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Abstract. We present in this paper a statistical model of the growth of amorphous and
crystalline structures which is applied here for the investigation of binary (1 − x)SiS2–xLi2S
glasses. Having defined local configurations (referred to as singlets in what follows), and the
ways in which they can assemble together, we establish the statistics of doublets and triplets
produced by agglomeration. We obtain fairly good predictions for the glass transition temperature
Tg , the composition of mixtures of glass and crystalline phases at x = 0.5, and the Li2SiS3

and Li6Si2S7 phases for greater values of x. The model predicts also the ratios of typical
microstructures and other interesting data, among which are the cooling rates that are necessary
to form the glass.

1. Introduction

The aim of this article is to apply a statistical and dynamical model to binary SiS2–Li2S
systems. The model, which is based on the study of statistical growth of crystalline
and amorphous structures, seems to be akin to other recent theoretical models that have
been used in attempts to analyse the glass formation [1–4]. A detailed description of the
physical insight and the construction of the model have been given already in [5] and
numerous applications have been performed with some success [6–9]. We shall compare
the predictions of the model with the experimental data concerning thiosilicate-based
glasses. Their usefulness as solid electrolytes [10, 11] and the advantage of the very high
conductivities (10−3 �−1 cm−1 in the doped glasses) inspired considerable developments in
the experiments and glass production during the past decade [12–15]. Most of the results that
we present here are obtained by numerical methods, although we shall develop the adapted
differential equations describing the formation of glass through an analytical scheme.

For the reader’s convenience, it is worth recalling the main ideas of the model and its
most important properties.

Although growth processes of disordered materials are quite complex phenomena, it
seems possible to describe glass formation by using elementary basic configurations and
processes which may take place in the liquid or the supercooled state, and to express
their assembly rules in a simple fashion. It is necessary to choose for that a few stable
local configurations which will become the building blocks in the growth process. As in
previous models based on local structures [16, 17], we shall directly derive these local
configurations from the study of the glass structure or the corresponding liquid. This leads
to the definition of local configurations (singlets) best adapted to describe substantially short-
and intermediate-range order, for which some evidence exists in thiosilicate glasses (SiS4

tetrahedra always exist, whatever the degree of range order [18]). We shall suppose that the
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entire process is carried out in the supercooled liquid so that the system can still be imagined
in the vicinity of a thermodynamical equilibrium and so that Boltzmann factors can be used
for the evaluation of relative probabilities of the configuration. An adequate number of steps
should be realized in order to give a realistic description of the agglomerates appearing in
the supercooled liquid, and to apply the model in a thermodynamical limit. One of the
simplest ways of describing the structural evolution during the process is to combine the
structure with a probabilistic description.

Let us denote by P
(0)
i the probability of finding a given ‘singlet’ i among N local

configurations. After joining them together into doublets, we can evaluate new relative
probabilities defined by

P
(1)
i =

1

2

[

2P
(1)
ii +

∑

j 6=i

P
(1)
ij

]

(1)

where

P
(1)

ij (m) =
Wij (m)

Q1
(2 − δij )P

(0)
i P

(0)
j e−Eij (m)/kT . (2)

We have defined in equation (2) a statistical factor Wij (m) which is equal to the number of
ways in which a given doublet can be obtained. The subscript m refers to the bonding type
of the doublet. We have also denoted by Eij (m) the energy cost of the assembling of two
singlets i and j . It mainly corresponds to a bond energy which depends on the geometry of
the matching types. Q1 is the normalizing factor that keeps the sum of probabilities equal
to 1:

Q1 =

N
∑

i,j

∑

m

Wij (m)P
(0)
i P

(0)
j e−Eij (m)/kT . (3)

These constructions are repeated at each step of the process [5].
In order to obtain a time-dependent equation for the probabilities, we shall define a

function s(t) chosen between two well-defined limits [19]. s(t) is supposed to be smooth,
with ds/dt > 0, and corresponds roughly to the number of steps realized (0 6 s(t) 6 1 for
the first step, 1 6 s(t) 6 2 for the second one, etc). At each step, s(t) gives an approximate
measure of the density of multiplets already formed versus the multiplets produced during
the former step.

s(t) =

〈

∑

j

jNj

/

∑

j

Nj

〉

− 1 (4)

where Nj represents the total number of multiplets with j atoms in the sample and the
average symbol 〈 〉 refers to a sample which is sufficiently representative that the local
fluctuations do not matter any more. Therefore, we can evaluate the approximate probability
of finding the ith elementary configuration as follows, for each step of agglomeration
(i.e. each value of k):

Pi(t, T ) = (k − 1)

[

s(t)

k − 1
− 1

]

P
(k)
i + k

[

1 −
s(t)

k

]

P
(k−1)
i . (5)

For 0 6 s(t) 6 1, it is simply

Pi(t) = (1 − s(t))P
(0)
i + s(t)P

(1)
i (6)

where P
(1)
i is obtained from (1). The constraint

N
∑

i=1

P
(k)
i = 1 (7)
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Figure 1. A schematic representation of a glass network. For k = 1, we assume that it is
equivalent to tile the network with singlets [P (0)

3 ] or with doublets [P (1)
j3(m)], giving a graphical

illustration for one of the equations (8) (the one with i = 4). The same happens for the other
configurations involved.

remains satisfied at each step k.
The derivative with respect to t yields [5]

dPi

dt
=

ds

dt
[P (k)

i − P
(k−1)
i ] = 0 (8)

which is a system of N −1 non-linear equations with N −1 independent variables P
(0)
i . The

study of the singular points of the system leads directly to the values of P
(0)
i corresponding

to the local glass structure. It can also be interpreted as the configuration that will globally
dominate at the end of the process. The nature of the singular points depends on the
roots appearing after linearization of system (8) [20]. If the characteristic equation of the
linearized system has all of its roots with a positive real part, it is an unstable point; if all
real parts are negative, we have a stable point. The solutions thus show the preferential
composition of the multiplets characteristic for the short-range structure. If the roots are
of both kinds, we get a saddle point. We assume that the saddle point corresponds to a
metastable solution since it is neither an attractor, nor a repulsive point. It will be interpreted
as a non-crystalline glassy state which can quite faithfully represent the average local glass
structure. The hypothesis of such a physical interpretation has been introduced previously
[5] and typical applications are currently under consideration [21]. Secondly, the relative
probability of an elementary configuration should not vary from one step to another because
we can also say that the construction of the whole vitreous matrix structure with elementary
singlets or with doublets (already sharing more information about MRO than the singlets)
should be equivalent; hence

P
(0)
i ∼ P

(1)
i . (9)

In other words, this means that the structure can be tiled with multiplets of similar sizes,
yielding at each step of growth a better approximation of the structure (figure 1).

Nevertheless, it is necessary to introduce a cooling term in order to give a more realistic
description of the process. It has been observed indeed that Li2S–SiS2 glasses are very
difficult to obtain by ordinary quenching because they have a strong tendency towards
crystallization due to their edge-sharing character (double Si–S–Si bonding) [13]. The
experiments that have been carried out on glasses with different values of Li2S concentration
used the twin-roller quenching technique which involves very rapid cooling, of the order
of 106 K s−1 [22]. SiSe2–Li2Se glasses are also obtained by this technique [23]. We must
introduce therefore the cooling term which has been used previously in order to explain
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the stabilization of amorphous structures [24]. The new term that has to be added to the
right-hand side of the system (8) in order to take into account the effects of rapid cooling
contains explicitly the derivatives of the probabilities with respect to the temperature T , so
the equation takes on the following form:

dPi

dt
=

ds

dt
[P (k)

i − P
(k−1)
i ] +

dT

dt

∂Pi

∂T
= 0. (10)

2. Application to xLi2S–(1 − x)SiS2 glasses

Experimental observations suggest a natural definition of the required local configurations.
Structural as well as electrical data on lithium silicon sulphide glasses obtained mainly
through NMR and Raman spectroscopy lead to the definition of stable local configurations
[25, 15]. Silicon sulphide glasses are composed of polymeric chains of edge- and corner-
sharing tetrahedra (SiS4 units). The elementary building block which appears in the liquid
and in the glass state is a tetrahedron formed by a silicon atom with four sulphur atoms at its
corners. With adjunction of the modifier Li2S, the sulphur atoms at the corners are saturated
progressively by lithium atoms (creating instead ionic Li⊕S	 bonds), so they do not bridge
any more silicon atoms, and they break the edge-sharing chains of tetrahedra. These sulphur
atoms are currently called ‘non-bridging sulphur’ (NBS) atoms and their frequency varies
with the concentration x. Increasing the concentration leads to the occurrence of SiS	

4 ,
SiS2	

4 and SiS3	
4 tetrahedra. At the limits of the glass-forming domain (e.g. for x > 0.66),

all Si–S–Si bonds are destroyed, and only isolated SiS4	
4 units are expected.

Figure 2. The four elementary configurations (singlets) with their corresponding probabilities
P

(0)
i and their corresponding NMR notation Q(i).

We define the respective probabilities of four elementary configurations A, B, C and D,
denoted P

(0)

4 , P
(0)

3 , P
(0)

2 and P
(0)

1 (figure 2). The fact that there are only few elementary
configurations favours the establishment of very simple assembling rules, and limits the
number and the complexity of the resulting probabilities. The binding energies, which
depend on the nature of the sulphur bonds, will be considered as free parameters to be
determined. The joining of two local configurations can be realized in two different ways.
Two tetrahedra can be joined together by corners or by edges (m = 1 or 2). This yields
two different binding energies depending on the type of junction. These particular energies
will be denoted, according to the situation, by a1 and a2. With the initial probabilities
of four singlets and two binding energies, we can establish the probabilities of occurrence
of doublets and triplets in three dimensions appearing during the first two steps. We use
in the construction the Boltzmann factors em = exp[−am/kT ] with m = 1, 2, and the
statistical weights which are given by the number of ways leading to the multiplet under
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Figure 3. Two doublets: a corner-sharing B–C and an edge-sharing C–C doublet with their
corresponding probabilities. With labelled Si–S bridges, there are 12 different ways to obtain
the same doublet 32(1) (m–m′, m–n′, etc) which gives the statistical weight W32(1) = 12.

consideration. The energies am correspond to the previously defined energies Eij (m) and,
obviously, they depend only on the bonding type (corner-sharing tetrahedra involve energy
a1 and edge-sharing tetrahedra involve energy a2). Indeed, given a bonding type, the energy
remains constant whatever multiplet is considered (A–A, A–B, etc) because it corresponds
in all situations to a Si–S–Si bond. Some typical probabilities obtained using equation (1)
are given in figure 3.

The first step yields 16 doublets; the second one leads to the formation of 60 triplets
(figure 4), most of which are obtained in two or three different ways. As there are four
elementary configurations, the system (10) corresponds to a set of three equations with three
variables P

(0)
i (k = 1 for the first step and k = 2 for the second one):

P
(k)

4 − P
(k−1)

4 −
|dT/dt |

ds/dt

∂P
(k)

4

∂T
= 0

P
(k)
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ds/dt
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(k)

3

∂T
= 0

P
(k)

2 − P
(k−1)

2 −
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ds/dt

∂P
(k)

2

∂T
= 0.

(11)

The last variable is given by the normalization equation:

P
(0)

1 = 1 − P
(0)

2 − P
(0)

3 − P
(0)

4 . (12)

We can still reduce the number of independent equations. Indeed, the modifier concentration
x can be expressed in terms of the initial probabilities P

(0)
i leading to another reduction of

the system (11). The concentration x can indeed be evaluated as

NLi2S

NSiS2

=
x

1 − x
=

1

2
[P (0)

3 + 2P
(0)

2 + 3P
(0)

1 ] =
1

2
[3 − 3P

(0)

4 − 2P
(0)

3 − P
(0)

2 ]. (13)

The above relation can be interpreted as the equation for local charge conservation [26],
i.e. the sum of all positive charges Li⊕ must be equal to the sum of the negative ones
which exist in the local configurations [5]. This will reduce the system (11) to a set of two
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Figure 4. From doublets to triplets; expressions for the unrenormalized probabilities.

independent equations with two variables P
(0)
i , and the domain of physical solutions will

be contained within the symplex defined by

0 6 P
(0)

4 6 1 0 6 P
(0)

3 6 1 0 6 P
(0)

2 6 1

0 6 1 − P
(0)

4 − P
(0)

3 − P
(0)

2 6 1
(14)

and lying on the plane defined by equation (13). This amounts to limiting the investig-
ation over the concentration range x = [0, 0.5], since we have chosen only the four
aforementioned configurations (figure 5).

3. Results and discussion

The complexity of the system (11) prevents one from obtaining an analytical resolution. We
have therefore used, as before [6], a computer program based on the generalized Newton
method. We chose to express the coupling energies a1 and a2 in electron volts as we
suppose that their value must be of the order of a fraction of 1 eV, comparable to similar
values obtained for this type of glass [27]. The solutions which appear at the borders of
the domain will be identified with the usual stoichiometric crystalline compounds such as
the metathiosilicates (for P

(0)

2 = 1) or the pyrothiosilicates (for P
(0)

1 = 1). These solutions
should be obtained only for particular small concentration ranges, satisfying equation (13).

The solutions lying inside the symplex will represent the glassy state because of their
metastable character and because of the fact that they represent a mixture of all possible
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Figure 5. The three-dimensional symplex in which all of the solutions of the system have to be
found. The summits correspond to a probability equal to unity identified with the corresponding
crystalline compound (dithiosilicate, metathiosilicate and pyrothiosilicate).

configurations corresponding to the maximum of the configurational entropy. Then we can
start the resolution of (13) by systematically scanning a reasonable domain of variation of
the parameters a1, a2 and of T . The most explicit experimental constraint that we have
to satisfy is that of matching the glass transition temperature Tg obtained experimentally
by Eckert and co-workers [28, 29] (table 1). As before, we identify the lower limit of the
temperature range in which we find solutions for the system (11) with the glass transition
temperature. The probabilities of finding each of the four configurations can in fact vary
with respect to the temperature during the quenching of the liquid, but their variation should
be stopped when the liquid, is frozen (at Tg), even on a very small scale.

Table 1. The glass transition temperature of the system Li2S–SiS2 as a function of x, the
concentration of Li2S.

x 0 0.3 0.38 0.4 0.42 0.5 0.6

Tg (◦C) 453 341 330 341 330 338 334

We fit also the dimensionless factor 3, defined by

3 =
|dT/dt |

T ds/dt
(15)

which appears in equation (11). Testing this experimental constraint by an iterative method,
we obtain the best fits for

a1 = 0.29 eV

a2 = 0.31 eV.
(16)

The values obtained are quite similar and can eventually show that the edge-sharing tendency
of the SiS2 glass is much more stronger than in the selenide analogue glass, as proposed
on the basis of experiment [28] (in a previous application, we found a1 = 0.20 eV and
a2 = 0.32 eV for the SiSe2-based glass [6]). The best fits of the factor 3 are displayed in
figure 6. The glass transition temperature agrees quite well with the experimental data for
both steps and depends slightly on the cooling factor 3, as in the experimental preparation
of the glass (tables 2 and 3).
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Figure 6. A log plot of the dimensionless cooling factor 3 obtained for the first (circles) and
second step (squares).

Table 2. An example of the influence of the cooling factor 3 on the value of the glass transition
temperature obtained, at x = 0.5.

3 Tg (◦C)

79 338
80 333
83 331

Table 3. The predicted glass transition temperature (in ◦C) and the corresponding solutions of
the reduced system for the first (I) and second step (II) of agglomeration.

x Tg P
(0)
4 P

(0)
3 P

(0)
2 P

(0)
1

0.3 156(I) 0.572 0.007 0.414 0.008
341(II) 0.571 0.000 0.428 0.000

0.38 166(I) 0.389 0.011 0.587 0.014
330(II) 0.454 0.089 0.236 0.222

0.4 300(I) 0.3346 0.011 0.640 0.014
341(II) 0.423 0.095 0.208 0.171

0.42 330(I) 0.280 0.019 0.675 0.026
330(II) 0.392 0.097 0.181 0.330

0.5 338(I) 0.003 0.004 0.984 0.009
338(II) 0.086 0.192 0.352 0.368

0.6 334(I) 0.003 0.001 0.001 0.995

One should note that the Tg-values obtained with the first step of agglomeration are
somewhat spurious for x < 0.4. We suggest that the second step is best adapted for
this concentration range, i.e. the network structure is more accurately described by a
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Figure 7. Probabilities of finding the SiS2 and the Li2SiS3 phase for the first step of
agglomeration.

larger size effect produced by triplets rather than doublets. Nevertheless, the first step of
agglomeration yields a solution with high A- and C-probabilities, identified with a mixture of
the progressively vanishing SiS2 network (a large P

(0)

4 -value) and the growing Li2SiS3 phase
with large amounts of C-configuration (figure 7). This is consistent with the experimental
proposal made on the basis of 29Si NMR spectroscopy data. Indeed, the most important
structural change induced by the modifier Li2S is the breakdown of the network former
SiS2 produced by depolymerization (through the creation of Li⊕S	 bonds). In contrast to
the case of the oxygen glass system (i.e. SiO2–Li2O), there are no Q(3)-units created but
rather Q(2)-units, sharing two non-bridging sulphur atoms [28, 29]. This corresponds to a
high value of the P

(0)

2 -solution obtained with the first step and second step (table 2), and the
behaviour seems to be quite similar to that of the selenide analogue [6]. The difference from
the latter system is the prediction of two types of metathiosilicate phase, namely the high-
and low-temperature crystalline forms of Li2SiS3, corresponding either to an edge-sharing
dimer (called E(1)Q(2)), or to a corner-sharing polymer (called E(0)Q(2)). In the silicon
selenide glass, there seems only to be the corner-sharing phase, and solutions were obtained
in this sense [6], and the general breakdown of the network occurs in this system more
rapidly than in the sulphide glass, in agreement with observation (figure 8(a)).

At x = 0.5, one has a pure Li2SiS3 phase, identified with the high P
(0)
C reaching

unity. Inserting the solutions obtained and the energies allows the computation of the
probabilities of doublets and triplets, and shows that the glass is indeed a mixture of the
Q(2)-dimer and polymer, in the proportion of 1:3 (figure 8(b)). The NMR investigation
yielded a proposal of 23:77 [29]. The cooling factor 3 decreases from x = 0.3 to x = 0.5
and reaches its minimum value at this concentration, and then it grows rapidly for greater
concentrations (figure 6). The behaviour of 3(x) is in close correspondence with the
experimental quenching rate which is necessary to form the glass [30], and shows that the
glass-forming tendency attains its maximum at around x = 0.5, because 3 is very low
(glass can be formed by simple water quenching for close concentrations [31]).

As mentioned in table 3, we obtain at x = 0.6 a pure Li6Si2S7 phase (P (0)

1 ∼ 1) which
is also in close agreement with the proposal of Eckert and co-workers [28]. The glass is
then composed of corner-sharing Q(1)-tetrahedra, but the production of the alloy is very
difficult, since the factor 3 attains its maximum value, which seems to correspond with
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Figure 8. (a) The growth of the metaphase in the sulphide (Li2SiS3) (lower line) and in the
selenide (Li2SiSe3) (upper line) glass systems. (b) The composition of the metathiosilicate phase
as a function of x: the high-temperature crystalline form (the edge-sharing Q(2)-dimer; dashed
line) and the low-temperature form (the corner-sharing Q(2)-polymer; solid line).

what is experimentally observed (for lower values of 3, the system (11) yields only the
crystalline solutions, i.e. the corner solution of the symplex P

(0)

1 = 1).
The second step gives further insight into the structural change in the network, in

particular for low values of x. In addition to the main behaviour, characterized by the
decrease of the SiS2 phase and the growth of the metathiosilicate phase, we can see that
bigger clusters can also share substantial rates of Q(3)- and Q(1)-configurations. The solution
disappears at x = 0.6; the triplet approximation is no longer significant here, because the
glass is composed of Q(1)-doublets only.

4. Summary and conclusion

The application of the statistical model to SiS2-based glasses which has been presented in
this paper shows quite consistent results with what is generally observed experimentally,
and it allows a quantitative description of the structure to be obtained. It gives a precise
behaviour of the variation of the configurations Q(k) with respect to the concentration of
the modifier x, by using only two independent parameters (a2 − a1 and 3) which can
nevertheless also be compared to experimental data. With these two parameters, we have
been able to demonstrate the following features.

(1) The first step describes the main structural change of the network which is the
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vanishing of the network former and the growth of the Li2SiS3 phase composed of the
crystalline high- and low-temperature metathiosilicate forms, reaching the proportion of 1:3
at x = 0.5.

(2) The destruction of the network former seems more pronounced than in the selenide
analogue glass.

(3) The second step gives more precise insight into the structural change by predicting
the possibility of the existence of Q(3)-species in greater clusters.

(4) We have obtained a fair dependence of the glass transition temperature on x for both
steps of agglomeration. Both steps show that the variation of the cooling factor 3 with x

is very close to the one necessary to obtain the glass.

We believe that other typical properties of these glasses can be obtained in the future,
such as the density and conductivity, or usual thermodynamical functions.
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