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Abstract
A low temperature Monte Carlo dynamics of a Keating-like oscillator model is used to study the
relationship between the nature of network glasses from the viewpoint of rigidity, the thermal
reversibility during the glass transition and the strong–fragile behaviour of glass-forming
liquids. The model shows that a Phillips optimal glass formation with minimal enthalpic
changes is obtained under a cooling/annealing cycle when the system is optimally constrained
by the harmonic interactions, i.e. when it is isostatically rigid. For these peculiar systems with a
nearly reversible glass transition, the computed activation energy for relaxation time shows also
a minimum, which demonstrates that isostatically rigid glasses are strong (Arrhenius-like)
glass-forming liquids. Experiments on chalcogenide and oxide glass-forming liquids are
discussed under this new perspective and confirm the theoretical prediction for chalcogenide
network glasses whereas limitations of the approach appear for weakly interacting
(non-covalent, ionic) systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The question of the liquid to glass transition in network-
forming systems and the nature of its characteristic temperature
Tg have received a huge amount of interest in recent years
with a special emphasis on the dynamic properties of the
glass-forming liquid [1–5]. Thermodynamic studies have been
undertaken as well and these usually allow us to determine the
glass transition temperature, that is the temperature at which
the system is no longer able to equilibrate on experimental
timescales. Usually, this quantity therefore depends on the
waiting time before the experiment is performed, and on the
(constant) scan rate of the differential scanning calorimetry set-
up.

The slowing down of the dynamics is mostly tracked
from viscosity (or structural relaxation time τα measurements).
The behaviour of these quantities with temperature not always
displays an Arrhenius-like (or strong) behaviour. When
properly rescaled with 1/Tg in a semi-log plot, the viscosity
or relaxation time can indeed display a variety of different

behaviours usually quantified by a fragility index M [6], which
characterizes the steepness of the slope of the relaxation time
near the glass transition:

M =
⎡
⎣d log10 τα

d
(

Tg

T

)
⎤
⎦

T =Tg

(1)

M ranges typically between 16 for the strong (Arrhenius
behaving) silica liquid to M = 76 for the fragile ortho-
terphenyl which changes its viscosity by ten orders of
magnitude over only a 50 K temperature change. One should
also note that in the case of an Arrhenius behaviour for the
relaxation time with activation energy EA, one can relate both
quantities:

M = EA

kBTg
log10 2 (2)

where kB is the Boltzmann constant. There have been various
efforts to connect the liquid fragility to some easily measurable
quantities in the glassy state such as compressibility [7] or
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Poisson ratio [8], or to the out-of-equilibrium behaviour [9].
At a more microscopic level, combined effects of the structure
and the local mechanical behaviour arising from the interaction
potential have to act on the dynamical and calorimetric
behaviour at the glass transition and thus on the fragility. From
a theoretical viewpoint, one may therefore wonder how simple
(and of course limited) but insightful models can determine the
effect of the potential strength in the low temperature glassy
state on the enthalpic behaviour close to Tg, and the relaxing
behaviour at higher temperatures.

The present paper attempts to address this basic issue by
following the Monte Carlo dynamics of a harmonic Keating-
like oscillator model that reproduces the elastic features
(flexible, isostatic, stressed rigid) of the glass. Glasses are
usually considered as exponentially complex [10]. However,
in practice a harmonic (or polynomial) approximation is
necessary in order to be able to do some exact calculations
and recent examples have shown that such approximations
could describe quantitatively some specific features in glass
science [11]. We follow the same trail in the following.

The solution of the model not only shows that a hysteretic
behaviour can be obtained when cycling through the glass
transition region, but also shows that isostatic (i.e. optimally
constrained or intermediate) glasses exhibit a minimum in
the energy change during the cooling–annealing cycle through
the glass transition, independently of the applied cooling
rate, a result that matches exactly the Phillips optimal
glass condition [12]. Furthermore, the present minimum is
correlated with the minimum obtained in the activation energy
for relaxation (thus the fragility via equation (2)). These
findings are discussed and compared with recent experimental
data on network glasses. The results are qualitatively similar
to experiment, and more elaborate results would require very
complex simulations. One can thus conclude that isostatic
glasses are reversible and strong glass-forming liquids, a
result that opens new perspectives for the description of
glass-forming liquids from the viewpoint of the mechanical
behaviour of the glass. And, since rigidity can also be tuned in
soft solids and colloids [13], it may provide a general clue for
an improved understanding of the dynamic properties leading
to a strong viscosity behaviour with low fragility.

The elastic nature of network glasses with changing
connectivity (or mechanical constraints nc derived from
Lagrange–Maxwell counting [14]) can be modelled in the
framework of rigidity theory [15, 16] using a Keating potential
that represents a semi-empirical description of covalent bond-
stretching (BS) and bond-bending (BB) forces. From this
description, it appears that the number of zero frequency
(floppy) modes f behaves as 3 − nc. The glass composition at
which one has the vanishing of f corresponds to the Maxwell–
Lagrange isostatic condition nc = 3.

2. Bimodal floppy mode–Keating oscillator model

We consider a network of N atoms with mass m having two
types of harmonic oscillators with respective density f =
3 − nc if nc < 3, otherwise zero, and nc. The first has a typical
frequency ω associated with the harmonic motion due to the

floppy modes, i.e. the modes that allow a local distortion of the
network with a low cost in energy. The second has a typical
frequency � and represents the Keating potential containing
the constraints imposed by BB and BS forces [17, 18]. A
similar approach has been recently used to describe the effect
of rigidity on the glass transition temperature [19]. For nc < 3,
the interaction potential V is then given by

V = e + E = m

2

N∑
i=1

f ω2x2
i + nc�

2 X2
i (3)

where ω and � represent respectively the floppy mode
frequency and a typical vibrational mode related to BS or BB
interactions. In the stressed-rigid phase, as f = 0, V reduces
to the Keating oscillator E .

An inelastic neutron study [20] of the ternary network
glass Ge–As–Se provides information about the order of
magnitude of the floppy mode, and the typical BS and BB
vibrational frequencies (energies). The floppy mode energy
is about 4 meV while identified bond-stretching and bond-
bending vibrations have a respective energy of 31 and 19 meV,
i.e. about six times more than for the floppy mode energy. Thus
one has � ∼ 6ω and this ratio will be used for the forthcoming
numerical applications.

We now build on the approach developed by Ritort
et al [21, 22], i.e. an energetic move �V is realized on the
oscillators. It is applied according to the Metropolis algorithm,
i.e. accepted with probability 1 if the energy decreases,
otherwise with a probability exp(−β�V ).

The positions of the Keating and the floppy mode
oscillators are simultaneously shifted to Xi + Ri/

√
N and xi +

ri/
√

N , where Ri and ri are random variables with a Gaussian
distribution having zero mean and respective variance �2 and
δ2.

In comparing the nature of both oscillators, one obviously
has δ � � as motion around the position xi is facilitated
by floppy modes, whereas the amplitude Xi of the ‘Keating’
oscillators should be restricted to small displacements,
typically a fraction of the interatomic bond distance [23].

The transition probability for the change in energy �V is

P(�V ) =
∫ ∞

−∞

(∏
i

dRi√
2π�2

exp(−R2
i /2�2)

)

×
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)
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− m f ω2
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i

N

)]
. (4)

Using the Fourier transform representation of the delta
function, equation (4) can be expressed as a Gaussian in the
limit N → ∞ as

P(�V ) = 1√
4π Q(t)

exp

[
− (�V − V0)

2

4Q(t)

]
(5)
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Figure 1. Energy V (T ) of a flexible system (nc = 2.2, solution of
equation (9)) under cooling (black, upper curve, leading to V ∗(q) at
low temperature, see the text for details) and annealing (red lower
curve) for a rate q = ±1 K s−1. Linear extrapolations (thin lines)
have been drawn to extract an approximate Tg. The inset shows the
corresponding heat capacity C p as a function of temperature and the
inflection point of the heating curve serves to define a ‘calorimetric’
Tg (filled box) as in the experiment.

with
V0 = m

2
[ f ω2δ2 + nc�

2�2] (6)

and
Q(t) = f ω2δ2〈e(t)〉 + nc�

2�2〈E(t)〉 (7)

where t represents the time and the brackets time averages. The
mean position of the oscillators have been taken as zero and the
time averages performed over different dynamical histories but
with the same initial condition for the ensemble.

From the Metropolis rule, one can then write the equation
for the evolution of the energy as

τ0
∂V

∂ t
=
∫ 0

−∞
x P(x) dx +

∫ ∞

0
x P(x)e−βx dx (8)

where τ0 is a typical time during which the energy change over
the oscillators has been performed.

When applied to the probability distribution (5) this leads
to

τ0
∂V

∂ t
= V0

2

[(
1 − 2β Q(t)

V0

)
g(t) + erfc

(
V0

2
√

Q(t)

)]
(9)

with erf the complementary error function and

g(t) = exp(−βV0 + β2 Q(t))erfc

(
2β Q(t) − V0

2
√

Q(t)

)
. (10)

Equation (9) is not closed, because it depends on Q(t) through
the time dependence of the averages of the floppy mode
or constraint energies e(t) and E(t). For simplicity, we

solve equation (9) in the low temperature–long time adiabatic
approximation [24] where the derivative of the energy V is
zero. One then has from equation (9)

Q(t) = T

2
(2V0) ∼= 2V0V (t). (11)

First, one can solve equation (9) to obtain the behaviour of
the energy V (T ) by replacing the time variable t by the
temperature variable T via Ṫ = qṫ/τ0, where q is the
cooling/heating rate, the integration being performed from an
initial high temperature T0. In order to highlight the effect of
the number of constraints nc on V (T ), we first work at a fixed
cooling/heating rate q = ±1 K s−1 and use T0 = 500 K,
δ = 10�, � = 0.3 and τ0 = 1 s.

3. Results

Figure 1 represents the cooling and heating behaviour of V (T )

for a given nc. First, one notes that, at high temperature,
the energy of the system is equal to T/2, which is also
the equilibrium solution of equation (9), in agreement with
the equipartition theorem. Glassy behaviour (i.e. deviation
from the T/2 line) onsets at lower temperature, defining a
glass transition region around 150 K. In fact, a low energy
extrapolation of V (T ) crosses the T/2 line around this value
and Tg can be approximately determined from this cross-over
temperature. The low temperature behaviour of equation (9) is
given by

τ0
∂V

∂ t
= V0

2
erfc

[√
V0

8V

]
−
√

2V V0

π
exp

(
− V0

8V

)
(12)

which becomes in the long time limit (V � V0)

qτ0
∂V

∂T
= −

√
32

πV0
V 3/2 exp

(
− V0

8V

)
(13)

leading after integration to the relationship V (T ) of the energy:

√
2π

V0

[
erf

√
V0

8V ∗(q)
− erf

√
V0

8V (T )

]
= −

√
32

πV0

T

qτ0
(14)

where V ∗(q) is the T = 0 limit of the energy, obviously
depending on the cooling rate. The intersection of the linear
expansion of V (T ) at low temperature (see figure 1) with
the equilibrium line T/2 allows us to obtain an analytical
relationship between the glass transition temperature Tg and
the cooling rate q , given by

q = − 4Tg

πτ0

(
erf
√

V0
4Tg

− erf
√

V0
8V ∗(q)

) . (15)

Similarly to the experimental procedure consisting of
measuring Tg of a glass from the inflection point in heat
flow (or heat capacity), one can also determine from the
present model a glass transition temperature from the annealing
(heating) curve (inset of figure 1).
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Figure 2. Energy V (T ) of the system (solution of equation (9))
under cooling and annealing (q = ±1 K s−1) for three selected
systems: nc = 2.2 (flexible), nc = 3.0 (isostatically rigid) and
nc = 4.0 (stressed rigid). The last two curves have been shifted
upwards for a clearer presentation. Broken lines represent the
equilibrium state T/2. The shaded areas (on the curves nc = 4) serve
to quantify the enthalpic changes (H ) represented in figure 2.

Annealing from a low temperature end point furthermore
shows the typical hysteresis behaviour that is usually
manifested in the experiment by an enthalpic overshoot in the
heat capacity [25].

From figure 2 representing the evolution of V (T ) for
three different values of nc, one sees that the enthalpic change
between the cooling and heating curves (quantified by the area)
depend on the number of mechanical constraints. Furthermore,
these changes are minimized for a system that is nearly
isostatically rigid (nc = 3), i.e. when the trial moves can
only be realized on the oscillator with the highest frequency
�. Additional stiffening (i.e. increase of nc) of the system
for nc > 3 leaves the system with a single type of oscillators
because f = 0 for n > nc, and leads to a global increase of V0

and thus to an increase of the area as nc is steadily increased.
The area H defined by the difference between the cooling

and heating curves can be tracked with the number of
constraints nc and the corresponding behaviour is displayed
in figure 3. It shows that, for a fixed cooling/heating rate q ,
certain glass transitions occur with minimal enthalpic changes
H when cycling through Tg. The model is therefore able to
reproduce the Phillips phenomenology of ideal glass formation
when a glass is optimally constrained, i.e. isostatic [10, 15].
This is experimentally observed from a characteristic enthalpy
�Hnr (see also figure 4) extracted from complex heat flow
measurements at the glass transition [26], which is minimum
close to nc = 3.

The study of the dynamics of the system can be achieved
from the linearization of equation (9) in the vicinity of the
equilibrium value of V (T ) that leads to a typical relaxation

Figure 3. Enthalpic changes H at the glass transition as a function of
the number of mechanical constraints nc for different cycles at
cooling/heating rates q = 0.1, 1 and 10 K s−1. Right axis: activation
energy EA for relaxation time computed from equation (12).

time:

τ = τ0

2

√
πT 3

V 3
0

exp

[
V0

4T

]
. (16)

The relaxation time is of activated type with an activation
energy equal to EA = V0/4. In figure 3 (right axis)
this quantity is represented as a function of the number of
mechanical constraints nc. One can clearly remark that
the behaviour of the activation energy for relaxation time
(proportional to the fragility, see equation (2)) parallels the
enthalpic changes H at the glass transition. A minimum
is found for both quantities when the number of floppy
modes f vanishes, i.e. when the glass is isostatic, i.e. nc =
3. This point corresponds to the location of the flexible
to rigid transition [15] and the centroid of the intermediate
phase [25]. We note that the relaxation time is Arrhenius-
like and that only a moderate change in fragility can thus
be expected from a change in EA through the variation of
the number of constraints. Further inclusions in the potential
of equation (2) will be necessary to obtain a Vogel–Fulcher–
Tammann law typical of very fragile glass-forming liquids.
As we are dealing with harmonic oscillators only (basically
vibrations) and neglecting other possible phenomena that may
give rise to a VFT behaviour (viscous flow, caging effects,
etc), we believe that the model is especially designed for the
low temperature behaviour when the dynamics is restricted
to harmonic vibrations of the nearly fully connected glass
network.

4. Discussion

Is there any experimental evidence highlighting the correlation
between isostatic glasses and strong glass-forming liquids?
Fairly complete viscosity and calorimetric measurements on
several covalent glass-forming liquids are available in the
literature. We focus on systems that undergo a flexible to
rigid transition, i.e. oxide and chalcogenide glass in selected
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Figure 4. Comparison between the activation energy for viscosity EA (blue) and the non-reversing heat flow �Hnr (red) at the glass transition
(right axis) as a function of the number of mechanical constraints nc for four selected glass systems: Ge–Se (data from [27, 28]), As–Se (data
from [29, 30]), As–Ge–Se (data from [30, 31]) and sodium silicates (data from [33, 34]). The vertical broken lines indicate the isostatic
composition where nc = 3.

composition ranges that lead to a mean coordination number
of 〈r〉 = 2.4 and a number of mechanical constraints equal to
nc = 3 [10, 15]. Compositional trends in the activation energy
for viscosity EA for binary and ternary chalcogenide and oxide
liquids appear in figure 4. In the same figure (right axis)
are also projected the non-reversing enthalpies �Hnr of the
corresponding glasses. The latter quantity provides an accurate
measure of the enthalpic changes that have taken place during
a heating/cooling cycle at the glass transition [25, 26, 29, 30].
One can note that the global minima in the activation energy
EA coincide at nc ∼ 3 with those in �Hnr for chalcogenide
glasses. Together with figure 3, these data demonstrate the
correlation between the strong–fragile classification of glass-
forming liquids with the flexible–intermediate–stressed-rigid
classification of the corresponding glasses. The correlation
unequivocally shows that intermediate phase glasses, where
nc ∼ 3, give rise to strong liquids with a low activation energy
EA, while both flexible (nc < 3) and stressed-rigid glasses
(nc > 3) give rise to more fragile liquids.

What is the underlying physics governing the relationship?
From figure 3, it becomes clear that, when the system is at
the rigidity percolation point, temperature-induced structural
changes can be accommodated more easily as the energy has
decreased because of the decrease, and finally the vanishing, of
the floppy mode contribution. On the other hand, the Keating
frequency � has still not increased due to the progressive
stiffening occurring in the stressed-rigid phase.

Chalcogenide glasses can be accurately described with
a harmonic Keating potential [10, 23]. Can the present

conclusions be extended to glass-forming liquids characterized
by more complex potentials different from those shown in
equation (3)? The bottom panel of figure 4 already sketches
some limitations. In alkali silicate glasses, a large value
for nc corresponds indeed to the silica-rich compositional
region, i.e. to systems for which the interaction can be fairly
well described by a Keating potential [35]. However, larger
amounts of alkali ions (i.e. leading to lower ncs) increases
the number of more weaker (Coulombic) interactions and
could cancel the correlation. Weak alkali atom–nonbridging
oxygen ionic bonds form, and as T > Tg, these weaker
interactions cease to act as mechanical constraints enhancing
the alkali-atom’s mobilities and contributing to the fragility.
However, one has to keep in mind that long-range electrostatic
interactions may not be that relevant as a short-range
mechanical constraint. Still, ionic systems have lower energy
barriers towards local atomic arrangements when compared
to the high energy cost involved in the breaking of a strong
covalent bond, a feature which also implies that the change in
electronic configuration between two atoms is small for ionic
species. It means that the liquid elasticity length measuring the
range of elastic interactions between two relaxational events is
small when the temperature is increased [36], leading to a more
fragile behaviour for ionic systems. In the modified oxides,
one therefore does not expect the glass–liquid correlation
to hold as in the chalcogenides. In fact, sodium disilicate
and trisilicate are more fragile than SiO2, even though the
trisilicate composition is near the intermediate-phase (nc ∼ 3)
composition.

5



J. Phys.: Condens. Matter 22 (2010) 285101 M Micoulaut

An additional counter-example is provided by Trehalose.
Recently, constraint counting algorithms have been extended
to H-bonded systems [37] and it has been suggested from
the structure made of an alternation of weakly and strongly
bound glucose rings that Trehalose could represent the case
of an optimally constrained network glass. The assumption
has been confirmed by calorimetric experiments which have
shown that the corresponding non-reversing enthalpy was close
to zero [38], i.e. the Trehalose glass belongs to an optimally
coordinated network having nc ∼ 3. On the other hand, the
fragility of liquid Trehalose is rather high [39], M = 107,
and to reconcile this number with the view at low temperature,
weak H-bonds constraining the system must be progressively
broken when T > Tg. This H-bonded network is therefore an
example of an optimally constrained glass that gives rise to a
fragile liquid. One can expect a similar circumstance to prevail
in all carbohydrates, providing a basis to understand why the
fragilities of sugars and alcohols are quite high.

5. Conclusions

In summary, we have shown that a statistical model combining
a Keating harmonic potential with a floppy mode oscillator was
able to reproduce the generic features of the glass transition
from a simple Monte Carlo dynamics: a hysteretic cycle
through the glass transition region, a cooling rate dependence
of the glass transition temperature and an enthalpic change
that depends crucially on the mechanical properties of the
glass. Glasses whose structure can be fairly well described
by a harmonic potential which are optimally constrained
(isostatic) give rise to strong glass-forming liquids, and are
found to display glass transitions with few enthalpic changes.
Comparison with experiments shows that the demonstrated
relationship holds for network glass-forming liquids having
strong constraints that are weakly affected by the temperature
change. These observations suggest that systems with weaker
interactions (e.g. organic glass-forming liquids) will probably
not display this kind of relationship.
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