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A new elastic phase has been recently discovered in glasses of selected compositions. This new phase is found in the 
vicinity of the network mean coordination number r =2.4 that marks the onset of rigidity in a glassy network with increasing 
connectivity.  Here, it is shown that in contrast with random networks where rigidity percolates at the single threshold of 
r =2.4, networks that are able to self-organize to avoid stressed rigid local bonding will remain in an almost stress-free 
state during a compositional interval, an intermediate phase (or Boolchand phase), that is bounded by a flexible phase and 
a stressed rigid phase. The details of the theoretical construction are given for Ge-Se or Ge-Te systems. 
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1. Introduction 
 
Concepts from global rigidity  in networks found their 

origin from Lagrangian  constraint  counting in mechanics 
[1] and have been  applied with great success in  glass 
science for several decades [2]. Bonds in a glass network  
can indeed be considered as constraints    arising from    
interatomic   stretching   and  bending forces. The 
connectivity or cross-link density (best quantified by the 
network mean coordination number r  )  plays   therefore 
a key role. In highly cross-linked networks where r  is 
large, there are more constraints than degrees of freedom 
per atom on average and the structure is stressed rigid  
(hyperstatic or overconstrained).  At low connectivity, one  
has  a flexible (hypostatic   or underconstrained) structure 
that contains   more  degrees of freedom  than  constraints. 
Thorpe [3] analyzed the vibrational behaviour of such kind 
of  networks and  identified  a  mean-field (MF)  floppy  to   
rigid transition when the   mean  coordination number 
equals r = r c=2.38,  a  result that   agrees with global   
(Maxwell) constraint counting  as   enunciated   by  
Phillips  [4]   from   the enumeration nc of the number of 
constraints corresponding to bond stretching and bond 
bending forces. 

The underlying nature   of this peculiar transition has  
been strongly reconsidered recently because  two 
transitions at  r c(1) and  r c(2) have  been   found  [5] 
experimentally  in a  variety of glasses. These define an 
intervening region (or intermediate phase, (IP)) between 
the floppy and  the  stressed  rigid  phase.  The most 
obvious characterisation of the IP has come from complex 
heat flow measurement at the glass transition of 
chalcogenides that show a vanishing (or at least a 
minimum) of a non-reversing heat flow. The latter 
captures most of the kinetic events arising from the 
slowing down of the dynamics, and the vanishing of this 

quantity suggests that glasses (out of equilibrium) and 
liquids (in equilibrium) are very similar in the Intermediate 
Phase. Glasses in the IP display furthermore some 
remarkable properties such as absence of ageing [6] or  
stress [7], selection of isostatically rigid  local    structures   
[5]   or    weak   birefringence [8].  The two   boundaries 
have been   characterized from numerical calculations  [9]    
and      cluster   analysis [10] on self-organized networks   
and identified as being  a rigidity transition  at low  r  and 
a stress transition  at high r .  In the mean-field (or global) 
approach, or in random networks where self-organization 
does not take place, both transitions coalesce into a single 
one.   Moreover, links between IP and protein folding [11], 
high-temperature superconductors [12] or computational 
phase transitions [13] have been stressed that go much 
beyond  simple  analogies.  

The understanding of the IP is therefore of  general  
interest.  It  has   become  clear that stress avoidance  in 
the network is responsible  for the width Δ r = r c(2) - r c(1) 
and the location of the intermediate phase, an idea  that has 
gained  some strength from energetical adaptation in a 
simple random bond model [14] for the rigidity transition 
or suppressed nucleation of  rigidity during a fluid-solid 
transition [15]. Mousseau and co-workers [16] have also 
shown recently that critical self-organization with 
equilibration on diluted triangular lattices would lead to an 
intermediate phase. 

In glasses, current promising applications of these 
ideas on self-organized rigidity have been found in solid 
electrolytes where the degree of flexibility controls the 
ionic conduction [17], or in phase changing materials [18]. 
And since it has been found that these concepts are not 
restricted to chalcogenides (i.e. network-forming glasses 
of the form e.g. AxSe1-x) as previously believed [19], it 
suggests that all glasses can be classified in terms of 
flexible, intermediate, stressed rigid from their mechanical 
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or thermal properties, provided that the average 
coordination number lies in the range where self-
organization can take place.  

This paper shows how topological size increasing 
cluster constructions allow for a description that goes 
beyond global rigidity and the single threshold at r =2.4. 
These constructions highlight the effect of the deviation 
from network randomness that is achieved by selective 
cluster growth rules leading to structural self-organization 
and leads to an intermediate phase. A simple application 
for GexSe1-x and GexTe1-x glasses is presented and 
analyzed. 

  
 
2. Gobal rigidity in amorphous networks  
 
Global rigidity derived from the Maxwell-Lagrange 

approach is based on the enumeration of nearest-neighbour 
forces between atoms that can be modelled for small 
displacements from the equilibrium structure by a 
harmonic Kirkwood – Keating potential [20] that contains 
bond-stretching and bond-bending interactions.  
Interactions are thus translated into bonding constraints in 
this approach that neglects more weaker forces (see 
however [21]). 

The total number of internal degrees of freedom (or 
floppy modes) can be computed by counting the number 
of  bond-stretching and bending forces of a r-coordinated 
atom, which gives respectively r/2 and (2r-3) constraints 
when all constraints are considered as intact. Note that if 
some bond-bending constraints are broken [as for O in 
SiO2 [22] or Ba in barium silicates [23] ], the 
corresponding count is modified appropriately.  The total 
number of constraints is then: 
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It is easy to check that f vanishes when the mean 
coordination number r reaches the magic value of r c = 
2.4. Depending on which system is under investigation, 
one can attain this value by various compositions, 
especially in ternary glasses.  

From Thorpe’s work on random networks [3], it is 
known that the location at r c = 2.4 defines a single 

transition between a flexible and a rigid phase. The 
boundary defines a rigidity transition bringing an 
underconstrained network to an overconstrained one.  
Typical experimental manifestations of this transition can 
be found in III-VI (e.g. GaxS1-x, xc=0.40), IV-VI (GexSe1-x, 
xc=0.20) or V-VI (AsxSe1-x, xc=0.40) network glasses but 
also in binary electrolytes such as silicates [19] or 
tellurates [22].  

The existence of a single transition obviously runs 
against the now generally accepted observation of the heat 
flow minimum defining the Boolchand intermediate phase 
[5] and the two vibrational thresholds that are detected 
from Raman experiment. The theoretical question one has 
therefore to deal with is “How can two thresholds be 
obtained from a construction that contains ingredients of 
the initial (global) construction based on bonding 
constraints?” A basic observation is that the single 
transition at mean coordination number 2.4 is obtained 
when constraint counting is performed at a global level 
without any consideration of the presence of correlated 
fluctuations of e.g. stress-free rigidity that may permit to 
delay the onset of stressed rigidity when r  is steadily 
increased. One has furthermore to remember that the 
corresponding eigenmode analysis [3] is realized on 
networks with bonds being removed at random. What will 
happen if bonds are removed in a selective fashion ? 
Finally, one has to note that the theoretical framework 
described above only relies on the coordination number of 
the local structures which are directly defined by the 
macroscopic concentration. Both approaches (constraint 
counting or floppy mode analysis) therefore define a 
mean-field result where neither typical length-scales nor 
any spatial correlations of the emerging elastic phases 
(stress free, stressed) are involved.  

In the following, a new theoretical method is 
described. This method allows to start from the local 
structure as in the global approach. The difference with the 
latter lies in the fact that one is now able to create 
structural correlations yielding a self-organized network 
and a Boolchand Intermediate Phase.  

 
 
3. Self-organized networks  
 
3.1 Cluster construction 
 
The framework (see [10], [24]) described here uses 

size increasing cluster approximations (SICA) combined 
with constraint counting that permits to generate the 
Boolchand Intermediate Phase, starting from the local 
structural level (e.g. the Se atom and the GeSe4/2 
tetrahedron in Ge-Se binary). Therefore, the initial step of 
the method will always lead to the single Phillips-Thorpe 
transition. In fact, as already mentioned above, constraint 
counting in global rigidity is performed either on local 
structures (e.g. AsSe3/2 species and Se chain fragments) or 
on the macroscopic concentration (nc=2+x in AsxSe1-x) 
which leads in both cases  to a  single   rigidity transition 
satisfying  f=0 (e.g. x=0.40 in AsxSe1-x).  
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The SICA construction starts from the usual mean-
field treatment of rigidity, where the probabilities of the 
local structures are derived from the macroscopic modifier 
concentration (e.g. x in GexSe1-x).  This corresponds to a 
basic level  (l=1)  out of   which size increasing clusters 
(l=2,  l=3, ...)  are generated and their  probabilities  pi

(l) 
(i=1…Nl) computed.  The latter depend on the basic 
probabilities at l=1, statistical (cluster degeneracy) and 
Boltzmann factors (see example in Table I or in [10],[19], 
[24]). Nl represents here the total number of created 
clusters at a given step l.   

 
 
3.2 Constraint counting procedure 
 
Once the clusters are generated and their probabilities 

evaluated, one applies constraint counting algorithms on 
these clusters by   enumerating each bond-stretching and 
bond-bending forces, following the counting introduced by 

Thorpe [3].  Special care is taken for closed structures 
such as rings, which can contain for low enough sizes 
some extra constraints that need to be removed. At step l, 
the number of floppy modes of the network is then given 
by:  
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where nc(i) and Ni are respectively the number of 
mechanical constraints  and the number of atoms  of the  
cluster with probability pi

(l). An example of such counting  
is  provided  in Table I . It shows that the clusters lead to 
bonding types with a well-defined mechanical character: 
flexible (nc<3), isostatically rigid (stress-free, nc=3) and 
stressed rigid (nc>3).    

 
Table 1. Possible local structures and possible generated clusters at step l=1 and l=2 in the SICA construction, 
together with the cluster connectivity Ri.  In square brackets are given the number of different  isomers  for  a  given  
                                                                     cluster stoichiometry.  

 
 

System Basic local 
Structure 

l=1 

Possible clusters 
l=2 

Ri 
 

l=2 

Possible clusters  
l=3 

Ri 
 

l=3 
GexSe1-x GeSe4/2 

Se2 
Se4                          
GeSe4                     
CS-Ge2Se4   
ES- Ge2Se4 

2        
4 
6        
4 

Se6 
GeSe6 
 Ge2Se6 [3] 
Ge3Se6 [3] 

2 
4 

4   6    6 
4   6    8 

GexTe1-x GeTe6/2 
Te2 

Te4 
GeTe5 
CS-Ge2Te6 
ES-Ge2Te6 

2 
6 

10 
6 

Te6 
GeTe7 
Ge2Te8 [3] 
Ge3Te9 [3] 

2 
6 

8  10  10 
10  12  14     

(1-x)SiS2 
xNa2S 

Q4 
Q3 

Q4-Q4 
Q4-Q3 
Q3-Q3 

6 
5 
4 

Q4-Q4-Q4 [3] 
Q4-Q4-Q3[6] 
Q4-Q3-Q3[6] 
Q3-Q3-Q3[3] 

 

 
Self-organization is achieved as follows. Starting from 

all possible flexible clusters in which stressed rigid non-
cyclic (dendritic) connections are absent (i.e. no corner-
sharing GeSe4/2 tetrahedra having nc>3), and increasing 
the connectivity (via r ), one constructs all possible 
clusters by avoiding a dendritic (non cyclic) stressed rigid 
connection. This amounts to have selection rules in the 
cluster construction with growing step l. Then, one can 
investigate at which composition the network will have a 
vanishing of the number of floppy modes f(l), following the 
usual definition of the  rigidity transition. However, 
because of the   absence of the stressed rigid dendritic 
connections, stress can not propagate with increasing r . 
On the other hand, stressed rigidity in small rings is 
allowed. Once the rigidity transition is bypassed, these 
selective rules can hold for a while but only up to a certain 
point in connectivity where the network will not be able to 
avoid stressed rigid dendritic clusters any more. This 
defines a stress transition in rigidity theory and can not be 

found from a mean-field (global) treatment. Simple 
examples of such a construction are provided below. 

 
 
4. Results 
 
4.1 Germanium and silicon selenide and sulphide  
      networks 
 
Using the described construction, one is able to 

compute at different levels of approximations the 
behaviour of Group IV chalcogenide network formers 
such as GexS1-x or SixSe1-x, but also GexTe1-x. We sketch 
here the detail of the construction for the elementary step 
l=2 that leads already to an intermediate phase, provided 
that edge-sharing structures can exist.  
At step l=1, one computes the probability for the generated 
structures: 
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with p=2x/(1-3x) and x the concentration of Group IV 
atoms. The clusters CS-Ge2Se4 and ES-Ge2Se4 correspond 
respectively to two corner-sharing and edge-sharing 
GeSe4/2 tetrahedra. One should also note that the 
Boltzmann factors ei (with i=flex, iso, stress, ring) involve 
a corresponding energy gain Ei, depending on the 
mechanical nature of the generated cluster (flexible, 
isostatically rigid, stressed rigid, ring or cyclic stressed 
rigid). Out of the cluster probabilities, the Group IV 
concentration can be evaluated: 
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and leads by solving (8) to the evaluation of eflex/eiso or the 
energy difference Eiso-Eflex: 
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which is a positive function of the concentration x. The 
vanishing of eflex/eiso in equ. (7) takes place when flexible 
connections have entirely disappeared and the 
corresponding concentration x=xc(2) corresponds to the 
stress transition. Noteworthy is that in absence of stressed 
rigid (estress=0) and ring structures (ering=0), one recovers 
the location of the global constraint counting approach at 
xc=0.20. The stress transition composition xc(2) can be also 
found by solving the concentration equation (8) in terms of 
estress/eiso (instead of eflex/eiso) so that the this peculiar 
composition is given by : 
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From the simple example displayed here, one sees that 

a system with a large fraction of edge-sharing units, will 
have a stress transition shifted to higher compositions. An 
additional delay would be achieved by allowing in the 
flexible and intermediate phase some fraction of stressed 
rigid corner-sharing connections (represented by CS-
Ge2Se4 clusters which would correspond to a non-zero 
value for estress/eiso in equ. (9)). 

Equation (3) finally allows to compute the number of 
floppy modes of the system given the probability of the 
clusters and the Botzmann factors and leads for x<xc(2) to: 
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 Here one sees that the number of flexible modes f(1) 

will always vanish at x=xc(1)=0.20 which designates the 
rigidity transition.  

 

 
 
Fig. 1. Probability of finding flexible, intermediate 
(stress-free) and stressed rigid clusters in a tetrahedral 
(Ge-Se) IV-VI network for a zero (solid line) or different 
fractions of edge-sharing tetrahedral (broken lines). The  
           dashed area defines the intermediate phase.  

 
 

In summary, one sees that SICA allows for a 
description that goes beyond the mean-field approach. The 
cluster construction is realized by building larger 
structures in a systematic scheme and the latter relies on 
the local structures that can be related to the cross-link 
concentration x. In terms of rigidity transitions, it becomes 
clear that the stiffening of the network is achieved by the 
presence of weakly stressed rigid units represented at the 
lowest approximation by edge-sharing GeSe4/2 tetrahedra. 
But at a fixed rate of edge-sharing tetrahedra and still 
increasing the cross-link density, one will finally reach a 
point beyond which dendritic stress can not be avoided 
anymore. This composition represents the stress transition 
and in fact. For larger compositions, the mean cluster 
connectivity R(l) defined by: 
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will suddenly increase (Fig. 2) since the number of 
possible connections provided by the onset of corner-
sharing GeSe4/2 connections is 6. Here Ri designates the 
coordination number of a cluster (see Table I). 
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Fig. 2. Mean cluster connectivity R(2) at step l=2 in a 
tetrahedral and an octahedral IV-VI glass system for 
different  fractions  of  edge-sharing  polyhedra  ranging  
               from 0.1 to 1.0 by steps of 0.1. 
 
 
In the intermediate phase when xc(1)<x<xc(2), the 

network structure is then made of flexible chain parts, 
isostatically rigid GeSe4 connections and edge-sharing 
tetrahedral. The clue of the opening of the intermediate 
phase is the self-organized nature of the network. Indeed, 
if the probabilities were only given by their statistical 
weight (in other words, setting in the construction all ei=1) 
would lead to a single transition satisfying x=0.20. Note 
finally that for larger cluster sizes, various kinds of rings 
can contribute as well. 

 
4.2 Group IV tellurides 
 
The germanium and silicon tellurides should display a 

slightly different behaviour in terms of non-mean field 
rigidity because the local structure is found to be of 
octahedral type. In fact, both neutron diffraction [25] and 
first principles [26] studies show that there are six 
tellurium neighbours in the vicinity of a germanium. The 
origin of this peculiar local environment arises from the 
fact that there is no stable crystalline compound [27] at 
x=0.33 germanium but instead a GeTe (at x=0.50) and 
Si2Te3 (at x=0.40) leading to the absence of a tetrahedral 
network such as Ge-Se. 

However, a closer examination of the nature of the 
local bonding types from e.g. the partial Ge-Te pair 
distribution function shows that the fifth and the sixth 
tellurium neighbours have a much larger spatial extension 
[28]. It suggests that their bond-stretching forces are 
intrinsically broken and the same holds for the bond-
bending forces. From a simple bond constraint counting, 
this leads therefore to the same global rigidity threshold as 
for the selenides, and manifests experimentally in e.g. 
space-filling tendency around x=0.18.  

In terms of cluster probabilities, since the local 
structure is different one should have different statistical 
factors appearing in the SICA construction. Let us define 
the Te2 and the GeTe6/2 as basic local structures. For the 
first level of approximation, one will have the probability 
of a GeTe5 cluster given by: 
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with p=2x/(1-2x). Once the whole structural and rigidity 
analysis performed, one is able to obtain an intermediate 
phase defined by the boundaries:  
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and xc(1)=1/6=0.167 corresponding respectively to the 
stress and rigidity transition. 
 

 
 

Fig. 3. Probability of finding flexible, intermediate 
(stress-free) and stressed rigid clusters in a tetrahedral 
(Ge-Se, solid lines) and octahedral (Ge-Te, broken lines) 
IV-VI network for a fraction of 0.3 edge-sharing 
polyhedra. The dashed areas define the respective Ge-Se  
                       and Ge-Te  intermediate phases.  
 
 
The behaviour of a telluride model is depicted in               

Fig. 3. It shows that for an equivalent rate of edge-sharing 
polyhedra, rigidity onsets earlier in a Te base glass 
compared to the Se based glass. This is not surprising 
since the connectivity of a tellurium glass is higher due to 
the octahedral local structure. This also implies that the 
statistical weights of the SICA cluster probabilities 
involving the GeTe6/2 unit will be higher. But the 
thresholds still manifest at compositions close to x=0.20 
because of the partial broken Ge-Te bonding constraints. 

Experimentally, this is seen from molar volume 
minima in Ge-Te and Ge-Se systems that are respectively 
found at the compositions of x=0.18 [29] and x=0.20 [30]. 

In summary, we have shown that from a cluster 
construction based on the local structure of a glass, one 
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was able to recover under various possibilities the salient 
features on global and self-organized rigidity. It appears 
that a Boolchand Intermediate Phase is mainly obtained 
when stressed rigidity nucleates in small ring structures, a 
situation that can hold with increasing cross-link density 
only up to a certain point beyond which the proliferation 
of highly connected (large Ri) stressed rigid units allow for 
percolation of stressed rigidity. 
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