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Abstract
The Brillouin elastic free energy change �� between thermally annealed and
quenched (Na2O)x(SiO2)1−x glasses is found to increase linearly for x > 0.23
(floppy phase), and to nearly vanish at x < 0.18 (stressed-rigid phase). The
observed ��(x) variation closely parallels the mean-field floppy mode fraction
f (x) in random networks, and fixes the two (floppy, stressed-rigid) elastic
phases. In calorimetric measurements, the non-reversing enthalpy near the
glass transition temperature Tg is found to be large at x < 0.18 and at x > 0.23,
but to nearly vanish in the 0.18 < x < 0.23 range, suggesting the existence of
an intermediate phase between the floppy and stressed-rigid phases.

Silicate melts and glasses are important geophysical [1], optoelectronic [2] and microelectronic
materials [3], and they find applications as window glass materials, optical fibres and thin-film
gate dielectrics [3]. The functionality of materials often derives from their structures at different
length scales. At a basic level, the molecular structure of sodium silicate (Na2O)x(SiO2)1−x

glasses consists of a network of Si(O1/2)4 tetrahedra in which the addition of sodium oxide
produces Si(O1/2)4−mOmNam (or Q4−m in NMR notation) local units having m = 0, 1, 2
and 3 non-bridging oxygen (NBO) sites attached to Na+ ions. The addition of a few (10)
mole per cent of Na2O lowers [4] the glass transition temperature, Tg, of the base (SiO2)
material (1200 ◦C) sharply (to 600 ◦C) because of a loss in global connectivity as some Q3

units (m = 1) emerge [5] at the expense of Q4 (m = 0) ones. The sharp reduction of Tg

destroys the mechanical equilibrium that prevailed [5, 6] in the pristine glass (x = 0), and
drives alloyed glasses to become stressed-rigid (i.e., hyperstatic in the language of mechanical
trusses). This is largely the case because the bond-bending constraint of bridging oxygen
atoms that were intrinsically broken [6, 7] at 1200 ◦C becomes restored in the weakly alloyed
glass as the Tg-values plummet to 600 ◦C. However, upon continued addition of Na2O the
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alloyed glass softens as network connectedness decreases, and one expects an elastic phase
transition from a stressed-rigid to a floppy phase.

One can estimate the elastic phase boundary within a mean-field theory by counting the
Lagrangian constraints [8, 9] per atom (nc) due to bond-stretching and bond-bending forces.
The floppy mode fraction, f (x) = (3 − nc)/3 = 10x/3 − 2/3 extrapolates linearly [8, 9] to
zero as nc increases to 3 defining the phase boundary. Physically, f (x) represents the count
of zero-frequency (floppy-mode) solutions of the dynamical matrix in studying the normal
modes of a network. In the present oxide glasses, we will show later that the condition nc = 3
is met [7] when x = 1/5, and glass compositions at x > 1/5 are viewed as floppy while
those at x < 1/5 are stressed-rigid. In the stressed-rigid phase, numerical simulations [10, 11]
on random networks using a Kirkwood–Keating potential have shown that both longitudinal
(C11) and shear (C44) elastic constants display a power-law variation as a function of r̄ (mean
coordination number equal to 8/3 − 4x/3) or x , i.e., C11 or C44 � (r̄ − r̄c)

p with p = 1.5(1)

with a pronounced accuracy at higher r̄ . Such power laws have been observed in Raman
mode frequency shifts examined as a function of glass composition [12, 13] but not in bulk
elasticity [14–16] measurements4. More recently, the existence of non-mean-field effects
associated with the onset of rigidity have been discovered [13]. Specifically, one has found
the existence of intermediate phases [13] that open between the stressed-rigid and the floppy
phase in disordered systems. The elastic phase boundary between the floppy and intermediate
phase at mean network coordination number r̄c(1) (or xc(1) sodium concentration), and that
between the intermediate and stressed-rigid phase at r̄c(2) (or xc(2)), represent respectively the
rigidity transition and the stress transition [13, 17].

The onset of rigidity in (Na2O)x(SiO2)1−x glasses was examined using Brillouin scattering
(BS) and temperature modulated differential scanning calorimetry (MDSC). In this paper, we
show that the BS [15] reveals the mean-field behaviour of the elastic phase transition: the
elastic energy change ��(x) upon thermal annealing of the as-quenched (virgin) glasses is
lowered linearly at x > 0.24, but is found to nearly vanish (�0) at x < 0.18. The observed
variation in ��(x) closely parallels the floppy-mode fraction f (x) in random networks [10],
and serves to uniquely fix glasses at x > 0.24 to be floppy but those at x < 0.18 to be stressed-
rigid. The stressed-rigid nature of the glasses at x < 0.18 is confirmed in Brillouin longitudinal
(C11(x)) and shear (C44(x)) elastic constants that show a power-law variation with a power
p respectively of 1.68(8) and 1.69(8) in fair agreement with numerical simulations [10, 11].
The non-mean-field behaviour of the underlying rigidity transition is, however, manifested in
MDSC that probes glasses at all length scales. The latter technique permits one to deconvolute
the endothermic heat flow near Tg, accessed from MDSC, into a reversing component that tracks
the applied temperature modulation and a difference term, a non-reversing component, that
does not. In these calorimetric measurements, quantified by the non-reversing enthalpy (�Hnr)
at the glass transition (Tg) is found to be large at x > xc(2) = 0.24 and at x < xc(1) = 0.18,
but to nearly vanish in the xc(1) < x < xc(2) range. The latter range, in which �Hnr � 0,
will henceforth be denoted as the thermally reversing window [18]. The window represents
the intermediate phase. Thus, the use of two complementary probes, a mean-field (BS) one
and a non-mean-field (MDSC) one, has provided a rather comprehensive view of the three
elastic phases, floppy, intermediate and stressed-rigid, populated in the present prototypal
oxide glass system.

Nineteen samples of (Na2O)x(SiO2)1−x glass of 18 g weight, over the soda concentration
range 0.05 < x < 0.40, were synthesized by reacting the starting materials in a Pt–Rh

4 In Raman studies of chalcogenides, one follows usually the frequency shift ν2 of the A1 stretching mode of, for
example, a GeSe4/2 tetrahedron, which is largely a measure of the network elasticity.
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Figure 1. MDSC scan of two compositions in the (Na2O)x (SiO2)1−x system (left panel x = 0.185,
right panel x = 0.290) showing the deconvolution of ḢT into Ḣnr and Ḣr (scale factor 4). The area
under Ḣnr serves to define the non-reversing heat flow �Hnr. The Tg (filled squares) is defined
from the inflexion point of Ḣr. See the text for details.

crucible heated electrically to the 1500–1650 ◦C range for up to 4 h. Details of the facility
are described elsewhere [19]. Melts were poured on stainless plates and checked for the
absence of phase separation. FTIR examination of such quenched samples shows that they
are homogeneous [20]. Glass sample cubes 8 mm across were prepared by cutting the ingots
with a diamond saw and polishing the surfaces to an optical finish. Brillouin scattering was
excited with λ = 514.5 nm radiation and recorded in a right-angle geometry using a pressure-
scanned [19], triple-pass plane Fabry–Perot interferometer (effective finesse 70, contrast 3×106

and resolution power 7.6×105). The light source is the λ = 514.5 nm line of a single-frequency
Ar-ion laser whose frequency is controlled by pressure in an iodine cell. Spectra are calibrated
with a Michelson interferometer in parallel. Spectra were recorded for virgin- and annealed-
glasses, and we have mostly focused on the frequency of the longitudinal and transverse
acoustic modes to extract elastic constants of interest. The annealed samples were obtained by
heating virgin glasses at 515 ◦C for 4 h [21]. Because of the hygroscopic nature of the samples,
the glasses were handled in a controlled environment using glove boxes. MDSC measurements
were performed [13, 18] using a model 2920 unit from TA Instruments Inc., at a scan rate of
3 ◦C min−1 and a modulation rate of 1 ◦C/100 s using Au pans. MDSC measurements were
undertaken on vacuum annealed glasses. Figure 1 reproduces a typical scan of two sodium
silicate samples in which the total heat flow ḢT is deconvoluted into reversing (Ḣr) and non-
reversing Ḣnr = ḢT − Ḣr components. The shaded area under the latter curve in figure 1
represents the non-reversing heat flow, �Hnr. The value of Tg was established as the inflexion
point of the step seen in the reversing heat flow signal (Ḣr).

Brillouin lineshapes observed in the glasses (figure 2) show the longitudinal acoustic (LA)
mode frequency, νLA(x), to shift to a lower frequency as x increases from 0.137 to 0.20, and
then to shift to a higher frequency as x = 0.32. Furthermore, mode frequency shifts due to
annealing (broken-line curves) are small at low x (0.137) but pronounced at high x (0.32).
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Figure 2. Brillouin lineshapes showing the longitudinal acoustic mode at indicated
(Na2O)x (SiO2)1−x glass compositions x . The mode shift between virgin (continuous line) and
annealed (broken line) glasses is small at low x (0.137) and large at high x (0.32).

The longitudinal (C11) and shear (C44) elastic constants were obtained using the relations
C11 = ρν2

LAλ2/2n2 and C44 = ρν2
TAλ2/2n2, where νLA, νTA, n and ρ represent the LA- and

TA-mode frequencies, refractive index and mass density,respectively. The refractive index was
measured using a differential path refractometer and the mass densities of virgin and annealed
glasses were measured by a buoyancy method to an accuracy of ±0.001 g cm−3. Note that
density changes that result from chemical alloying also influence the Brillouin lineshapes, in
contrast to density changes induced by pressure or temperature [22].

Compositional trends in C11(x) and C44(x) appear in figure 3, and show C11 to decrease
with x at first, and then to increase at x > 0.20, due to layered-like disilicate units [23]
(adamantine) emerging as x increases to 1/3. On the other hand, the shear elastic constant C44

systematically decreases as x increases to 1/3. The lowering of the elastic free energy ��

of a network of harmonic springs upon compaction has been calculated [19]. As-quenched
glasses represent networks trapped at a negative pressure, and a post-quench thermal anneal
of glasses serves to compact and equilibrate them at ambient pressure. �� can be simply
expressed [19] in terms of �ρ and the elastic constants of the annealed glass in the hydrostatic
limit as follows.

�� = 1

6

(
�ρ

ρ

)2

(3C11 − 4C44). (1)

As expected, changes in the elastic free energy occur in the easily deformable phase of the
glasses where floppy modes proliferate. We find �� to increase linearly at x > 0.24, but
to vanish at x < 0.18, as shown in figure 3(b). The free energy of the thermally relaxed
glass is lowered by an amount �� in relation to the virgin glass. A summary of calorimetric
results on the glasses appear in figure 4, with (a) displaying variations in Tg(x) deduced from
the reversing enthalpy and (b) variations in the non-reversing enthalpy, �Hnr(x). We find
the �Hnr term to be large at x > 0.24 and at x < 0.18, but to almost vanish (�0) in the
0.18 < x < 0.23 range.

Our interpretation of the BS results is as follows. A vibrational analysis of random
networks within a mean-field theory reveals the floppy-mode fraction as a function of r̄ to be
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Figure 3. (a) Variations in C11(x) and C44(x) and (b) variations in elastic energy increase ��(x) in
(Na2O)x (SiO2)1−x glasses deduced from Brillouin scattering. The continuous line and broken line
give the floppy-mode fraction f (x)prediction for random and self-organized networks, respectively.
The second derivative of ��(x) (dotted line, right axis) obtained from the BS results fixes the
mean-field elastic phase transition at x = 0.24, with glasses at x > 0.24 being floppy.

given [10] by f (r̄) = 6 − 5r̄/2. In the present glasses, since r̄ = (8 − 4x)/3,5 the latter
equation can be written as f (x) = 10

3 x − 2
3 , which reveals f (x) to increase linearly at x > 1/5

in the floppy phase, and f (x) � 0 at x < 1/5 in the stressed-rigid phase, thus showing the
mean-field elastic phase boundary at xmf = 1/5. More accurate numerical simulations based
on a bond-depleted amorphous Si network performed by Thorpe [10] have localized the phase
boundary by plotting the second derivative of f (r̄), which shows a maximum at r̄ = 2.385.
For the case of the present oxides, the corresponding phase boundary would be at xnum = 0.211
(see footnote 5). The observed variation in ��(x) (figure 3(b)) mimics the results of these
numerical simulations of f (x), and d2� �(x)/dx2, extracted from a polynomial fit of the data6,
shows a maximum near x = 0.24. Quenched glasses at x > 0.24 relax [19] as frozen stress is
thermally annealed away by floppy or bond-rotationalmodes. These modes are associated with

5 In (Na2O)x (SiO2)1−x glasses, taking the coordination number of Si, Na and O to be respectively 4, 1 and 2, we
obtain r̄ = [4x + 8(1 − x)]/3 = (8 − 4x)/3; for r̄ = 2.385, the implied threshold in xnum = (8 − 3r)/4 = 0.211 for
the present oxides; for Q4 [Si(O1/2)4] units, the Lagrangian constraints/atom, nc = (1/3)[7 + 2 1

2 4] = 3.67; for Q3

[Si(O1/2)3O−Na+] units, nc = (1/4.5)[7 + 3 1
2 2 + 2 + 1/2]/4.5 = 12.5/4.5 = 2.78.

6 Fourth-order polynomial fit: �� = −0.000 321 23 + 0.1883x − 3.9435x2 + 24.283x3 − 25.503x4.
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Figure 4. MDSC results on (Na2O)x (SiO2)1−x glasses showing variations in (a) Tg(x), (b) non-
reversing enthalpy �Hnr(x). The DSC results were taken from [25].

the underconstrained Q2 and Q1 units that grow [5] precipitously at x > 0.25. These modes
are nearly absent in the more connected glasses (x < 0.18). Furthermore, since our glasses
were relaxed at a fixed annealing temperature of 515 ◦C, ��(x) provides a measure of elastic
free energy in much the same fashion that f (x) is viewed [10] as the network free energy. The
correlation between ��(x) and f (x) serves to uniquely fix glasses at x > 0.24 to be floppy
and those at x < 0.18 to be stressed-rigid. Here we must recall that the length scale over which
BS probes the elastic behaviour of glasses is set by the wavelength of the acoustic phonons
that lie in the λ � 300 nm range [24]. Therefore, one expects BS to probe the average elastic
behaviour of the rigidity transition in the present oxide glasses as in chalcogenide glasses [15].

The calorimetric probe (MDSC) registers enthalpic changes near Tg in a glass network,
and these contributions come from molecular rearrangements taking place at all length scales.
For that reason, one expects to observe non-mean-field effects associated with the elastic
phase transition using the thermal probe. The existence of a thermally reversing window
(figure 4(b)) is an example of such an effect [18]. We find that the window sharpens and
deepens upon low-temperature thermal annealing because the network stress frozen upon a
quench is relieved. The window in the present oxide glasses is reminiscent of similar results
in chalcogenide glasses [12, 13, 18]. The observation of a reversibility window in the present
oxides leads naturally to the suggestion that glasses in the 0.18 < x < 0.24 composition range
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are in the intermediate phase, i.e., they are self-organized. In this range of composition, Si29

NMR shows [5] the concentration of underconstrained (see footnote 5) Q3 (nc = 2.78) and
overconstrained Q4 (nc = 3.67) units to be comparable. Self-organization effects stem [17]
from the fact that such a mix leads to an isostatically rigid global structure (n̄c � 3).

The stressed-rigid nature of glasses at x < 0.18 is confirmed by the power-law variation
in C11(x) and C44(x). The variation is inferred by plotting log(C11(x) − C11(xc(1))) against
log(xc(1) − x), using xc(1) = 0.18, and yields (figure 5) p = p11 = 1.68(8). A similar
analysis of C44(x) yields a power-law p = p44 = 1.69(8). These results are in fair agreement
with numerical predictions [10, 11] of p = 1.5(1) in random networks as noted earlier in
Raman scattering on chalcogenide glasses [12, 13]. To the best of our knowledge this is
the first time one has observed a power-law variation in elastic constants for stressed-rigid
glasses using a bulk probe. In BS [15] as in ultrasonic elastic moduli [14, 16], results on
chalcogenide glasses show only a linear variation in C11(x). On the other hand, in Raman
scattering one observes the optical elasticity (Raman mode frequency squared to tetrahedral
units) with glass composition [26] to show the anticipated power-law variation. Why does one
not observe the elastic power law in a bulk measurement in a chalcogenide glass, when one
can observe it in the present oxide glass? Residual interactions due to dihedral angle forces
and lone-pair van der Waals forces dilute the effect of first-neighbour (bond-stretching) and
second-neighbour (bond-bending) forces in the chalcogenides and alter the phase transition.
Long-range interactions become important at long wavelength and therefore alter the functional
dependence of predictive elastic constants on r̄. We note that the Si–O single bond strength [27]
(100 kcal mol−1) far exceeds the Ge–Se single bond strength (40kcal mol−1), and furthermore,
lone pair interactions in oxides are likely to be much weaker than in chalcogenide glasses. Thus,
it appears that a power-law variation of elastic constants is observed in those instances where
first- and second-neighbour forces overwhelm residual interactions as is the case of Brillouin
scattering in the oxides, or that of Raman scattering in chalcogenide [12, 13].

In summary, Brillouin scattering and MDSC have permitted the identification of the three
elastic phases in (Na2O)x(SiO2)1−x glasses; compositions at x < 0.18 are stressed-rigid, those
in 0.18 < x < 0.23 intermediate, and those at x > 0.23 floppy. A power-law variation of the
longitudinal- and shear-elastic constants is observed in the stressed-rigid phase of the oxide
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glasses using a bulk probe (BS) for the first time. These novel results show that the floppy
to stressed-rigid phase transitions in oxide and chalcogenide glasses are remarkably similar,
underscoring the commonality of the basic physics driving the formation of elastic phases
in disordered systems. Our results correlate well with electrical transport measurements that
show activation energy for diffusion [28] in the floppy glasses to be consistently low, and to
increase steadily as the backbone becomes increasingly stressed-rigid.
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