [8]. A very particular
point is reached when the number of mechanical
constraints nc = nαc + nβc per atom equals the degrees
of freedom per atom in 3D, i.e. nc = 3 (corresponding
to optimal glass formation) [9]. This result has been
obtained independently from rigidity percolation by
Thorpe [10] on disordered networks, showing that the
number of zero frequency solutions (floppy modes)
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f of the dynamical matrix of the network equals
f = 3− nc. The enumeration of constraints has been
performed on a network of N atoms composed
of nr atoms that are r -fold coordinated, yielding
nαc = r/2 bond-stretching constraints and nβc = 2r − 3
bond-bending constraints for a r -fold coordinated
atom. The vanishing of the number of floppy modes is
obtained when the mean coordination number of the
network reaches the critical value of 2.4, identified
with an elastic stiffness transition [11]. This point
defines the transition between a floppy network that
can be deformed without any cost in energy and
a stressed rigid network that has more constraints
than degrees of freedom. At the mean coordination
number of 2.4, the network is isostatic. This new
phase transition has been studied with considerable
success in chalcogenides both in experiments and
numerical simulations [12]. Applications of rigidity
theory have also been reported in various fields
such as granular matter, biology, and computational
science [13]. However, in the more recent years it has
been shown that there should be two transitions [14]
instead of the previously reported single transition,
suggesting that the mean-field constraint counting
alone may be insufficient to describe completely the
network change. Results on Raman scattering and
measurements of the kinetics of the glass transition
using modulated differential scanning calorimetry
(MDSC) have indeed provided evidence [14,15] for
two vibrational thresholds, thus defining a stress-free
intermediate phase (isostatically rigid) in between
the floppy and the stressed rigid phases, for which
independent evidence is obtained from numerical
simulations [16].

In this paper, we will construct a systematic ap-
proach that enables us to perform constraint count-
ing on size increasing structures, thus permitting to
take into account medium range order effects such as
small rings. In doing this, we show that these small
rings mostly control the values of the critical coor-
dination numbers and the width of the intermediate
phase. The construction will also show how isostatic
regions and self-organization influence the absolute
magnitude of the width. The simplest case that can
be build up corresponds to Group IV chalcogenide
glasses of the form BxA1−x with coordination num-
bers rA = 2 and rB = 4 defining the mean coordina-
tion number r̄ = 2+ 2x. Size-increasing cluster ap-
proximations (SICA) have been used in order to gen-
erate medium range order (MRO) from sets of clus-
ters on which we have realized constraint counting.
The results show two transitions. A first one at which

the number of floppy modes vanishes and a second
one (a “stress transition”) beyond which stress in the
structure cannot be avoided anymore out of ring struc-
tures. In between, this defines an almost stress-free
network structure for which the rate of isostatic re-
gions can be computed. We will extend these results
on solid electrolytes for which percolative conductiv-
ity should be detected.

2. SIZE INCREASING CLUSTER
APPROXIMATIONS AND
CONSTRAINT COUNTING

Size increasing cluster approximations (SICA)
has been first introduced to describe the medium and
intermediate range order in amorphous semiconduc-
tors [17] but their usefulness has also been stressed for
the description of the formation of quasi-crystals [18]
and fullerenes [19]. This approach emphasizes the
rapid convergence of significant MRO structures to
a limit value when the size of the considered clus-
ters is increasing. Ideally, the infinite size cluster dis-
tribution would yield the exact statistics of MRO in
the structure. The construction of these clusters is
realized in Canonical Ensemble, with particular en-
ergy levels corresponding to bond creation between
short range order molecules (basic units) that are
used as building blocks from step l = 1 (correspond-
ing here to the reported mean-field approach [8]) to
arbitrary. This construction should be realized at the
formation of the network, when T equals the fictive
temperature Tf [20]. Since we expect to relate the
width of the intermediate phase with the ring frac-
tion, we will restrict our present study to Group IV
chalcogenides of the form SixSe1−x. For the latter,
there is strong evidence that at the stoichiometric
concentration x = 0.33 a substantial amount of edge-
sharing SiSe4/2 tetrahedra [21] can be found. There-
fore, we select basic units such as the A2 (i.e. Se2) chain
fragment and the stoichiometric BA4/2 molecule (i.e.
SiSe4/2). These basic units have respective probabili-
ties 1− p and p = 2x/(1− x), x being the concentra-
tion of the Group IV atoms. We associate the creation
of a chain-like A2 −A2 structure (see Table I) with an
energy state of E1, isostatic A2 − BA2 bondings with
an energy gain of E2, and corner-sharing (CS) and
edge-sharing (ES) BA4/2 tetrahedra or any ring struc-
ture respectively with E3 and E4. The probabilities
of the different clusters have statistical weights g(Ei )
that can be regarded as the degeneracy of the cor-
responding energy level and correspond to the num-
ber of equivalent ways a cluster can be constructed.
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Table I. The Four Clusters Generated at Step l = 2 With Their Unrenormalized Probabilities and
Their Number of Mechanical Constraintsa

Mechanical
Symbol nature Probabilty nc

A4 Flopy 4(1− p)e2
1 2.0

BA4 Isostatic 16p(1− p)e2 3.0

B2A4 Stressed 16p2e3 3.67

B2A2 Stressed 72p2e4 3.33
aThe factors ei are Boltzmann factors involving bond energies and the fictive temperature, ei =
exp[−Ei/Tf].

Examples of statistical weights for the step l = 2 are
shown in Table I and in Refs. [17,18].

Because of the initial choice of the basic units,
the energy E2 will mostly determine the probability
of isostatic clusters since this quantity is involved in
the probability of creating the isostatic BA4 cluster (a
A2 − BA4/2 bonding). As a consequence, if we have
E2 ¿ E1, E3, E4, the network will be mainly isostatic
in the range of interest.

The calculation of the number of bond-bending
and bond-stretching mechanical constraints (nβc and
nβc ) per atom is performed on each cluster by Maxwell
counting, and redundant constraints in ring structures
are removed following the procedure described by
Thorpe [10]. It is obvious from the construction that
all the cluster probabilities will depend only on two
parameters (i.e. the factors e1/e2 and e3/e2) and even-
tually e4/e2 if one considers the possibility of ES tetra-
hedra or rings. One of the two factors has to be com-
position dependent since a conservation law for the
concentration of B atoms x(l) has to be fulfilled at any
step l of the construction [22]:

x(l) = x (1)

This means that either the fictive temperature Tf or the
energies Ei depend on x [20] but here only the ei (x)

dependence is relevant for our purpose. Of course,
when the step l will increase, the number of isomers
will also increase, and among those, also the num-
ber of different types of rings. The construction has
been realized up to the step l = 4, which already cre-
ates clusters of MRO size. For each step l, we have
determined either e1/e2 or e3/e2 solving Eq. (1) and
computed the total number of constraints nl

c:

nl
c =

∑Nl
i=1 nc(i) pi∑Nl
i=1 Ni pi

(2)

where nc(i) and Ni respectively are the number of con-
straints and the number of atoms of the cluster of size
l with probability pi . Once the factors become compo-
sition dependent, it is possible to find for which con-
centration x (or which mean coordination number r̄)
the system reaches an optimal glass formation where
the number of floppy modes f = 3− nl

c vanishes.

3. RESULTS

Various possibilities can be studied within this
framework. The simplest case that can be investigated
at the very beginning is the random bonding case,
which is obtained when the cluster probabilities pi
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Fig. 1. Probability of finding floppy, isostatic rigid, and stressed rigid clusters as a function of
mean coordination number r̄ at SICA step l = 2 for different fractions of edge-sharing. The
solid line corresponds to the dendritic case where no rings are allowed (e4 = 0). The broken
lines correspond to situations with a fraction of ES at the stress transition of η = 0.156, 0.290,
and 0.818. The filled squares indicate the point r̄c2 at which the stress transition occurs in the
case η = 0.156

are given only by their statistical weights (in other
words, the factors ei are set to 1). A single solution
is obtained for the glass optimum point defined by
f = 0 at all SICA steps, in the mean coordination
number range [2.231, 2.275], slightly lower than the
usual mean-field value of 2.4. Since there is only one
solution, no intermediate phase in the case of random
bonding is found.

Self-organization can be obtained by starting
from a floppy cluster of size l (e.g. a chain-like struc-
ture made of a majority of A atoms), and allowing the
agglomeration of a new basic unit onto this cluster to
generate the cluster of size l + 1 only if the creation of
a stressed rigid region can be avoided on this new clus-
ter. The latter occurs when two BA4/2 basic units are
joined together. With this rather simple rule, upon in-
creasing r̄ one accumulates isostatic rigid regions on
the size increasing clusters because BA4/2 units are
accepted only in A2 − BA4/2 isostatic bondings with
energy E2. Alternatively, we can start from a stressed
rigid cluster, which exist at a higher mean coordina-
tion number (r̄ ≤ 2.67), and follow the same proce-
dure but in an opposite way, i.e. we allow only those
bondings that lead to isostatic rigid regions, excluding
systematically the possibility of floppy A2 – A2 bond-

ings. In the case of self-organized clusters, the sim-
plest case to be studied is the case of dendritic clusters,
when ring creation is avoided. For an infinite size l, this
would permit to recover the results from Bethe lat-
tice solutions or Random Bond Models [23] for which
rings are also exluded in the thermodynamic limit [24].
A single transition for even l steps at exactly the mean-
field value r̄ = 2.4 is obtained whereas for the step
l = 3, there is a sharp intermediate phase defined by
f = 0 (still at r̄ = 2.4) and the vanishing of floppy re-
gions (i.e. e1/e2 is zero) at r̄ = 2.382(6). The probabil-
ity of floppy, isostatic rigid, and stressed rigid clusters
as a function of the mean coordination number has
been computed and shows that the network is entirely
isostatic at the point where f = 0 (solid line, Fig. 1).

The intermediate phase shows up if a certain
amount of MRO is allowed. This is realized in
the SICA construction by setting the quantity e4/e2

nonzero, i.e. ES tetrahedra BA4/2 leading to four-
membered rings B2A4 can now be created at the grow-
ing cluster steps. Two transitions are now obtained
for every SICA step. The first one is still located at
r̄c1 = 2.4 (see Fig. 1). There, the number of floppy
modes f vanishes. The second one is located at r̄c2.
When starting from a floppy network close to r̄ = 2
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Fig. 2. Width of the intermediate phase 1r̄ as a function of the fraction of ring clusters at
the rigidity transition for l = 2 (solid line), l = 3 (dashed line) and l = 4 (dotted lines). At
step l = 2, the nonzero width comes only from the edge-sharing BA4/2 tetrahedra. For l > 2,
different rings sizes (4, 6, 8) have been taken into account. The lower dotted line corresponds
to the intermediate phase at l = 4 if only ES are allowed as stressed rigid fragments. The
upper dotted line is the same quantity but allowing any ring structure. The insert shows the
probability of isostatic clusters with mean coordination number r̄ for l = 4 (dotted line) and
l = 3 (dashed line). The shaded region of l = 4 represents the intermediate phase.

and requiring self-organization (in this case, allowing
only floppy or isostatic bondings), this point corre-
sponds to the network composition beyond which
stressed rigid regions outside of ring structures, which
are created by the dendritic connection of at least two
BA4/2 units, cannot be avoided anymore. We call this
point the “stress transition.” We show in Fig. 1 the
l = 2 result where f = 0 at r̄c1 = 2.4 for different frac-
tions of ES tetrahedra, defining an intermediate phase
1r̄ . It is noteworthy to stress that the first transition at
r̄c1 corresponding to Phillips’ glass optimum does not
depend on the ES fraction, as well as on the fraction of
stressed rigid clusters in the structure. To ensure con-
tinuous deformation of the network when B atoms
are added and keeping the sum of the probability of
floppy, isostatic rigid, and stressed rigid clusters equal
to 1, the probability of isostatic rigid clusters connects
the isostatic solid line at r̄c2. Stressed rigid rings first
appear in the region r̄c1 < r̄ < r̄c2 while chain-like
stressed clusters (whose probability is proportional
to e3) occur only beyond the stress transition, when
e3 6= 0. This means that within this approach, when r̄ is
increased, stressed rigidity nucleates through the net-
work starting from rings, as ES tetrahedra. It appears

from Fig. 1 that the width 1r̄ = r̄c2 − r̄c1 of the inter-
mediate phase increases with the fraction of ES. We
have represented the width as a function of the over-
all MRO fraction at the rigidity transition in Fig. 2,
which shows that 1r̄ is almost an increasing function
of the ES fraction as seen from the result at SICA
step l = 4. Here, there is only a small difference be-
tween allowing only four-membered rings (ES) (lower
dotted line) or rings of all sizes (upper dotted line) in
the clusters. Concerning the nature of the structure in
the intermediate phase, one can see from Fig. 1 and
the insert of Fig. 2 that the probability of isostatic clus-
ters is maximum in the window 1r̄ , and almost equal
to 1 for the even SICA steps, providing evidence that
the molecular structure in the window is almost stress-
free. Furthermore, the latter can be extremely broad
if a high amount of ES is allowed. For a fraction of
ES, η is close to 1, molecular stripes emerge in the
structure that are isostatic, and every addition of new
B atoms lowers the amount of remaining A-chains by
converting them in ES BA4/2 stripes. These molec-
ular stripes are stress-free only if their size is infinite
[10], which is the case for η ' 1 in the thermodynamic
limit.
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4. APPLICATION TO CHALCOGENIDES

As mentioned above, chalcogenide glasses are
the first systems that have been carefully studied in
the context of self-organization. SICA therefore pro-
vides a benchmark to check the results obtained. To
be specific, Raman scattering has been used [25,26] as
a probe to detect elastic thresholds in binary SixSe1−x

and GexSe1−x or ternary GexAsxSe1−2x glasses [27].
Changes in the germanium or silicon corner shar-
ing mode chain frequencies have been studied with
mean coordination number r̄ of the glass network.
These frequencies exhibit a change in slope at the
mean coordination number r̄c1 = 2.4 and a first-order
jump at the second transition r̄c2. In germanium sys-
tems, the second transition is located around the mean
coordination number of 2.52 whereas r̄c2 = 2.54 in
Si-based systems. For both systems, a power-law be-
havior in r̄ − r̄c2 is detected for r̄ > r̄c2 and the corre-
sponding measured exponent is very close to the one
obtained in numerical simulations of stressed rigid
networks [28]. Moreover, a clear correlation between
these results and the vanishing of the nonreversing
heat flow 1Hnr (the part of the heat flow that is ther-
mal history sensitive) in MDSC measurements has
been shown [25,26].

The SICA approach shows that the width 1r̄ of
the intermediate phase increases mostly with the frac-
tion of ES tetrahedra. We stress that the width should
converge to a lower limit value of 1r̄ compared to
the step l = 2, and therefore one can observe the shift
downwards when increasing l from 2 to 4. This limit
value is in principle attained for l →∞, or at least for
much larger steps than l = 4 [29]. For Si–Se,1r̄ = 0.14
is somewhat larger than for Ge–Se (1r̄ = 0.12), con-
sistent with the fact that the number of ES is higher
in the former [26].

5. APPLICATION TO SOLID ELECTROLYTES

One interesting field of application of cluster con-
struction and constraint counting algorithms is the
area of fast ionic conductors (FIC) [30,31], which has
recently gained attention because of potential appli-
cations of these solid electrolytes in all solid state elec-
trochemical devices and/or miniaturized systems such
as solid state batteries. This has been made possible by
substitution of more polarizable sulfur atoms, replac-
ing the oxygen in usual oxide glasses, and has led to a
substantial increase of the conductivity [32], as high as
10−3 Ä−1 cm−1, three orders of magnitude higher than

Fig. 3. The two local structures of the fast ionic conducting (1−
x)SiX2 − xM2X, (X = O, S, Se; M = Li, Na, K) glasses, denoted
as Q4 and Q3 units, with respective probabilities 1− p and p =
2x/(1− x).

the conductivity of analogous oxide glasses [33]. Sur-
prisingly, the extension of constraint theory from net-
work glasses (as SixSe1−x) to FIC has been reported
only for a few oxide glasses [34,35]. As a consequence,
percolative effects have not been studied so far with
the network change in FIC’s, although it seems fun-
damental for the understanding of the mobile alkali
cations’ motion. Since the conductivity of the semi-
conductor is proportional to the mobility µ, which, in
turn, is related to the deformation of the network [36],
and the free carrier concentration nL by σ = µnLe,
one may expect that the mobility in a floppy FIC
should be substantially higher compared to the cation
mobility in a stressed rigid network. This means that
the conductivity σ should display some particular be-
havior in the stress-free intermediate phase and at the
two transitions.

One can extend the SICA approach to the
present case by considering the simplest binary con-
ducting glass, which is of the form (1− x)SiX2 −
xM2X, with X an atom of Group VI (X= O, S, Se)
and M an alkali cation (M= Li, Na, K, . . . ). The local
structure can be obtained from NMR measurements
and is mainly made of so-called Q3 and Q4 units [38].
The former corresponds to the usual silica tetrahe-
dron made of one silicon and four Group VI atoms at
the corner (e.g. SiSe4/2) while the latter has one oxy-
gen atom ionically bonded to the alkali cation (e.g.
SiSeª5/2Na⊕) (Fig. 3).

Then, the probabilities can be evaluated for dif-
ferent steps of cluster sizes following the procedure
described in the previous sections. It appears that the
creation of a Q4 − Q4 connection leads to a stressed
rigid cluster if the number of constraints is computed,
while the Q4 − Q3 and Q3 − Q3 connections yield re-
spectively isostatically stressed and floppy clusters.
The SICA results show again that the intermediate
phase shows up if a nonzero fraction of small rings
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Fig. 4. Width of the intermediate phase 1x as a function of the rate of edge-sharing (ES) in
the base glass. The insert shows the solutions xc1 and xc2 obtained from SICA analysis, again
as a function of ES.

is allowed in the structure, as displayed in Fig. 4.
Here in contrast with chalcogenides, the glass opti-
mum corresponding to the vanishing of the number
of floppy modes represents the upper limit of the in-
termediate phase, which is consistent with the fact
that one starts from an almost stressed rigid molec-
ular network at low modifier concentration. Increase
of the alkali content leads to an increase of floppiness.
In the oxide system (1− x)SiO2 − xM2O, the width
1x should be very small or zero since the fraction
of ES in the oxide systems is almost zero [20]. Still,
percolative effects are expected at the concentration
x = 0.2 corresponding to the transition from rigid to
floppy networks. In sulfur and selenide glasses such
as (1− x)SiO2 − xNa2S, the width should be much
broader because of the existence of a high amount of
ES tetrahedra in the SiS2 or SiSe2 base networks [38].
In the sulfur base glass, 29Si NMR have shown that
the rate of ES should be about 0.5, slightly higher than
in the selenide analogous system [39]. As a result, one
should observe a window of about1x = 0.09. Unfor-
tunately, results on these systems are available only
for an alkali concentration x > 0.2 [40]. However, in
the different silica-based glasses, a rigidity transition
has been observed [41] at the concentration x = 0.2,
which should provide guidance for forthcoming stud-
ies in this area.

Finally, temperature effects should be observ-
able close to this transition. Since the concentration
of alkali free carriers nL depends on the tempera-
ture (the higher the temperature, the higher nL), an
increase of the temperature T should lead to a de-
crease of the number of network constraints, the frac-
tion of intact bond-stretching constraints nαc of the al-
kali atom being proportional to 1− nL. Consequently,
a shift of the mechanical threshold ( f = 0) to the
higher concentrations should result from an increase
of T.

6. SUMMARY

In this paper, we have shown how stress change in
molecular systems can be understood from the com-
bination of cluster construction and constraint count-
ing. We have found that there is a single transition
from floppy to rigid networks in a certain number of
structural possibilities. An intermediate phase inter-
venes when a fraction of nonzero molecular isostatic
stripes are allowed, which makes this new phase glob-
ally stress-free. The similarity of this new phase with
the superconducting filamentary phase in HTSC [2]
and also in biological networks [13] is striking and
should be worked out in more depth in the future.
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