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1. Introduction

Diffraction methods form the basis of our common under-
standing of materials. The determination of crystal structures 
has provided a foundation for considerable characterization 
of chemical bonding, cohesion, and functionalities in solid- 
or liquid-state science with applications in e.g. physico-
chemistry, biology and geology. In contrast to crystals which 
display well-defined diffraction patterns and sharp Bragg 
peaks induced by the periodic arrangement of atoms, glasses 
and liquids exhibit broad and diffuse peaks that result from 
their intrinsic disordered structure. For such materials and 
with changing momentum transfer k, there have been many 
attempts to extract from the relevant resulting coherent dif-
fraction function, that is, the static structure factor S(k), infor-
mation on short- (SRO) and intermediate-range order (IRO) 
and a conventional means uses probabilistic atomic distribu-
tion functions to infer the microscopic structure [1].

Within this framework, the key quantity is the pair correla-
tion function g(r) which measures the probability of finding 

an atom at a position r relative to a reference atom taken to 
be at the origin [2]. Relating in detail the real space structure 
properties encoded in g(r) and the shape and peak positions or 
amplitudes of the measured S(k) remains a challenging task 
but has inspired a certain recent number of insightful contrib-
utions in the field [3–6], many years after the early attempts of 
Warren [7] and Bernal [8]. In fact, only certain specific signa-
tures can be detected and related to some structural features. 
The first sharp diffraction peak (FSDP) at low momentum 
transfer (k � 1 Å

−1
) reveals for instance some ordering at 

intermediate length scales [9, 10] that might manifest in e.g. 
voids and depends on pressure and temperature. Similarly, 
principal peak (PP) characteristics are thought to be linked to 
the presence of extended range order [11, 12]. Such features 
continue, however, to be discussed given that the established 
correlations remain essentially at a qualitative level and are 
largely material dependent.

Here we show that with the assistance of computer simulated 
structural models of glasses, the decomposition into neighbor 
distribution functions in real space permits to reconstruct as a 

Journal of Physics: Condensed Matter

Diffraction patterns of amorphous  
materials as a series expansion of  
neighbor distribution functions

M Micoulaut

Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée,  
4 Place Jussieu, 75252 Paris Cedex 05, France

E-mail: mmi@lptmc.jussieu.fr

Received 9 January 2019, revised 20 March 2019
Accepted for publication 1 April 2019
Published 30 April 2019

Abstract
An exact analytical expression for the static structure factor S(k) in disordered materials is 
derived from Fourier transformed neighbor distribution decompositions in real space, and 
permits to reconstruct the function S(k) in an iterative fashion. The result is successfully 
compared to experimental data of archetypal glasses or amorphous materials (GeS2, As2Se3, 
GeTe), and links quantitatively knowledge of structural information on short and intermediate 
-range order with the motifs found on the diffraction patterns in reciprocal space. The 
approach furthermore reveals that only a limited number of neighbor shells is sufficient to 
reasonably describe the structure factor for k  >  2 Å
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series expansion the structure factor, and an exact analytical 
expression for S(k) is obtained from Fourier transformation. 
Such expressions exist for imperfect crystals with weak dis-
order [13] but here it is the first time that a similar approach is 
used for disordered materials such as glasses (see also [14]). 
This not only links quantitatively information on ordering with 
characteristics of the structure factor S(k), but also reveals what 
aspects of structure directly influence typical features observed 
experimentally at different momentum transfer. While accu-
rate computer-based model structures can permit the calcul-
ation of any structural property in reciprocal space, the present 
method permits to analyze the diffraction patterns of materials 
for which MD derived structural models are either unavailable 
or only partially in agreement with experiments. Based on the 
analysis given below, this sort of reverse analysis using S(k) as 
a series expansion now provides some hints for an increased 
analysis of experimental structure factors.

We first concentrate on the amorphous system As2Se3 before 
investigating the degree of generality of the findings on other 
chalcogenide glasses such as GeS2 and GeTe. The high k limit 
of the analytical expression leads to another exact result that 
permits to fully characterize the typical oscillations observed 
in the experimental interference function I(k) = k[S(k)− 1]. 
We then examine a certain number of glasses that have been 
investigated experimentally.

2. Theory

2.1. The interference function as a series expansion

The starting point of the approach uses the definition [2] of the 
structure factor given by:

S(k)− 1 = 4πρ0

∫ ∞

0
r2[g(r)− 1]

sin(kr)
kr

dr (1)

where ρ0 is the atomic number density. The system is consid-
ered as being isotropic and homogeneous so that integration 
can be applied on the vector norms r = |r| only, this being 
particularly adapted for disordered systems simulated in a 
cubic box of size L down to wave number somewhat larger 
than 2π/L.

We propose that the pair distribution function g(r) can be 
decomposed into a series of neighbor distribution functions 
vn(r) (1 � n � N) as exemplified in different liquids and 
glasses [15–17] (figure 1). For each atom, distributions are 
constructed from molecular dynamics (MD) based trajectories 
by sorting the neighbours according to the bond length. We 
assume that such distribution functions can be reconstructed 
by Gaussians unm(r) with amplitudes Anm, mean distances 
(first moments) rnm and variances σ2

nm . Note that the index 
(M � m � 1) signals that up to M Gaussian functions might be 
used to fit a given distribution function vn(r) =

∑M
m unm(r). In 

the forthcoming, applications to different systems have shown 
that not more than M  =  3 Gaussians are needed to reproduce 
accurately a function vn(r) calculated from the MD simula-
tions, and in most of the situations M  =  1 is sufficient, espe-
cially at short distance.

It is possible to extend the approach from a monatomic 
material in which all the atoms are chemically identical to a 
polyatomic system where (neutron or x-ray) scattering depends 
on the atomic sites occupied by a given chemical species. In 
this case, for an atomic pair i  −  j , neighbor distribution func-
tions vij

n  can be defined in the same way as above with corre-
sponding Gaussian parameters, and these serve to construct 
partial pair correlation functions gij(r) (figures 1(b)–(d)). The 
resulting functions pair correlation function g(r) then writes:

g(r) =

∑
i,j

cicjfifjgij(r)
∑
i,j

cicjfifj
 (2)

with f i being either equal to the neutron scattering length 
( fi = bi in case of a comparison with neutron scattering 
experiments) or to the x-ray form factor (often taken as fi = Zi 
the atomic number, albeit valid only at large beam energies) 
when a comparison with x-ray results is to be performed. In 
the forthcoming, we will restrict our study to the total pair 
correlation function in order to compare directly with a larger 
number of experiments.

Using such distributions, a direct calculation shows that 
equation (1) can be exactly computed and leads to the inter-
ference function:

Figure 1. Total [18] (a) and partial neighbor ((b)–(d)) 
decomposition (red curves) in amorphous As2Se3, together with the 
total or partial pair correlation functions (black lines).
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I(k) = k[S(k)− 1] =
N∑

n=1

In(k)

= 4πρ0

N,M∑
n,m

Anmσ
2
nm

√
2e−r2

nm/2σ2
nm

[
rnmLnm + kσ2

nmVnm

]

 (3)
where Vnm and Lnm represent the Voigt functions [19, 20] for 
the mth Gaussian component associated to the neighbour dis-
tribution vn(r):

Lnm = Lnm

(
kσnm√

2
,− rnm

σnm
√

2

)

=
1√
π

∫ ∞

0
e−t2/4+rnmt/σnm

√
2 sin

(
kσnm√

2
t
)

dt
 

(4)

Vnm = Vnm

(
kσnm√

2
,− rnm

σnm
√

2

)

=
1√
π

∫ ∞

0
e−t2/4+rnmt/σnm

√
2 cos

(
kσnm√

2
t
)

dt
 

(5)

Vnm and Lnm being also equal to the real and imaginary parts 

of the Fadeeva function wn(z) [20] with z = kσnm√
2
− irnm

σnm
√

2
 

defined from the complex error function:

wn(z) = e−z2
[

1 +
2i√
π

∫ z

0
et2

dt
]

. (6)

In the thermodynamic limit, equation  (3) is an exact result 
and its validity as well as the convergence properties can be 
checked for a variety of disordered systems with increasing N.

2.2. Model details

For the analysis and application of equation (3), three amor-
phous materials have been investigated. All result from first 
principles molecular dynamics simulations that build on den-
sity functional theory (DFT) encoded in the Car–Parrinello 
scheme [21]. The electronic structure of the all systems 
evolved self-consistently during the motion using a general 
gradient approximation (GGA) for the exchange and correla-
tion parts of the total energy. Valence electrons were treated 
explicitly, in conjunction with normconserving pseudopoten-
tials to account for core-valence interactions. The wave func-
tions were expanded at the Γ point of the supercell and the 
energy cutoff was set for all to 20 Ry. Quenching procedures 
to obtain the amorphous state can be found in the relevant [18, 
22–24]. For all, the trajectory has been integrated with a time 
step of 0.12 fs.

2.2.1. As2Se3. The amorphous As2Se3 system consists in 
N  =  200 atoms that are simulated with a Becke, Lee, Yang 
and Parr (BLYP) exchange correlation functional [25]. Details 
on model generation, comparison with experiments and struc-
tural analysis (bond distances, coordination numbers, ring 
statistics, topological constraints ...) can be found in [18, 22, 
26, 27]. The general outcome of these studies is an improved 
agreement with experimental structure functions (S(k), g(r)), 

especially with respect to previous simulations including clas-
sical MD results [28]. Presence of homopolar As–As and 
Se–Se bondings in the stoichiometric compound has been, 
furthermore, found [27] (figures 1(b) and (d)), and also a den-
dritic network containing a smaller presence of rings [18] as 
compared to other chalcogenides (e.g. GeSe2). Finally, the 
simulations have been able to qualitatively reproduce the elec-
tronic structure (valence and conduction bands), consistently 
with previous findings [29] and compatible with experiments 
using x-ray photoelectronic spectroscopy [30].

From the obtained structural models, a neighbor decompo-
sition is performed, and the comparison with a measured [31] 
pair correlation function g(r) is reproduced in figure 2.

2.2.2. GeS2. The amorphous GeS2 system consists in 
N  =  120 atoms that are also simulated with a BLYP functional. 
Comparison and full analysis of structure functions is given 
in [24], and a very good agreement with experimental data 
from neutron or x-ray diffraction [12, 32] is also obtained, a 
situation that is also valid for other compositions in the Ge–S 
binary [24]. The obtained structures contain a mixture of 
four-fold Germanium and two-fold Sulphur with the presence 
of four- (edge sharing tetrahedra) and six-membered rings, 
and there is a lower tendency in GeS2 to form homopolar 
Ge–Ge bonds, as compared to GeSe2 [23]. Figure 3(a) shows 
the decomposition into neighbor distributions up to N  =  20 
neighbors, together with experimental results for the total pair 
correlation function from x-ray or neutron scattering.

2.2.3. GeTe. Amorphous GeTe (N  =  200 atoms) is obtained 
[34] from a Perdew–Burke–Erzernhof functional [35] in con-
junction to a DFT-D2 Grimme [36] dispersion term that is 

Figure 2. Calculated total pair correlation function g(r) (gray) of 
simulated amorphous As2Se3 [22] together with its decomposition 
into neighbor distribution functions vn(r) (colored curves, up to 
n  =  18) and corresponding results from neutron diffraction (red 
curve, [31]). The broken black curve corresponds to 

∑10
n=1 vn(r) and 

defines a distance rmax for a given N (here N  =  10). The inset shows 
v5(r) and its decomposition into M  =  2 Gaussians. The distance rmin 
defines the minimum of g(r) and is used for the determination of a 
coordination number.
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necessary in order to cure a well-known bond distance prob-
lem that occurs in regular DFT simulations of tellurides [37–
39]. Such simulations lead, indeed, to an overestimation of 
Ge–Te bond distances and to an increased population of octa-
hedral geometries. Details of the structural analysis are given 
in [34]. In short, such dispersion corrected simulations reveal 
that the Grimme correction reduces the bond length and both 
S(k) and g(r) are substantially improved with respect to pre-
vious regular DFT simulations [40] (figure 3(b)), the spectra 
from x-ray absorption being also reproduced in an improved 
fashion [34]. Corresponding neighbor decompositions are 
provided in figure 3(b). As a result, the structure is made of 
predominatly tetrahedral motifs as in other typical group IV 
chalcogenides such as GeS2.

2.3. Neighbor distribution functions and series expansion

Before checking for the validity of equation  (3), we verify 
that the pair correlation function g(r) can be decomposed 
into such Gaussian neighbour functions vn. Figures 2 and 3 
show the calculated pair correlation functions g(r) obtained 

from first principles MD simulations which reproduce, as 
mentioned earlier, very accurately experimental results from 
neutron scattering in real space [12, 31–33]. The analysis up 
to N  =  18 neighbors shows that corresponding neighbor func-
tions vn(r) can be decomposed into Gaussian distributions 
with both rnm and σnm  increasing with n (As2Se3, figure 4(a)), 
and a sharp increase for both quantities at n  =  3 signals the 
3-fold coordinated As based network structure [22]. For larger 
n, rn1 scales linearly with n with an increment of 0.083 Å . 
Such parameters are then used to recalculate the total structure 
factor using equation (3). Note that because there is an overlap 
between the different functions vn(r), at fixed N the decom-
position of g(r) is only valid up to r = rmax(N) (broken curve 
figure 2). For a fixed N and r > rmax(N), additional neighbors 
are indeed missing (N + 1, N + 2, ...) in order to have exactly 
g(r) =

∑
n vn(r), and this defines a minimal momentum 

transfer kmin = 2π/rmax for the validity of equation (3).
Figure 5 now shows the obtained results for amorphous 

As2Se3 with increasing N for the interference function 
I(k). The latter permits to highlight the oscillations at large 
momentum transfer in order to check for the accuracy of the 
series expansion (equation (3)). Quite obviously, a single 
neighbor decomposition N  =  1 (using the parameters given in 
figure 4) leads only to a poor reproduction of I(k), including 
the oscillations at large k. It is, indeed, also important to note 
that I1(k) and the experimental I(k) have a slightly different 
periodicity at large k (2.43(5) versus 2.78(0) Å

−1
). Instead, 

equation (3) reveals that such high k oscillations can be only 
obtained (i) for multiple Gaussians having slightly different 
mean distances rnm and (ii) when the number of Gaussians 
satisfies N.M  =  z, z being related to the coordination number 
of the system and determined from the number of functions 

Figure 3. (a) Calculated total pair correlation function g(r) (gray) 
of simulated amorphous GeS2 [24] together with its decomposition 
into neighbor distribution functions vn(r) (colored curves, up to 
N  =  10) and corresponding results from neutron diffraction (red 
curve, [12]; circles [32]). (b) Calculated total pair correlation 
function g(r) for amorphous GeTe (gray), compared to experimental 
data from x-ray diffraction (red curve [33]), and neighbor 
distribution functions (colored curves).

Figure 4. (a) Parameters characterizing the main Gaussian 
decomposition m  =  1 in amorphous As2Se3: mean distance rn1 and 
variance σn1 for the main Gaussian decomposition (m  =  1). The 
broken line corresponds to n  =  3 and is linked with the dominant 
coordination number (As). (b) Amplitudes An1 of the corresponding 
Gaussian decompositions.

J. Phys.: Condens. Matter 31 (2019) 285402
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unm(r) found for r < rmin  with rmin the first minimum of g(r) 
(three in figure 2, i.e. u11(r), u12(r), u13(r)). In the present case, 
a calculation of the coordination number n̄ from such func-
tions using the condition N.M � z leads to n̄ = 2.33 which is 
compatible with experiments (n̄ = 2.30 [31]). One also notices 
that for k  >  7 Å

−1
 any further evolution with increasing N is 

barely visible up to N  =  20 (figure 5), the contributions In(k) 
with larger n in this range of momentum transfer leading to 
In(k) � 0 (see below, and figure  6). This results from the 

mathematical properties of the Fadeeva function which lead 
to (i) Lnm � Vnm for the considered parameters and range of 
momentum transfer k, and (ii) to a rapid decay to zero of Lnm 
with k, this effect being even enhanced with increasing σnm  
and this happens with the dramatic jump obtained between 
first and second shell of neighbors, e.g. at n  =  3 for σn1 (figure 
4(a)). As a consequence, we arrive to the mathematical con-
clusion that the large k behaviour of S(k) is dominated by the 
first coordination shell or SRO of the system.

The qualitative relationship between the behavior of I(k) 
in the high-k sections  and SRO has been long known, as 
emphasized in reference textbooks [13, 41] but not quantified 
mathematically. In this respect, several authors [1, 11] have 
attempted to rescale the diffraction pattern as a function of 
kr1 with r1 the first interatomic neighbor distance. Here, it 
should be emphasized that the obtained explicit dependence 
(equation (3)) goes well beyond such qualitative statements 
found in such textbooks. An expansion of equation (3) in the 
high momentum transfer given below indicates, indeed, that 
I(k) has a non-trivial mathematical form that helps decoding 
experimental diffraction patterns, as discussed below.

3. Analysis of typical glasses

Using the series expansion, it is now insightful to analyze 
the experimental diffraction pattern [31] with growing N in 
order to extract information on SRO and IRO elements, and to 
examine the convergence properties of equation (3).

Figure 5. Reconstructed interference function I(k) = k[S(k)− 1] 
(black curves, (a)–(e)) for increasing number N of neighbor 
distributions in amorphous As2Se3, using equation (3) (red 
curves, exp. data [31]). The green curve in panel (e) corresponds 
to a calculated structure factor from MD simulations [22] using 
equation (1). For As2Se3, one has z  =  3 neighbors around a central 
As atom. Gray zones associated with the main peaks are discussed 
in the text. The numbers Rx represent the value of the Wright 
parameter (see text) which measures the degree of accuracy of 
equation (3).

Figure 6. Components In(k) for various n (black curves) of 
amorphous GeS2, compared to the experimental function I(k) (red 
curves [12], duplicated). Blue curves represent I1 + I2 + I3 + I4 and 
I(k) for N  =  7 (top). For n  >  z, at large k, one has In(k) →0.

J. Phys.: Condens. Matter 31 (2019) 285402
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3.1. As2Se3

We find that the PP region (2–5 ̊A
−1

) depends substantially on 
N (see below), a near convergence being achieved for N � 30 
for larger k, and I(k) has then a profile that is similar to the 
one calculated from MD [22], albeit the secondary PP at  
k2 = 3.5 Å

−1
 is already correctly reproduced (position, ampl-

itude) for N  =  10 (see also figure 7). The decomposition also 
reveals that a typical shoulder peak observed at 7.2 Å

−1
 can 

be unambiguously assigned with second shell correlations 
because it is absent for N  <  z, has a significant contribution 
for 4  <  n  <  7 and becomes negligibly small for larger n. A 
standard means quantifying more precisely the accuracy of 
the approach builds on the Wright parameter Rx which evalu-
ates a squared deviation between experimental (Sexp(ki)) and 
theoretical data (Scalc(ki)) [42]:

Rx =

∑
i

[
Sexp(ki)− Scalc(ki)

]2

∑
i

S2
exp(ki)

. (7)

Corresponding numbers are given in figure 5 for select N, 
and the evolution RX(N) is, furthermore, given in figure 7. Here, 
the increase of N leads to a global decrease of Rx, although 
strongly non-monotonic, and indicates that the acc uracy 
of equation  (3) should improve with growing N, the conv-
ergence being however limited because a correct calcul ation 
of the neighbor distribution functions is constrained by both 
rmax(N) and the distance L/2 with L the simulation box size 
(e.g. L/2  =  8.87 Å  and rmax(N = 30) = 6.64 Å  for As2Se3). 
Interestingly, a first optimal convergence of equation (3) with 
respect to the MD result is obtained when first and second 
shell correlations are considered only (N � 5, figure  7), 
as also observed qualitatively for another system (GeS2, 
figure 6). For such expansions, the quality of the obtained S(k) 
is of the same level as the MD calculated function (broken 
curves in figure 7). When the detail of the main peaks is ana-
lyzed as a function of the order N of the expansion, it can 
be furthermore remarked that the first PP at k1  =  2.26 Å

−1
  

probably needs more than 30 neighbor distributions in 
order to be fairly reconstruced and this statement holds 
to a lesser extent for the secondary PP (at k2  =  3.68 Å

−1
)  

Figure 7. (a) Wright parameter in As2Se3 as a function of the number N of considered neighbor distributions using as lower limit for 
equation (7) kmin = 1.6 Å

−1
 (black curve) and 2.9 Å

−1
 (red curve)). The latter value corresponds to the minimum between the two PP’s 

at k1 and k2 (figure 5). Horizontal broken lines represent the corresponding Wright parameter for the MD simulation. Intensity of the 
main peaks I(k1) (b), I(k2) (c) and I(k3) (d) (see definition in figure 5 top axis) as a function of the neighbor number N. The horizontal line 
corresponds to the experimental measurement [12].

J. Phys.: Condens. Matter 31 (2019) 285402
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(figures 7(b) and (c)). On the other hand, the intensity of the 
third prominent peak at k3  =  5.70 Å

−1
 is obviously related 

to first neighbor shell atoms (N � 20) given that equation (3) 
reproduces I(k3) starting from N  =  5 but with strong oscilla-
tions (figure 7(d)), that tend to decrease once each component 
of the series expansion is examined individually (see e.g. the 
contribution at k3 � 6 Å

−1
 in figure 6).

As a final comment, one should note that one has rmax = 5.64 
Å  for N  =  20 (yielding kmin = 1.1 Å

−1
). The reproduction 

of the FSDP region (�1.5 Å
−1

) might be investigated but 
important oscillations should remain for each contrib utions n 
(n � 20) as for the PP’s so that a near convergence of equa-
tion (3) is not achieved for this range of momentum transfer. 
This is also highlighted from the rather different evolution of the 
Wright parameter RX (figure 7(a)) with the chosen momentum 
transfer range (either k > kmin = 1.60 Å

−1
 or 2.9 Å

−1
  

(red curve)). Indeed, an increased convergence is achieved 
if a reduced k-range is chosen. This, once again, simply sig-
nals that the obtained expression (equation (3)) works well at 
high k for a limited number N of neighbors but can only be 
expanded with confidence to lower k with increased N.

3.2. GeS2 and GeTe

The degree of generality of equation  (3) can now be veri-
fied for other systems such as amorphous GeS2 and GeTe. 
Figure  8 shows the obtained results for the interference 
function I(k) for two expansions (N  =  4 and 10). A close 
inspection reveals that the series expansion (equation (3)) 
is largely material dependant because a large k domain can 
be described only from the first neighbors (N  =  4) in GeS2 
whereas this is not the case for GeTe, this result being com-
patible with the one obtained for As2Se3. Note that the quality 
of the MD simulations is nearly the same, as detected from 
the reproduction of the pair correlation function [34] (figure 
3). However, the slight shift between theory and experiments 
occuring at large k in a-GeTe is indicative of the well-known 
bond length mismatch as theory usually overestimates the 
Ge–Te bond distance [34] with respect to experiments [33]. 
For this system, the two peaks of the PP region (1.8–4 Å

−1
) 

is conveniently described by second shell neighbor distribu-
tions (N  =  10).

4. The reverse approach

So far, we have essentially built on approaches which use MD 
generated structural models to obtain a behavior of S(k). For 
a large number of materials however, such models are either 
unavailable or of poor quality. Having validated the series 
expansion from the different previous examples and identified 
the limitations, we, therefore, now attempt to extract structural 
information from the analysis of select experimental structure 
factors. In this respect, the behavior of the function S(k) in the 
large k limit permits to reduce the number of possible fitting 
parameters (i.e. rnm, Anm, σnm), and the accuracy in this range 
has been verified.

4.1. Large k limit

An exact expression for the high momentum transfer limit 
can be obtained by performing an expansion (appendix) of 
the Fadeeva function [20] (equation (3)) at k → ∞, and In(k) 
behaves as:

In(k) � 8πρ0
√

2
∑

m

Anmrnmσnme−k2σ2
nm/2 sin krnm (8)

where the terms beyond the first shell are negligible because 
of the jump increase of σnm , as also exemplified from figure 6 
where In(k) → 0 at large k. Equation  (8) can now serve for 
the detailed analysis of the SRO of glasses for which no MD 
generated structural model is available.

In order to obtain information on the SRO from an appro-
priate fitting using equation  (8), we restrict the analysis of 
experimental functions using equation (8) to k  >  10 Å

−1
. The 

methodology is the following: we assume that σn1 is nearly 
constant for the first shell of neighbors (σn1 � σ , see e.g. 
figure  4(a)). We fit the high-k behavior with an increasing 
number (n, m) of Gaussians and repeat the procedure until (i) 
any additional Gaussian does not modify the obtained fit and in 
practice one will have Anm � 0 for such additional Gaussians, 
and (ii) the correlation coefficient r of the fit is fully converged 
and does not change upon any additional Gaussian. Results for 
select functions are shown in figure 9 and additional informa-
tion is provided in table 1. These results reveal that an analysis 
of the high-k behavior permits one to extract more than a typ-
ical bond length that can be compared to experimental results 

Figure 8. (a) Reconstructed interference functions I(k) (red 
curves, exp. data) in amorphous (a) GeS2 (neutrons, [12]), (b) GeTe 
(x-rays [33]) with variable N (black and green curves). The gray 
zone corresponds to k < kmin = 2π/rmax. The broken line is an 
exponential decay exp[−k2σ2/2] with σ = 0.12 (see text).
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obtained after e.g. a reverse Monte Carlo (RMC) modelling 
[43–45, 47–50] of the experimental x-ray scattering function. 
For instance, it is found that As–S glasses contain three typical 
bond distances at 2.23–2.26 Å , 2.34–2.38 Å  and 2.16 Å  that 
can be associated with As–S, As–As and S–S bond distances, 
respectively (table 1). A similar conclusion holds for GeSe4 
and the fit provides bond distances of Ge–Se and Se–Se, the 
homopolar Ge–Ge being absent in this compound [48]. The 
same analysis can be performed for ternary glasses (As–Si–Te 
[43], Ge–As–Se [49] or Ge–Te–I [50]) that permits to infer 
bond distances without need of a numerical model from RMC 
or MD.

An important result of equation (8) links the exponential 
decay exp−k2σ2/2 of the interference function (see figure 9) 
with the parameter σ which provides information on the spa-
tial extent of the neighbor distributions and also a measure of 
the rigidity of the SRO geometrical units because a small σ 
value will induce a small bond variability. Qualitatively, the 
decay of I(k) for amorphous GeTe (figure 8) can now be asso-
ciated with the presence of more softer units which leads to 
larger values for σ as also independently verified from the cal-
culated Ge-centred bond angle distribution which exhibits a 
broader distribution around 109°, as compared to selenides or 
sulphides [34]. An inspection of table 1 indicates, indeed, that 
this general feature is also recovered for other glassy materials 
because one has σ systematically greater by a factor of two in 
tellurides, as compared to Se- and S-based glasses.

Another compact form can be derived for the high k-limit 
by assuming that An1 � A, and one obtains from equation (8):

I(k) � 8
√

2πρ0Aσe−k2σ2/2 d
dk

cos kr̄ sin kza
sin ka

2
 (9)

where one has assumed that rn1 increases linearly in the first 
shell (rn1 = r0 + na, figure 4(a)) where a is a bond distance 
increment (typically a  =  0.06 Å) and r̄ = z−1 ∑z

n=1ex rn1 is 
the average bond distance. Given the value of the different 
atomic parameters, the arguments of the trigonometric func-
tions have the property za � r̄ so that the periodicity Λ of the 
interference function at large k is dominated by Λ = 2π/r̄  and 
connects to the SRO characteristics (average first neighbor 
distance) of the material. Corresponding results determined 
from experimental data are given in table 2 and provide a good 
agreement with the distances d that are directly obtained from 
the principal peak position of the measured pair correlation 
function g(r). The modulation in equation (9) has a periodicity 
of Λm = π/2za � Λ which provides a measure of both the 
coordination number and a but such a modulation is barely 
visible from the considered k range (figure 9). Using equa-
tion (9), a fit to the data at large k at the maximum of the oscil-
lations up to the maximal available k-range (�20–35 Å

−1
)  

[12, 31, 33] permits to analyze the exponential decay and 
leads to σ = 0.098 Å , 0.063 Å , 0.12 Å  for As2Se3, GeS2, 

Figure 9. Rescaled experimental interference function 
J(k) = I(k)/8πρ0

√
2  (black) for select glass-forming systems 

(As25Si40Te35 [43], As2S3 [45], GeSe4 [48], Ge20Te73I7 [50]) 
together with the fit using equation (8) (red curves). The fit applies 
only to the range k  >  10 Å

−1
, and curves have been shifted upwards 

by multiples of 2.

Table 1. Fitting parameters (σ, rnm and correlation parameter r) 
used in equation (8) applied to different glasses, and compared 
to possible bond distances rexp

ij  (measured or reverse Monte Carlo 
calculated) with identified interatomic bonds.

System σ (Å)
rnm 
(Å) rexp

ij  (bond) (Å) r

As25Si40Te35 0.101 2.39 2.38 (Ge–Te [43]) 0.86
2.53

As2S3 0.042 2.23 2.26 (As–S [44]) 0.99
2.34
2.16 2.18 (S–S [24])

AsS2 0.077 2.26 2.26 (As–S [45]) 0.99
2.38 2.40–2.46 (As–As [46])
2.16 2.18 (S–S [24])

GeSe4 0.078 2.34 2.32 (Se–Se [47]) 0.99
2.39 2.37 (Ge–Se [48])

Ge5As10Se85 0.037 2.33 2.37 (Ge–Ge [49]) 0.99
2.32 2.34 (Se–Se [49])
2.43 2.40 (As–Se [49])

Ge20Te73I7 0.123 2.57 (2.58 (Te–I [50]) 0.94
2.63 (2.60 (Ge–Te [50])
2.68 (2.70 (Te–Te [50])

Table 2. Calculated average distance ̄r  using the explicit 
perioditicity Λ of the large k behavior of I(k) (see text), determined 
for different amorphous and liquid materials. It is compared to the 
bond distance d determined from the principal peak position of the 
experimental pair correlation function g(r).

System r̄  (Å) d (Å) Reference

a-As2Se3 2.37 ± 0.17 2.39 [31]
a-GeS2 2.22 ± 0.16 2.21 [12]
a-GeSe2 2.32 ± 0.04 2.36 [11]
a-GeTe 2.66 ± 0.07 2.61 [33]
l-GeTe4 (820 K) 2.68 ± 0.04 2.73 [37]
l-H2O (300 K) 2.80 ± 0.15 2.81 [51]
l-Te (623 K) 2.68 ± 0.05 2.77 [16]
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GeTe respectively, smaller than the one performed on the 
experimental data of water (σ = 0.163 Å , [51]). An increased 
exponential decay of I(k) (equation (9)) is, indeed, visible in 
the liquid state [16, 37, 51], and is driven by the larger value 
of σ induced by the increased atomic motion which broadens 
the typical peaks of the pair correlation function.

4.2. Low k limit

In the low k limit, a similar expansion of equation (3) permits 
to access to the long wavelength limit (k � 0) and S(k) that 
can be expanded from equations (3) and (4).

S(0) � 1 +
8ρ0√
π

N∑
n,m

Anmσ
3
nmrnm

(
e−rnm

2/2σ2
nm

+

√
2π

σnm
rnmerfc

[
− rnm

σnm
√

2

])

 

(10)

with erfc the complementary error function and where, by 
virtue of the definition of S(0) from number fluctuations [2], 
it is only valid in the thermodynamic limit (N → ∞) [52, 53].

5. Summary and conclusion

In summary, we have shown that the numerical decomposi-
tion of the pair distribution function into neighbor distribu-
tion functions permits to reconstruct the structure factor S(k) 
as a series expansion, in a fashion that bears similarities with 
the pioneering work on crystals with weak disorder [7, 8, 13]. 
The expansion builds on the Fadeeva functions and contains 
parameters which characterize the structure, i.e. typical bond 
distances rnm and their radial excursions σnm .

Results not only indicate that a few shells of neighbors 
(�20 atoms) are sufficient in order to describe S(k) over 
extended ranges in momentum transfer with an obvious 
increased acc uracy achieved at large k, they also provide a 
direct link between typical features observed in reciprocal 
space and the neighbour rank (i.e. N) which should certainly 
help for an improved analysis of experimental diffraction pat-
terns of glasses. The reverse application is explored for dif-
ferent chalcogenide glasses and a fit to the high k limit of the 
Fadeeva expansion permits to extract typical bond distances, 
the radial excursion leading to an exponential decay of I(k) 
that is enhanced in glasses with increased non-directional 
bonding (tellurides) and in liquids. Finally, given the rather 
high degree of generality of the expansion, it would be inter-
esting to probe its applicability to other materials including 
metallic glasses or stable liquids, or even probe how partial 
correlations from isotopic neutron scattering or anomalous 
x-ray scattering could be decoded using these methods.
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Appendix

The dominant term of the interference function found in equa-
tion (3) is equal to:

I(k) = 4πρ0

∑
n

Anmσnm

√
2e−r2

nm/2σ2
nm rnmLnm (A.1)

with Lnm the imaginary part of the Fadeeva function w(x, y) 
given in equation (6).

The proposed expansion (equation (8)) builds on a deriva-
tion by Abrarov and Quine [20] which have shown that the 
complex error function in the limit (x, y �1) writes:

w(x, y) � e(ix−y)2
[

1 +
2i√
π

ex2
F(x)− i

x
√
π

ex2
(

1 − e2ixy
)]

 (A.2)
with F(x) the Dawson function defined by:

F(x) =
1
2

∫ ∞

0
e−u2/4 sin(xu)du. (A.3)

For large x (i.e. k), the Dawson integral reduces to:

F(x) � 1
2x

+
1

4x3 (A.4)

and the corresponding imaginary part of the Fadeeva function 
is then equal to:

L(x, y) =
ey2

x
√
π
− ey2−x2

sin(2xy). (A.5)
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