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ABSTRACT: The structural and topological properties of soda-lime
silicate glasses of the form (1−2x)SiO2−xNa2O−xCaO are studied
from classical molecular dynamics using a Buckingham type potential.
Focus is made on three compositions (x = 6%, 12%, and 18%) which
are either silica-rich or modifier-rich. We compare the results to
available experimental measurements on structural properties and find
that the simulated pair correlation function and total structure factor
agree very well with available experimental measurements from
neutron diffraction. The detail of the structural analysis shows that
the Na and Ca coordination numbers tend to evolve with composition,
and with increasing modifier content, changing from 5.0 to 5.6 and
from 4.0 to 5.0 for Ca and Na, respectively. The analysis from
topological constraints shows that the picture derived on a heuristic
basis using classical valence rules remains partially valid. Ultimately,
typical elastic phases are identified from the application of rigidity theory, and results indicate that the 6% system is stressed-rigid,
whereas the modifier-rich composition (18%) is flexible. These results receive support from a full analysis of the vibrational
density of states showing the low-energy bands at E < 20 meV increase as the system becomes flexible, providing another indirect
signature of the presence of rigid to flexible transitions in this archetypal glass. Consequences for window glass are discussed
under this perspective.

I. INTRODUCTION
Soda-lime silicates not only form an interesting class of basic
network glasses but also represent the archetypal base material
for various domestic, industrial, and commercial applications in
glass science,1 including the well-known example of window
glass, or promising bioactive materials for bone medical
implants.2 Applications usually result from an appropriate
alloying of additives into the base glass and lead to specific
properties that are continuously optimized. However, many of
these additives are strongly influenced by the properties of the
underlying soda-lime silicate compound which affects transport
properties, such as diffusion or viscosity, or thermal properties,
such as density or thermal expansion. Ultimately, these
properties depend on the underlying network structure and
the way this structure evolves with composition. The
description of structural properties of soda-lime glasses appears,
thus, to be a fundamental issue in glass science with, obviously,
a high degree of possible applications that could emerge from
an increased understanding.
Surprisingly, there have not been many structural studies on

this system in the literature, although the interest in this ternary
system is quite old3 and has been focused in early reports on
the practical issue of immiscibility4,5 and liquid-phase
separation.6 The structure of soda-lime glasses of chemical
formula nSSiO2−nNNa2O−nCCaO (termed nS−nN−nC here-
after) has been investigated from X-ray,7,8 and neutron
diffraction,8,9 and there is indication that both modifiers

(Na2O and CaO) disrupt the base silica network by creating
nonbridging oxygens (NBOs) in the immediate vicinity of the
cations. These cations fill the voids left in the structure and
have between four and six oxygen neighbors. In the continuous
random network picture,10,11 it is furthermore assumed that the
cations have a random distribution. However, there is recent
evidence that in soda-lime glasses Ca and Na are nonrandomly
distributed,12 a result that seems in line with the proposition
that silica-rich and cation-rich regions (i.e., channels13) coexist
in the structure. Such heterogeneous distributions have been
detected in the related Na and Ca binary systems from
diffraction14,15 and molecular dynamics (MD) simulations.16,17

A recent theoretical effort has been published by Cormier et
al.8 using both MD and reverse Monte Carlo (RMC) modeling,
and by Karlsson et al. using RMC alone.9 Tilocca and de Leeuw
have performed an analysis on a single composition in the
ternary compound (75−10−15) from first-principles MD using
the Car−Parrinello approach,18 quenched from a classical MD
with a force field derived by Teter.19 Given the small relaxation
times, the structure was found to be very close to the one
obtained from an independent study20 on 75SiO2−(25−
x)Na2O−xCaO. To the best of our knowledge, the latter
represents the only systematic numerical study of soda-lime
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glasses as a function of composition. Results showed that both
Ca and Na play a network modifying role but that the first
coordination shell of the cations was found to be better defined
for the Ca atoms. Weak changes in structure were obtained as a
function of composition. An additional structural investigation
has been reported by Tilocca and co-workers21 using different
interatomic potentials for the ternary (75−10−15) silicate, and
the structural results from model potentials (shell models) were
compared to a reference calculation using ab initio simulations.
An alternative framework for extended studies in composi-

tion relies on rigidity theory22−24 which focuses on the key
microscopic physics while filtering out all possible atomic-scale
details which represent a burden for the computational effort
and prevent a thorough investigation of compositional trends.
The approach is based on the concepts which are directly
derived from the Maxwell elasticity theory for macroscopic
structures.25,26 In fact, from a mechanical viewpoint, the bond-
stretching (BS) and bond-bending (BB) interactions which
constrain a glass network at a molecular level can be identified22

with mechanical constraints nc which are compared to the
available degrees of freedom nd (3 in 3D). At the exact
boundary nc = nd corresponding to the isostatic stability
criterion defined by Maxwell,26 a flexible to rigid transition has
been predicted,23,24 verified from various observed anomalies in
materials properties.27,28

A pioneering application of rigidity theory on soda-lime
glasses is due to Kerner and Phillips29,30 who showed that a
combination of the isostatic criterion (nc = 3) and the
requirement that the average size of small-ring structures is 6
(such as for the low-pressure forms of silica polymorphs), leads
to an ideal composition of 74−16−10. It is quite remarkable
that such simple and elegant conditions have led to a
composition that is very close to the one corresponding to
window glass. In the related binaries of soda-lime glasses
(SiO2−Na2O and SiO2−CaO), effects of rigidity have been also
detected. In the former, it has been shown31,32 that a rigid to
flexible transition occurs at composition of ≃20% Na2O
modifier, and an intermediate phase27 has been obtained
between 18% and 22% soda. In the latter, Raman integrated
intensities of tetrahedral modes33 which are typical of the local
structure of silica (Q4 motifs), exhibit an abrupt decrease at
≃45% CaO and indicate the breakdown of the stressed-rigid
network structure. This trend is consistent with an increase of
ionic conduction34 which is promoted because low-energy
deformation (floppy) modes typical of flexible networks (nc <
3) facilitate the creation of doorways for ions and enhance
mobility.35 Building on these concepts from rigidity theory,
Gupta and Mauro have extended the theory to account for
temperature-dependent constraints36 and have successfully
predicted from simple structural models mechanical, thermal,
and structural properties of multicomponent silicate glasses37,38

using CaO or Na2O or B2O3 as additives.
There is a major drawback in the rigidity approach, however.

In the search for ideal glasses or optimal compositions that are
isostatic or stress-free (nc = 3) and may have potentialities for
interesting applications, constraint counting rules are often
established on an empirical or heuristic basis.29,36 Recently, it
has been shown that constraint counting can be applied with
confidence when coupled to realistic atomic-scale trajectories
from molecular simulations.39−41 This allows one to access in a
neat way an exact count of bond-stretching and bond-bending
forces constraining the network at the molecular level, as
exemplified in sodium silicates39 and silica40 and in different

chalcogenides.41,42 Here we build on this approach and
investigate three compositions of soda-lime silicates using
MD simulations. We find that the structure in real space is
dominated by the base network structure of silica for all
compositions. However, as the modifier content is increased,
new structural correlations emerge, and these are mostly driven
by the increased contribution of Na−O and Ca−O pairs. The
modifier-poor glass is found to exhibit increased Ca−Ca
correlations, while Na−Na typical distances are substantially
decreased. The analysis of the topology reveals that Na and Ca
have between four and five neighbors, respectively. However, it
is found that such neighbors lead only to BS constraints that
strongly depend on the neighbor rank, unlike the oxygen
neighbors of Si that define the SiO4/2 tetrahedron. There are
virtually no contributions in terms of BB constraints. The
global count of constraints nc allows then identifying a flexible
to rigid transition for the ternary compound. Taken together,
these results reveal that modifier-rich soda-lime glasses are
flexible and display deformation (floppy) modes that bear
similarities with weakly connected glasses,27 whereas, on the
opposite end, silica-rich compositions are stressed-rigid. This
feature may eventually induce the observed phase separation5 in
the liquid phase, as also observed in chalcogenide glasses.43

This work is organized as follows. In section II, we provide
the simulation details and describe the structural properties in
section III. We then apply MD-derived constraint counting
algorithms to the three investigated compositions in section IV
and discuss the findings in section V. Finally, section VI draws
some conclusions and summarizes the findings.

II. SIMULATION METHODOLOGY

Three systems of 3,000 atoms have been simulated at different
compositions according to previous investigations of soda-lime
silicates using rigidity theory.29 Indeed, we have selected in the
wide range of possible compositions (1−x−y)SiO2−xNa2O−
yCaO the join representing x = y (red curve in Figure 1) which
crosses the predicted29 isostatic stability line nc = 3. We have
selected a silica-rich (88−6−6), a modifier-rich (64−18−18),
and an additional system (76−12−12). According to ref 29, the

Figure 1. Compositional triangle of soda-lime silicates. The gray zone
indicates the reported glass-forming range,44 and the black line, the
anticipated Maxwell stability line29 fulfilling nc = 3. The orange curve is
the isostatic line determined from the present MD simulations (see
section IV.C). Red dots correspond to the present investigated
compositions from MD simulations. The green bar in the binary
sodium silicate system corresponds to the reported intermediate
phase.31,32
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first two compositions are supposed to represent a stressed-
rigid and a flexible network, respectively.
The interaction potential used in the present study is a two-

body potential of Buckingham type which has been fitted by
Xiang and Du45 (parameters can be found in the relevant
reference). It contains an attractive dispersive term in 1/r6, a
Coulombic term, and a repulsive part. We have also added a
strongly repulsive part to prevent any collapse of the system at
high temperatures. This repulsive part has been switched off at
a lower temperature (3,000 K), and results on liquid structures
at T ≤ 3,000 K with or without the correction did not show any
significant differences.
Molecular dynamics simulations (DLPOLY46) were carried

out in the (N,P,T) ensemble at zero pressure using a leapfrog
Verlet algorithm with a time step of 2 fs. Typical runs were
about 2 ns. We first homogenized the systems at a temperature
of 5,000 K before accumulating trajectories (1−2 ns) by steps
of 500 K down to 300 K. Averages were performed over 2 ns.
Figure 2 shows a typical obtained structure for the 64−18−18

system. To check for possible system size effects, we have also
investigated two systems of 81,000 and 24,000 atoms for the
88−6−6 and 76−12−12 glasses, respectively. Again, the
structure functions (pair correlation functions and structure
factor) did not show any significant changes, thus providing
confidence that the 3,000 atoms size is sufficient to investigate
structural and topological properties. This is also in line with a
recent size-effect study using first-principles molecular dynam-
ics simulations.47

III. STRUCTURAL PROPERTIES
At zero pressure, the calculated densities are found to be in
good agreement with experimental measurements for close
compositions; we found 2.41, 2.49, and 2.59 g·cm−3 with
decreasing silica content, i.e. for 88−6−6, 76−12−12, and 64−
18−18. This can be compared with measurements for the close
compositions 90−6−4, 78−12−10, and 66−18−16 which have
densities of 2.310, 2.455, and 2.595 g·cm−3, respectively.44

A. Global Structure. Figure 3 shows the total pair
correlation function, calculated from the partial ones using

=
∑

∑
g r

c c b b g r

c b
( )

( )

( )
i j i j i j ij

i i i

,
2

(1)

where ci represents the concentration of species i and bi are the
neutron coherence lengths.
We first remark that our calculated pair correlation function

of the 76−12−12 is very close to the experimental neutron pair
correlation function8 for a slightly different composition (75−
15−10), all typical distances being recovered from the
simulation. We note that, similar to many other numerical
works,20,39 the simulation leads to a glass network that is much
more structured, and this leads to much more intense first
peaks (1.61 and 2.61 Å) for the function g(r). However, this
should not affect the topological constraint count detailed in
later text given that the structuration mostly affects the Si−O
and O−O correlations (blue and red curves in Figure 3) which
define the tetrahedra. In silicates, corresponding silicon and
oxygen constraints are indeed always intact because they define
the rigid network backbone. Furthermore, topological con-
straints focus only on nearest-neighbor interactions (stretching
and bending) so that typical second-neighbor correlations, i.e.,
those leading to typical distances between 3 and 5.5 Å, will only
weakly impact the results.
Similarly, we find that the calculated structure factor S(k)

also reasonably well reproduces the structure for the
composition 76−12−12, i.e., the one that is the closest to a
soda-lime composition studied experimentally (75−10−15) by
Cormier et al.8 from neutron diffraction (Figure 4). All typical
features are reproduced, i.e., the principal peak at ≃5.5 Å−1 and
the peaks at either low (1.5 and 3.0 Å−1) or high wavevector
(8.0 and 11.5 Å−1). At the lowest modified silicate composition
(88−6−6), the structure factor appears to be very close to the

Figure 2. Snapshot of the modifier-rich composition 64−18−18 of a
soda-lime silicate. Red and blue spheres represent the calcium and
sodium atoms, respectively. The network backbone (Si,O) is
represented by simple bars.

Figure 3. Total calculated pair correlation function g(r) of soda-lime
glasses for different compositions. The blue and the red curves for the
88−6−6 composition represent the contribution from Si−O and O−
O, respectively. Experimental data8 on a close system (75−15−10) are
shown (orange curve). The arrow indicates the shoulder peak
described in the text. The inset shows the function g(r) of the
modifier-rich composition (64−18−18, same as the main panel) and
the contributions from Na−O (red) and Ca−O (green) correlations.
See text for details.
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one obtained for vitreous silica,48 i.e., with dominant
contributions at 2.0, 3.0, and 5.5 Å−1. With increasing modifier
content, however, the principal peak tends to broaden and the
difference between the first two peaks at low wavevector
decreases. The addition of network-modifying cations also leads
to a decrease of the intensity of the first sharp diffraction peak,
as also previously observed for binary alkali silicates.49

In real space, one can notice that at short distances all
functions g(r) are dominated by the contributions arising from
both Si−O and O−O correlations which lead to marked peaks
at ≃1.61 Å (the Si−O bond distance, from the blue curve
gSiO(r) in Figure 3) and at ≃2.61 Å (the O−O bond distance,
red curve gOO(r)), i.e., distances which are found to be nearly
identical to those found in the base silica glass48 or in sodium
silicates.39 This simply indicates that the local tetrahedral
geometry is maintained for the three compositions of interest,
given that neither the edges of the tetrahedra (i.e., the distance
dO−O) nor the tetrahedral parameter50 δ = dSi−O/dO−O changes
with composition. For an ideal tetrahedron, one has indeed δ =
(3/8)1/2 = 0.612, and here it is found δ ≃ 0.61(5) for all
investigated systems.
Given the dominant contribution of both Si−O and O−O

correlations, the global shape of g(r) does not vary much with
composition. However, a shoulder peak of the O−O main peak
builds up at ≃2.37 Å with an increase of modifier content. This
peak arises from the increase of Na−O (red curve in the inset
of Figure 3) and Ca−O correlations (green curve) as one
moves from the 88−6−6 to the modifier-rich 64−18−18 alloy.
The detail of the relevant partial pair correlation functions

gij(r) is shown in Figure 5 and allows determination of the
typical distances involved in the network and the way these
evolve with modifier content. The partials Si−Si, Si−O, and
O−O do not exhibit any significant change (not shown), and
we focus here on Na- and Ca-based partials. It is found (Figure
5) that changes mostly occur between the modifier-rich 64−
18−18 and the other compositions, and these changes manifest
by an important reduction of the intensity of the principal peak
in gNaO(r) and gCaO(r) found at 2.40 and 2.36 Å, respectively.
Note that the Na−O distance found in this ternary is very close
to the one found in the related binary sodium silicate.39 More

important changes take place in Ca−Ca and Na−Na
correlations (insets of Figure 5). In the gNaNa(r) function, the
addition of modifiers leads to a decrease of the first peak
distance (≃3.5 Å for 88−6−6), and the peak furthermore
appears to be bimodal with typical distances found at 3.2 and
3.7 Å. Similarly, the intensity of the main peak of the Ca−Ca
correlation function (inset of Figure 5b) decreases in the 64−
18−18 glass, indicating that more Ca−Ca correlations occur as
the modifier content of glass is steadily increased.
The results on the typical distances can be directly compared

to reference data obtained from ab initio Car−Parrinello (CP)
simulations (specifically Table 10 of ref 21) or shell-model MD
calculations of a slightly different composition 75SiO2−
10Na2O−15CaO. We find that all our obtained interatomic
distances lie in the range of these different models. The
obtained Na−O and Ca−O distances for the 76−12−12
compound (2.38 and 2.36 Å, respectively) are indeed close to
the CP calculations of 2.35 and 2.30 Å, respectively. Similarly
the Ca−Ca distance (dCaCa = 3.44 Å) is also found to be in the
range of values determined from these different structural
models with 3.32 Å ≤ dCaCa ≤ 3.5 Å. We finally note that the
composition affects the Na−Na correlations as noticed from
the inset of Figure 5a. As a result, for the 76−12−12 glass we
determine from the pair correlation function gNaNa(r) a distance
of dNaNa = 3.01 Å which is lower than the calculated21 range of
distances 3.3 ≤ dNaNa ≤ 3.5 Å. However, as noticed from the

Figure 4. Total calculated structure factor S(k) of soda-lime glasses for
different compositions. Experimental data8 on a close system (75−15−
10) are shown (red curve).

Figure 5. Partial pair correlation function gNaO(r) (a), gCaO (b), and
gNaNa(r), gCaCa for soda-lime silicate glasses with composition 88−6−6
(red), 76−12−12 (black), and 64−18−18 (green). The minimum rmin
of gNaO(r) is indicated with an arrow.
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inset of Figure 5a, the silica-rich system (88−6−6) contains
correlation distances which are larger (3.5 Å), suggesting a
strong effect due to composition.
B. BO and NBO Correlations. As previously reported,39 for

the oxygen correlations we can also use an alternative
framework using the oxygen differentiation which makes the
distinction between the bridging oxygens (BO) connecting two
SiO4/2 tetrahedra and those which are found in the vicinity of
the (Na,Ca) cations, usually termed20 as NBOs. To determine
the BOs, we check that such oxygen atoms have as first
neighbors two silicon atoms. We find a fraction η of BO atoms
of η = 1 − α = 87.1%, 72.5%, and 55.7% for the 88−6−6, 76−
12−12, and 64−18−18 glasses, respectively. Here, α represents
the fraction of NBO atoms. Classical valence rules suggest that
each addition of a Ca (respectively Na) atom should lead to the
creation of two (respectively one) NBOs, and from the
stoichiometry (1−2x)SiO2−xNa2O−xCaO the fraction η of
BOs should therefore evolve as (1 − 3x)/(1 − x). This leads to
the values 87.2%, 72.7%, and 56.1% for the 88−6−6, 76−12−
12, and 64−18−18 glasses, and which are very close to those
determined from the numerical trajectories.
Figure 6 shows NBO- and modifier-centered pair correlation

functions, and the former has been split into contributions
related to Na and to Ca ions (broken and solid lines in panel a).
One recovers the first peak distance at 1.61 Å corresponding to
the Si−NBO bond distance. Interestingly, gNBO(r) exhibits a
second peak consisting of a double contribution at 2.34 and
2.61 Å (Figure 6a). The latter is associated with NBO−oxygen
correlations that can be also detected from the partial
correlation function gOO(r) (Figure 3), whereas the former is
associated with NBO−modifier distances. This becomes
apparent when the peak at 2.34 Å in gNBO(r) is compared to
the gNa(r) and gCa(r) partials (Figure 6b,c), which have their
main (first) peak at this same distance of 2.34 Å. One can thus
conclude that the NBO−(Ca,Na) is longer than the NBO−Si
distance but shorter than the NBO−oxygen bond distance. As
the temperature is increased to 2,000 K, we finally note a global
broadening of all correlating distances (peaks) in gNBO(r),
attributed to the increased diffusion of the alkali cations which
cancels to some extent the structural correlations of the cations.
C. Coordination Numbers. From the obtained simulated

pair correlation functions (Figure 5), we obtain by integrating
up to corresponding first minima rmin the partial coordination
numbers for the different compositions, using

∫πρ=n r g r r4 ( ) dij

r

ij0

2min

(2)

where ρ is the system density.
We find that for all compositions, one has nSiO = 4 and nBO =

2. The Na coordination is equal to 3.95, 4.62, and 5.03 for the
88−6−6, 76−12−12, and 64−18−18 glasses, respectively. The
Ca coordination is equal to 5.02, 5.35, and 5.55 for the 88−6−
6, 76−12−12, and 64−18−18 glasses, respectively. These
results are recovered when the neighbor distributions are
calculated, and, in fact, one finds that for, e.g., the calcium
atoms (nCa = 5.35), the minimum rmin coincides with distances
at which the fifth and the sixth neighbor distribution functions
dominate (blue curves in Figure 6b,c for the 64−18−18 glass).
Results indicate that an increase in modifier composition

leads to an increase of both nCa and nNa, and the origin can be
determined from an inspection of corresponding partial pair
correlations (Figure 5). For Ca (Figure 5b), an increase of the
modifier content leads to a more intense first peak (at 2.35 Å)

resulting from a better defined neighborhood for the Ca cation
for the 68−18−18 composition. For the Na cation (Figure 5a),
this effect is also seen, but, in addition, the increase of the
modifier content also contributes to a more structured
distribution of alkali cations, as evidenced from the more
pronounced minimum found at rmin in gNaO(r).

IV. TOPOLOGICAL CONSTRAINT COUNTING
In order to link our results to previous investigations on the
rigidity of soda-lime silicate glasses,29,30 we determine
topological constraints in the obtained systems by following
doublets (pairs, bonds) or triplets (angles) of neighbors over
the simulated trajectory. In rigidity theory,22,23 the dominant
interactions which are usually nearest-neighbor bond-stretching
(BS) and next-nearest-neighbor bond-bending (BB) forces, and
the number of constraints per atom can be exactly computed in
a mean-field way, given by

=
∑ + −

∑
≥

≥

⎡⎣ ⎤⎦
n

n r

n

2 3r r
r

r r
c

2 2

2 (3)

Figure 6. NBO- (a), Na- (b), and Ca-centered (c) partial pair
correlation function for the three compositions of interest and two
different temperatures (300 K, black; 2,000 K, red). In panel a, the
solid and broken lines correspond to NBO−Na and NBO−Ca
correlations, respectively. Blue curves in panels b and c correspond to
calculated neighbor distributions.
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where nr is the concentration of species being r-fold-
coordinated. The contribution of the two terms in the
numerator is obvious. Each bond is shared by two neighbors,
and one has r/2 BS bond-stretching constraints for a r-fold
atom. For BB (angular) constraints, one notices that a 2-fold
atom involves only one angle, and each additional bond needs
the definition of two more angles, leading to the estimate of (2r
− 3). For 1-fold terminal atoms, a special count51,52 is achieved
as no BB constraints are involved. By defining the network
mean coordination number r ̅ of the network by

̅ =
∑
∑

≥

≥
r

rn

n
r r

r r

2

2 (4)

one can reduce eq 3 to the simple equation:

= ̅ + ̅ −n
r

r
2

2 3c (5)

and the application of the Maxwell stability criterion (nc = 3)
leads to the predicted isostatic composition of r ̅ = 2.40 in 3D,23

and anomalies are found, indeed, in a large number of covalent
glasses.27,28

As mentioned earlier,31,32 given the ionic nature of the
chemical bonding in silicates, the weaker interactions involving
cations (Na and Ca) cannot be treated straightforwardly using
eq 3, and one can now rely on the MD-generated trajectories to
extract the number of constraints, similarly to a recent
application on a selected composition of the SiO2−Na2O
binary.39 In fact, if two atoms (or three atoms defining an
angle) remain neighbors over the simulation time, then their
motion can be considered as being correlated, and a topological
constraint is identified from the doublet (respectively triplet for
an angle). On the contrary if such atoms separate from each
other at some point during the simulation and are no longer
first neighbors, then the corresponding constraint can be
considered as broken and should not contribute to the rigidity
of the network. Recombinations of bonds or angles are of
course possible, but these aspects are obviously driven by the
bond lifetime. In the glass, given the very large bond lifetime of
the network-forming ions (Si,O), an intact constraint can be
considered as being intact over the whole trajectory,39

consistent with the simple two-state model proposed by
Mauro and Gupta.36

To put the analysis in measurable quantities, one extracts
from the radial (angular) motion of such doublets (triplets) a
pair (angular) distribution which is characterized by a first
moment (i.e., a mean) and a second moment (i.e., a standard
deviation) σi with i = r or i = θ depending on the considered
situation, bonds or angles. It quantifies the excursion around
the mean value and provides information about the strength of
the underlying bond-stretching (bond-bending) interac-
tion.39−41 If the radial (angular) excursion is small, one will
identify a corresponding topological constraint (Figure 7);
otherwise the constraint is considered as broken and does not
contribute to rigidity. We now apply these concepts and
algorithms to the case of the soda-lime silicates.
A. Radial Constraints. The number of first neighbors have

been previously determined from the integration of the partial
pair correlation functions and have led, e.g., to rSi = 4.02, rO =
2.01, rCa = 5.35, and rNa = 4.62 for the 76−12−12 compound.
An analysis of the radial excursions (Figure 8) shows that not
all neighbors give rise to mechanically effective BS constraints.
In fact, while the silicon atoms have a number nc

BS that is exactly

equal to rSi/2 because of a well-separated gap between the
neighbor Nn = 4 and Nn = 5 (Figure 8a), the cations have a
value σr/d that depends on the rank of the neighbors (Figure
8b,c). Here d is the peak position (first moment) of the
relevant neighbor distributions. Radial excursions do indeed
increase with Nn. An approximate limit for broken and intact
constraints can be set around σr/d ≃ 7%, close to what has been
reported previously,39 which is also fairly close to the well-

Figure 7. Schematic method of constraint counting from MD-
generated configurations. Large (small) radial (a) or angular (b)
excursions around a mean value are characterized by large (small)
standard deviations on radial or angular distributions, representing
broken (intact) constraints.

Figure 8. (a) Si−O, (b) Na−O, and (c) Ca−O radial standard
deviations σr/d as a function of neighbor number for the three
compositions of interest. Here d is the peak position of the relevant
neighbor distributions. The shaded areas correspond either to the
second shell of neighbors, which is nonrelevant for constraint
counting, or to the approximate limit (7 ± 1%) between intact (low
σr) or broken (large σr) bond-stretching constraints. The limit between
the first and the second shell of neighbors is the one of the 76−12−12
compound (4.62 and 5.35 for Na and Ca, respectively).
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known Lindemann criterion53,54 stating that atomic motion
occurs when the root-mean-square displacement ⟨r2⟩1/2 is about
10% of the nearest bond distance.
Parts b and c of Figure 8 show the same calculation for the

alkali cations, and using this threshold limit of 7%, we note that
between one and two sodium BS constraints and between three
and four calcium BS constraints are active in the relevant (first)
shell of coordination. We furthermore note that, in contrast
with the silicon BS analysis, there is an effect due to the
chemical composition, as modifier-rich soda-lime silicates tend
to reduce radial excursions for the cations.
There is an alternative way to determine the BS constraints.

Over the simulation trajectory, we follow a given distance
between two selected atoms. For each individual atom k, the
radial motion over the time trajectory leads indeed to a single
bond distance distribution Pk(r) characterized by mean ⟨rk⟩
(the first moment of the distribution), and a second moment
(or standard deviation σrk). The latter represents, once again, a
measure of the strength of the underlying BS interaction, this
time acting on an individual atom, and not system-averaged as
represented in Figure 8. In fact, if σrk is large, it suggests that the
BS restoring force which maintains the bond distance fixed
around its mean value ⟨rk⟩ is ineffective. As a result, the
corresponding BS topological constraint will be broken and will
not contribute to network rigidity. The opposite reasoning can
be applied for low values of σrk which will give rise to an intact
BS constraint and contribute to nc. The average over the whole
system then leads to a distribution f(σr) of standard deviations
which can be analyzed.
Figure 9 shows such distributions f(σr) for selected species

and a given composition. It is seen that the distributions are

essentially bimodal and contain a low-σr part which
corresponds to intact BS constraints and a high-σr part
associated with broken ones. With increasing temperature,
the whole distribution shifts to higher values in σr and the lower
σr contribution collapses. This simply reveals that thermal
activation breaks the BS and BB constraints.40

For well-defined environments (Si atoms), the gap between
the fourth (at σr = 0.03 Å) and the fifth bond distribution (at σr
= 0.08 Å) is well-defined and signals without any ambiguity that
one has, in fact, nc

BS(Si) = 4 per bond. For the cations (e.g., Ca
atoms, inset of Figure 9), we determine the number of
constraints by calculating the density of the distribution at the
minimum of f(σr). This leads to nc

BS(Ca) = 3.2 for the 76−12−
12 glass, a value that is close to the one determined from the

criterion of 7% (Figure 8). We also find nc
BS(Na) = 1.3 for this

compositions of 76−12−12, and additional numbers are
provided in Table I.

B. Angular Constraints. In a similar way we can segregate
rigid (intact) and flexible (broken) angles through a second
moment analysis of typical bond angle distributions, following a
method introduced in ref 39. to enumerate angles that
contribute to rigidity.
We select around a central atom of type A N neighbors

which define = −N N( 1)/2A bond angles and lead to
partial bond angle distributions (PBADs) PA(θ) once averages
are performed over simulation time and system. From this
analysis, one realizes that only a limited number of angles will
be well-defined (Figure 10) and will lead to a second moment

σθ which is small. For the case of Si-centered bond angles (A =
Si), six angles are rigid given that they have σθ ≤ 5° (inset of
Figure 10). These define the tetrahedra, and corresponding
PBADs are, indeed, centered at the tetrahedral angle of 109°.
Details of other applications can be found in refs 39−42.
The same analysis can then be performed for all species

including BOs and NBOs, and corresponding results are

Figure 9. Radial second moments distribution of the Si and Ca (inset)
for the 76−12−12 glass. The red arrow indicates the minimum of the
distribution separating intact BS constraints from broken ones.39

Table I. Calculated Number of Constraints, BS and BB
Contributions in Soda-Lime Glasses, Using Either the
Lindemann Criterion (Figure 8) or a Cutoff from the Radial
Standard Deviation Distributions f(σ) (Figure 9)

88−6−6 76−12−12 64−18−18

Nc
BS(Si) 2 2 2

Nc
BB(Si) 5 5 5

Nc
BS(BO) (1 − α) (1 − α) (1 − α)

Nc
BB(BO) (1 − α) (1 − α) (1 − α)

Nc
BS(NBO) α/2 α/2 α/2

Lindemann (Figure 8)
Nc

BS(Ca) 3 4 4
Nc

BS(Na) 1 1 1
Nc 3.33 3.03 2.75

σ distributions (Figure 9)
Nc

BS(Ca) 3.4 3.2 3.2
Nc

BS(Na) 1.6 1.8 1.8
Nc 3.39 3.10 2.80

Figure 10. Angles around a silicon atom, defined by the N = 6 first
neighbors leading to a = 15 possible partial bond angle distributions
PSi(θ). Colored curves correspond to PBADs having a low standard
deviation σθ (inset, blue bars). See text for details.
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displayed in Figure 11. It can be noticed that only BO and Si
atoms contribute to BB rigidity, with one and five constraints,

respectively. Note that, for the case of Si atoms, six standard
deviations with a low σθ are obtained (Figure 10) but only five
angles are independent given that the sixth angle can be
determined from the five other ones. On the opposite, it now
becomes clear that Ca- and Na-centered bond angle
distributions are wide and have no directional bondings,
because σθ ≃ 30° for all angles around both cations, and
indicate large angular excursions. As a result, all possible BB
constraints associated with Na and Ca can be considered as
broken.
Once again, the coupling between realistic numerical models

and constraint counting reveals that a clear distinction has to be
made between coordination numbers calculated from the
integration of the partial pair correlation functions gij(r) and
coordination numbers that lead to effective mechanical
constraints, as determined from Figures 8 and 11. Obviously,
a direct application of eq 3 using coordination numbers from eq
2 will lead to incorrect results.
C. Total Number of Constraints. Having established the

number of constraints and the population α of NBO atoms, we
then use eq 3 to determine the total number of constraints nc
per atom for the three compositions of interest. For the Si
atoms, we find seven constraints (five BB and two BS) as in
other Group IV oxides or chalcogenides.42 We similarly find for
the population of BOs (having a fraction 1 − α) two
constraints (one BB and one BS). NBOs only contribute to
half of a constraint. Ca and Na atoms contribute only to BS
constraints (Figure 8).
The number of constraints per atom is then given by

α
=

− − − + +
−

n
x x x n n

x
11 18 3 (1 ) [ (Ca) 2 (Na)]

3c
c
BS

c
BS

(6)

and since we have checked that the MD determined population
of BO atoms was following the one calculated from a classical
valence rule, η = (1 − 3x)/(1 − x) = 1 − α, one may write

=
− + +

−
n

x x n n
x

11 24 [ (Ca) 2 (Na)]
3c
c
BS

c
BS

(7)

Corresponding results are given in Table I using either the 7%
threshold value or the cutoff (minimum value) in the
distribution f(σr). These show that the silica-rich composition
(88−6−6) is stressed-rigid (3.33−3.39) as it has nc larger than
the value of 3, whereas the modifier-rich composition is flexible
with nc found between 2.75 and 2.80. The additional
composition 76−12−12 is nearly isostatically rigid (3.03−
3.10).
Using these constraints, we can check if the rigid to flexible

transitions in the corresponding binaries can be recovered. For
the (1−x)SiO2−xNa2O glass, a simple use of eq 3 and the
numbers of Table I leads to a mean-field threshold composition
at

=
−

x
n

1
6 (Na)c

c
BS

(8)

leading to a threshold between xc = 20 and 24% that is
consistent with the observation of the intermediate phase (18−
22%) in the binary sodium silicates.31,32 For the calcium silicate
binary (1−x)SiO2−xCaO, we similarly find

=
−

x
n

2
9 (Ca)c

c
BS

(9)

and using nc
BS(Ca) = 4, we find a threshold at around 40%,

somewhat smaller than the experimental one,33,34 this threshold
depending on the choice of nc

BS(Ca). In the ternary soda-lime
silicate, along the considered line (1−2x)SiO2−xNa2O−xCaO,
we obtain an isostatic condition (nc = 3) for the composition:

=
− −

x
n n

2
21 2 (Na) (Ca)c

c
BS

c
BS

(10)

which leads (using Table I) to a threshold at xc = 14.1% which
marks the onset of a flexible network as the modifier content is
increased.
Finally, for a more general ternary soda-lime silicate of the

form (1−x−y)SiO2−xNa2O−yCaO, we derive the number of
constraints:

=
− − + +

−
n

x y yn xn
y

11 12 12 (Ca) 2 (Na)
3c

c
BS

c
BS

(11)

and a Maxwell stability condition (nc = 3) can be established:

= − + −x n y n2 2 [6 (Na)] [9 (Ca)]c
BS

c
BS

(12)

which leads for the values nc
BS(Ca) = 3.2 and nc

BS(Na) = 1.8 to
an approximate isostatic line (orange line) represented in
Figure 1, and which differs from the one established by Kerner
and Phillips,29 as discussed in later text.

V. DISCUSSION
Having in hand the results of topological constraints from MD
simulations combined with algorithms based on radial and
angular excursions, and the possible stiffening of the network
structure as the silica content is increased, we first focus on the
vibrational properties before discussing the much broader
consequences that emerge from our findings.

A. Vibrational Density of States. In order to detect if
there are floppy modes which are typical of flexible networks,
we have calculated the vibrational density of states (VDOS)
g(ω) using the Fourier transform of the velocity−velocity
autocorrelation function:

Figure 11. Second moments σθ of the species-dependent (Si, BO,
NBO, Na, Ca) PBADs as a function of arbitrary angle number (here

a = 15). for the three glasses of interest.
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In parallel, we have performed the calculation of the
eigenvalues of the dynamical matrix, following a procedure
previously applied to silica glasses55 or to jammed solids,56,57

and this also leads to a frequency histogram that corresponds to
the density of vibrational states. It should be reminded that eq
13 gives the VDOS spectrum from a statistical point of view
using linear response theory and can be mathematically derived
for liquids.58 It uses the time evolution of the particles, lists the
derivative of displacement with respect to time, and correlates
velocities in time. The Fourier transform then gives typical
vibrations of the system, but using this method does not permit
one to access the nature of the modes. On the other hand, the
dynamical matrix method computes and diagonalizes the
second derivative of the Hessian, defined by

= ∂
∂ ∂

H
V r
r r

( )
ij

i j

2

(14)

where V(r) is the interaction potential.45 The eigenmodes are
the vibrational modes of the system associated with their
frequencies which are the eigenfrequencies of the matrix. One
can directly visualize the modes using this method, but the
diagonalization can be a complex process depending on the size
of the system and the range of the interactions; the longer the
interactions, the lesser sparse is the matrix which will lead to an
enhanced difficulty in diagonalization. The VDOS corresponds
then to the number of modes having a frequency between ω
and ω + dω; it can thus be directly computed using this
definition. For smaller systems such as the one presented here
(3,000 atoms), the statistics using eq 13 can be more accurate,
since one deals with a set of several configurations in time,
whereas the diagonalization of eq 14 performs a statistics over
the number of modes present in the system, i.e., 3N − 3 to
describe the whole spectrum.
In Figure 12, we represent the VDOS for the three

compositions of interest using either eq 13 or eq 14. For the
silica-rich one (88−6−6), we can eventually compare to the
reported experimental spectrum of silica48 and a simulated one
using a model reported in ref 55. using eq 14. It is seen that the
main features of the VDOS of the 88−6−6 compound consist
in a broad band between 0 and 20 THz (83 meV), a second
band made of a peak at 32 THz (132 meV), and a secondary
peak at 37 THz (153 meV). When compared to the silica
spectra, we note that the high-frequency band remains nearly
unchanged, and it is also unchanged with respect to simulated
spectra of amorphous silica,59 except the red shift. Furthermore,
the broad band between 0 and 20 THz, also found in simulated
SiO2 (x = 0), is not detected in the experimental spectrum
which shows a dominant contribution at 12 THz. The
evolution with composition is characterized by a stiffening of
the high-frequency band that leads to a global shift of the
VDOS toward higher frequencies, as the system becomes
flexible.
The broad bands between 15 and 25 THz seem to be

correlated to two typical peaks in Raman scattering at 600 and
800 cm−1, whereas the peak at 30 THz gives rise to the main
peak60,61 found at 1,200 cm−1 for a close composition (72−15−
8). These features are usually associated with Qn species
stretching vibrations62,63 where n represents the number of BO
atoms on a Si tetrahedron. Bands at 450−560 cm−1 are

attributed to Si−O−Si symmetric stretching modes in Q4 (the
base SiO4/2 tetrahedra) and Q3 species (a tetrahedra with one
NBO), while the main band at 1,100 cm−1 is associated with
Si−O stretching modes of Si tetrahedra having NBOs. From
our simulated VDOS, we now notice that the intensity of the
band at 1,100 cm−1 increases, in fact, as a function of modifier.
This result is consistent with the fact that the corresponding
Raman band is driven by the NBOs, and that their population is
growing with modifier content.

B. Identification of Floppy Modes. The structure of the
low-frequency band changes in an important fashion with
composition. This band nearly reduces, indeed, to a prominent
peak at 5 THz whose intensity grows with modifier content,
and underscores important partial contributions from O anions
(Figure 13). For the flexible composition 64−18−18, the
VDOS does not contain any vibrational modes with zero
frequency (floppy modes) as first suggested by Thorpe23 and
Cai and Thorpe64 from idealized bond-depleted amorphous
networks. These findings also contrast with those reported on
densified silica networks where the SiO4/2 tetrahedra are taken
as rigid65 and which lead to a gap at ω ≃ 0 for stressed-rigid
networks. In the present system, the results are actually much
closer to what has been observed experimentally on different
chalcogenide glasses;66 i.e., one does not have g(ω) ≠ 0 at ω ≃
0 in flexible glasses which would indicate the presence of zero
energy modes. One reason for the absence of such modes
comes from the fact that residual forces are not taken into
account in the rigidity approach23 (dihedral, van der Waals, and
so on), and these lead to a finite value for the floppy mode
energy,66 of about 5 meV, clearly observed from the
experimental VDOS of elemental Se. In the case of silica, the
contribution of such weak interactions, typically van der Waals
and BO bending interactions, can be estimated to a similar
value using the calculated stiffness67 of the Si−O−Si bending
interaction, and the molecular mass to form a frequency of 1.4
THz (5.8 meV).
The detail of the contributions to the total VDOS (Figure

13) shows that the spectrum is dominated by the oxygen atoms,
this statement being valid for all compositions. Silicon atoms

Figure 12. Calculated vibrational density of states (VDOS) in soda-
lime silicate glasses for select compositions: black curves using the
velocity autocorrelation function (eq 13) and blue curves using the
eigenvalues of the dynamical matrix (eq 14). The experimental
reference spectra for amorphous silica (x = 0) is shown for reference
(red circles), and a calculation of the density of vibrational states using
velocity autocorrelation functions of a model silica (red curve55) is also
shown. The energy scale (cm−1) is provided (top axis) for the
connection with the Raman spectra (see text for details).
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contribute essentially to the bands between 20 and 40 THz.
Finally, the cations (Ca, Na) lead to typical vibrations that are
located in the low-frequency band between 0 and 10 THz.
These features are actually quite close to those determined for
similar glasses such as sodium silicates.68

To track the effect of rigidity and floppy modes, we now
focus on the low-frequency region of the VDOS. Since various
contributions are involved in this frequency range, and since
weak interactions also contribute, we represent in Figure 14

difference spectra representing the VDOS of the 76−12−12
and 64−18−18 compounds minus the reference compound
88−6−6. The latter has been found to be stressed-rigid (Table
I) and, for this reason, should not contain any floppy modes
and may serve as a reference system in order to remove all
other possible low energy contributions arising from the
network-forming species such as silicon and oxygen. It is found
that as the modifier content increases, a contribution at 5 THz
(20 meV) builds up, which has been previously assigned to
oxygen vibrations (Figure 13). This frequency also appears to
correspond to the floppy mode frequency determined both in
chalcogenide66 glasses and silica.56 We can, thus, conclude that
the onset of flexibility leads to increased deformation modes
that are associated with vibrations/local deformations involving
an oxygen motion. This contribution to the difference VDOS is
certainly not negligible because the amplitude is about 0.01−
0.02 THz−1 (Figure 14), i.e., about 50% of the total spectrum.

C. Comparison with the Kerner−Phillips Model. The
present findings can also be compared to the model of Kerner
and Phillips establishing the number of constraints nc for a
soda-lime glass of the form (1−x−y)SiO2−xNa2O−yCaO.
While Si and BO are counted according to the classical valence
(octet) rule, it is assumed that even the modifier cations are
loosely bonded to more than one oxygen ion so that one can
generalize Pauling’s idea of resonating bonds to include
resonating bond constraints. This leads to a count of fractional
constraints for resonating alkali modifiers that follow a classical
valence rule; i.e., it assumed that nCa = 2 and nNa = 1, leading to
nc
BS(Ca) = 1 and nc

BB(Ca) = 1, and nc
BS(Na) = 1/2 and nc

BB(Na)
= 0 with the additional condition that bond-bending constraints
for sodium are broken because of the nondirectional bonding51

between the NBO and the Na cation (Figure 15a).

Here, as in ref 29, we find that Si and the BO atoms have,
indeed, seven and two constraints, respectively. They arise from
nc
BS = 2 and nc

BS = 5 for the silicon, and nc
BS = 1 and nc

BS = 1 for
the bridging oxygen atom (Table I). The counting differs in the
way the cations and the NBO atoms contrain the network
(Figure 15b) as it is found from the MD-based counting
algorithms that no angular constraints act on theses types of
atoms (Figure 11). On the other hand, between three and four
stretching constraints are found for the Ca atoms, and between
one and two constraints are found for the NBO atom, one of
them being related to the Si−NBO bond.
Our obtained picture clearly differs from the one derived

from Pauling’s resonant constraints,29 and it is consistent with
the computed bond angle distribution P(θ) showing that the

Figure 13. Calculated partial vibrational density of states in soda-lime
silicate glasses for select compositions: total (black curve, same as
Figure 12, and contributions from oxygen (red), silicon (green),
calcium (orange), and sodium (blue).

Figure 14. Difference spectra between the calculated VDOS
(dynamical matrix) of the 64−18−18 (red) and 76−12−12 (black)
glasses and the VDOS of the stressed-rigid composition (88−6−6).

Figure 15. Proposed cation (sodium, black; calcium, green) constraint
counting in soda-lime silicates (silicon, blue spheres; oxygen, red
spheres): (a) Kerner−Phillips counting based on Pauling’s resonant
constraints (thick lines) leading to nc

BS(Na) = 1/2, nc
BB(Na) = 0,

nc
BS(Ca) = 1, and nc

BB(Ca) = 1; (b) MD-based constraint counting
(present work) leading to nc

BB = 0 for all cations and nc
BS’s larger than

those proposed by Kerner and Phillips. Note that neither silicon nor
oxygen constraints are represented.
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Ca atom can hardly have a single BB constraint29,30 given the
broad distribution P(θ) for all considered glass compositions
(Figure 16). Intact BB constraints usually lead to sharp bond

angle distributions such as those displayed in Figure 10 which
in turn are characterized by small second moments.40 Here, the
broad distribution shown for the calcium atom, together with
the large second moments calculated for this species (Figure
11), leads to the conclusion that one has, indeed, nc

BB = 0.
An inspection of Figure 16 furthermore permits one to

determine the local geometry of Ca sites. In fact, with a
distribution dominated by angles at ≃90°, and a large tail at
140−180°, one identifies an octahedral site geometry for the
calcium atoms, consistently with the coordination numbers nCa
= 5.02−5.55 determined in the previous section, which suggests
a defective octahedral ordering. This is also close to recent X-
ray diffraction results showing the presence of edge-shared Ca
polyhedra69 in a wollastonite (CaSiO3) liquid, and to MD
results on the SiO2−CaO binary glass.70 However, the
calculation of both radial and angular standard deviations
reveals that this octahedral geometry is soft given the large
angular standard deviations σθ ≃ 25−30° (Figure 11) and is
mostly defined from the rigid short bonds (2.31−2.45 Å)
defining a nearly equatorial plane, and which give rise to the
three to four BS constraints. The longer bonds (2.50−2.88 Å)
connecting the Ca to the vertices of the octahedra do not
contribute to network rigidity, as shown from their larger
standard deviation (Figures 8c and 9).
D. Nature of Window Glass. We finally turn to the

question of window glass, and having established the constraint
count on a firm basis, we may ask what can be the mechanical
nature of the typical soda-lime glasses of industrial interest. The
question of the chemical composition of window glass has been
already questioned nearly a century ago72 and current
applications are determined from the properties under small
variations in composition or addition of other various elements
(<1%) including Al2O3 and K2O.
A typical float window glass contains 70% SiO2, 5% MgO,

10% CaO, and 15% Na2O.
44 Using eq 11 and assuming that

one has nc
BS(Ca) = 3.2 and nc

BS(Na) = 1.8, and furthermore
assuming at a first stage that Mg atoms act as Ca atoms, we find
that the total number of constraints is nc = 3.05. Similarly, a
typical container glass of composition 75%, 10% CaO, and 15%
Na2O leads to nc = 2.95. Both are found close to the isostatic
criterion nc = 3 which usually leads to a variety of interesting
phenomena for glass manufacturers. Isostatic networks lead,
indeed, to an enhanced glass-forming tendency or glass
stability74,75 which is revealed by a minimum with composition

in the critical cooling rate76−78 to avoid crystallization or by a
maximum79,80 in the thermal stability ΔT = Tx − Tg, where Tx
is the crystallization temperature and Tg the glass transition
temperature. Minor corrections can be brought if the
coordination number for Mg is taken as being slightly lower
than the one of Ca.73 This will induce a lower contribution of
the alkaline earth bond-stretching constraints to eq 11 and shift
the isostatic threshold to higher modifier compositions.
Although we must stress that such a mean-field treatment of

bonding and rigidity provides only general tendencies, eq 11
contains some interesting information for window glass
applications, especially if other joins in the compositional
triangle (Figure 1) were to be considered. In the case of Ca/Na
substitution along joins of the form SiO2−(R−x)CaO−xNa2O
with arbitrary R and varying x, replacing Na by Ca will lead to
an increase of rigidity that can eventually be used for increasing
the hardness v of the glasses, given that v scales as nc − n0,
where n0 is a constant.

37 But at the same time, an increase of
rigidity will also lead to melts that tend to segregate or unmix
during cooling, a situation that is met for silica-rich
compositions.4 Alternatively, the replacement of Ca by Na
induces flexibility that can be used for the enhancement of ionic
diffusion34 or the decrease of viscocity.61

VI. CONCLUDING REMARKS

In summary, we have investigated three soda-lime silicate
glasses using molecular dynamics simulations and topological
constraint counting. The choice of the compositions along the
(1−2x)SiO2−xNa2O−xCaO join has been motivated by the
prediction of a rigid to flexible transition,29 computed in a
mean-field way from the Maxwell isostatic criterion (nc = 3)
and resonant constraints. Here we have used the Xian−Du
potential20 to simulate such glasses using molecular dynamics
simulations. We have first successfully compared our structure
functions with experimental data that have become available in
more recent years.8 Both pair correlation functions g(r) and
structure functions S(k) of the x = 12% glass exhibit, indeed, a
very good agreement with the experimental measured functions
for a close composition (75SiO2−15Na2O−10CaO). This
provides confidence that the models are realistic. In a second
part, we have then computed the number of topological
constraints by analyzing radial and angular excursions which
lead to a neat estimate of the number of bond-stretching and
bond-bending interactions contributing to rigidity.
We have found that silica-rich networks (88−6−6) are

stressed-rigid and are characterized by nc > 3, whereas modifier-
rich soda-lime silicates (64−18−18) are flexible and have nc =
3.33−3.39. The additional composition (76−12−12) is found
to be very close (nc = 3.03) to the isostatic stability criterion,
but the detail of our analysis reveals that the constraint
enumeration is different from the one proposed by Kerner and
Phillips on a heuristic basis. Here, we find indeed that while Si
and BO atoms contribute to seven and two constraints,
respectively, Ca and Na cations have only stretching
constraints. Furthermore, it is found that the latter depend
on the composition, the 88−6−6 exhibiting a smaller number
of BS constraints for the Ca atom. Ultimately, a mean-field rigid
to flexible transition is detected at a composition of about 14%
modifier.
These findings are consistent with a vibrational analysis

(VDOS) that permits one to detect that an increased number
of low-frequency modes (≃5 THz) are present in the flexible

Figure 16. Computed O−Ca−O bond angle distribution for the three
select compositions in soda-lime silicate glasses. The small peak at 60°
signals edge-sharing Ca polyhedra.69
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composition (64−18−18). The detail of the analysis permits
one, furthermore, to detect that oxygen atoms contribute
mostly to these features; i.e., they reveal that at high modifier
composition the network contains local deformation modes
that are typical of flexible elastic phases.23 This provides an
additional support for our identification of the flexible and
stressed-rigid phases.
A few perspectives can be drawn. First, given the predicted

presence of a rigid−flexible threshold in soda-lime glasses, one
may expect that the corresponding threshold composition will
exhibit all of the salient features of isostatic glasses.27,28 Second,
one may not observe a single isostatic composition but rather a
finite interval of such isostatic compositions, defining an
intermediate phase81 that is usually revealed by an enthalpic
reversibility window from modulated differential scanning
measurements. This reversibility window has been already
observed in one of the related binaries.32 We will certainly not
speculate further on this issue but will stress at this point that
such measurements would be highly desirable. In fact, the
identification of an intermediate phase in soda-lime silicates
would allow one to design new functionalties, using the
properties of isostatic glasses such as thermal stability, space-
filling tendency, weak aging as compared to flexible or stressed-
rigid glasses, and, finally, enhanced mechanical properties.
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