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A B S T R A C T

Rigidity theory in glasses was originally formulated to understand the relationship between network topology
and glass forming ability, the later given by the minimal cooling rate required to form a glass. Here a study is
presented on the glass transition temperature, specific heat and cooling/heating rate in a simple solvable low-
temperature Monte Carlo Keating-like oscillator model. For a fixed heating rate, the results indicate that the glass
transition temperature grows with the number of constraints as observed in real experiments. Moreover, to
achieve glass transition, higher heating rates are needed as the number of constraints is decreased. These results
are traced back to the high number of low-entropic energy barriers seen in flexible systems. Also, from the
model, the fragility index is obtained and it shows an intermediate isostatically rigid phase which agrees, in a
qualitatively level, with the experimental and computational evidence in some glasses.

1. Introduction

Glass transition is known to be a difficult problem due to its non-
equilibrium character [1–3]. In spite of this, there are two aspects that
everyone accept as fundamental: the glass forming ability (GFA) de-
pends upon the relaxation times in the related supercooled liquid [4–7]
and on the nucleation and crystallization kinetics [8].

There are many experimental and empirical rules to relate this GFA
with chemical composition, network topology, bonding type, thermal
and mechanical processes, etc, [7,9]. In chalcogenides, during the last
50 years there has been a systematic study of the GFA as a function of
the network topology and chemical composition [7].

Rigidity theory (RT) has been proposed several years ago to relate
the GFA and of the precursor alloy composition [10,11]. In this theory,
covalent bonds are seen as mechanical constraints. Then a balance
arises between degrees of freedom and constraints. When there are
more degrees of freedom than constraints the system is called flexible
(soft), and associated with this condition there are modes with low
frequencies named floppy modes [12–14]. On the other hand, as the
constraints increase the system is more rigid and the number of floppy
modes decrease. When the number of freedom degrees is equal to
constraints, there are no floppy modes and the system is isostatically
rigid. When the number of constraints is bigger than the degrees of
freedom the system is classified as stress rigid. RT has been corrobo-
rated experimentally on several chalcogenides glasses [4,15–17]. For

instance, recent experimental studies found that the main contribution
to low frequency modes in AsS glasses is due to soft and rigid na-
noclusters immersed in the bulk [16]. Also, according to RT and the
experimental evidence, rigid networks are better glass forming [4].
Along the time, theory and computational models have been proposed
to connect RT concepts and GFA [18–24]. In connection with RT, an
intermediate isostatically rigid phase (IP) arises in several glasses [25].
This phase is a gap between the flexible and stress rigid regions and is
characterized for being stress free. As a consequence, optical, me-
chanical, electrical and thermal unique properties are presented in
glasses along the IP. For instance, properties from the molten alloys like
diffusion, viscosity, non reversing heat flow, etc. show a minimum,
maximum or constant behaviour in the IP [7,15,19,26,27].

One important parameter in the glass forming is the glass transition
temperature (Tg). Several definitions of Tg are found in the literature,
for instance, on cooling Tg is defined as the temperature at which the
viscosity of a melt reaches 1012 Pa · s [28]. In contrast, during heating Tg
is obtained from the inflection point in the heat flow [26,27]. The
heating or cooling can be done by linear or modulated differential
scanning calorimetry (DSC or MDSC respectively) [29–32]. The evi-
dence shows that Tg depends on chemical composition (constraints
concentration) of the glass, the cooling/heating rate, etc. Experiments
show that Tg follows a growth tendency as constraints increase (the
system goes from flexible to rigid) [4,27]. In this sense, theoretical ef-
forts have been done in order to explain the connection between Tg, the
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chemical composition and rigidity [33–37]. As it was mentioned, Tg
depends on the cooling/heating rate. The general tendency is that Tg
grows as the heating speed is faster [38,39].

The fragility index is another important parameter to characterized
the GFA on cooling. This index is proportional to the speed of change of
the viscosity (in a logarithmic scale) with respect to the inverse tem-
perature at Tg. According to Angell’s classification, strong and fragile
glasses may be defined [28]. In general, strong and fragile glassy ma-
terials show low and high values of fragility respectively. An interesting
tendency arises when the fragility is analyzed from the RT perspective.
In general it is observed that for several types of glasses, the fragility
index show a minimum along the IP, i.e. for a certain glass alloys
precursors, their fragility as function of composition goes from fragile
to strong and then to fragile behaviour [7,15,19,26,27].

Contributions to modeling the glass forming by the cooling/heating
process are found in the literature. Some of these efforts use a two level
system to describe the glass forming dependence on cooling speed
[40–42]. Others employ a Monte Carlo dynamics to study glassy sys-
tems [43,44] and the connection with RT [45]. Also, the relaxation time
and enthalpy relaxation point of view has been used [46,47].

The present work tackles the glass forming and how is influenced by
the rigidity and the cooling/heating speed by means of a solvable
Monte Carlo Keating-like harmonic oscillator model. In order to achieve
this, different quantities are analysed like heat capacity, glass transition
temperature, energy of the system and fragility index.

The paper is organized as follows. In Section 2 the model is devel-
oped. In Section 3 the results are shown and finally in Section 5 the
conclusions are given. In Appendix A, an implicit relationship between
Tg, constraints and heating rate is proposed, and finally in Appendix B
an expression for the fragility index is given in terms of constraints and
Tg.

2. The model

We consider a network of N atoms with mass m in 3 dimensions.
This network can be seen as a set of 3N oscillators in the normal mode
space. Let’s suppose that we have two types of oscillators. On the one
hand, a density of modes, f, with frequency ω, associated with local
distortions of the network with a low cost in energy, also called floppy
modes; and on the other hand, a density of oscillators, nc, with fre-
quency Ω, related with the constraints imposed by bond-bending (BB)
and bond-stretching (BS) forces. The energy of these 3N oscillators in
the harmonic approach is [21]:
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where Qj is the coordinates of the normal mode j. As the total number of
modes is always 3N we have the following relationship,

+ =n f 3c (2)

with 0≤ nc≤ 3. The frequency of the floppy modes, ω, can be related
with Ω as =ω γΩ, and in glasses usually γ≈ 1/6 [45].

Once the mechanical model is set, we study the cooperative dy-
namics that results by cooling and heating the system. In order to do
that, we follow the Ritort et al. [43,44] model. Within such approach,
Ritort et al. are able to model glassy dynamics by means of a system of
non-interacting harmonic oscillators evolving according to Monte-Carlo
dynamics.

The method starts by using a Monte-Carlo procedure to relax the
system. Within this approach, a new mechanical configuration ′Qj is
made by adding a random displacement Rj,

= +′Q Q R N/ 3
,
j j j

(3)

where Rj follows a Gaussian distribution with zero mean and variance

Δ2. This new configuration with energy, ′V , implies a energetic cost
= −′V V VΔ given by,
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According to the Metropolis algorithm [48], the new configuration will
be accepted with probability 1 if ΔV≤ 0 and with probability

−β Vexp( Δ ) if ΔV>0. Following the Monte-Carlo procedure, ΔV must
follow a probability distribution given by,
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If the Dirac’s delta function is used in an integral form and the Gaussian
integrals are performed, Eq. (5) can be rewritten like,

= ⎡
⎣⎢

− − ⎤
⎦⎥

P V
πX t

V V
X t

(Δ ) 1
2 ( )

exp (Δ )
4 ( )

,0
2

(6)

where

= +V m fω nΔ
2

( Ω )c0
2

2 2
(7)

and

= 〈 〉 + 〈 〉X t m fω e t n E t( ) Δ ( ( ) Ω ( ) ),c
2 2 2 (8)

with

〈 〉 = 〈 〉e t mω Q( )
2

2
2

(9)

〈 〉 = 〈 〉E t m Q( ) Ω
2

.
2

2
(10)

In Eqs. (8), (9) and (10), t represents time and the brackets an average
over initial conditions and dynamical trajectories of the system. From
the Metropolis rule, the evolution of the energy, V, as function of time t
is given by
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with =x VΔ , =β k T1/ ,B T the temperature, kB the Boltzmann’s con-
stant, and τ0 a typical time during which ΔV has been performed. When
the probability distribution given by Eq. (6) is inserted in Eq. (11), it
leads to
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with Erfc the complementary error function and
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It is important to notice that Eq. (12) is not closed because it depends on
X(t), and X(t) turns out to depend on ⟨e(t)⟩ and ⟨E(t)⟩. In order to have
a closed form of Eq. (12), an adiabatic approximation can be im-
plemented [44]. The adiabatic approximation becomes asymptotically
valid for enough long times. In this approach X(t) is related with V(t)
assuming that the system has been partially equilibrated at energy V(t),
namely,

=X t V V t( ) 2 ( ).0 (14)
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Under condition (14), the Eq. (12) can be solved as function of time, of
course, one keeps in mind that the temperature T depends on time t.

On the other hand, the heat capacity (C(T)) is the variation of the
energy V respect to the temperature T. A natural relation arises between
Eq. (12) and C(T),

= ∂
∂

= ∂
∂

C T V
T

V
t T

( ) 1
˙ (15)

where =T dT dt˙ / is proportional to the cooling/heating rate. If Eq. (12)
is solved as function of t, the energy V can be seen as function of T due
to Eq. (15).

Finally, the equilibrium solution of Eq. (12) at high temperatures is
[44]

=V T T( )
2

,eq (16)

in concordance with the equipartition theorem.

3. Results

As mentioned before, we are interested in the influence of nc on
glass forming. To achieve that, several cooling/heating cycles were
performed and quantities like V(T), C(T) and Tg were obtained. To do
so, the Eq. (12) was numerically solved using the relation (14). A linear
dependence of the temperature with time was used,

= ±T t T qt( ) ,i (17)

with Ti the initial temperature and q the magnitude of the cooling/
heating rate. In Eq. (17), the signs - and + were used when the system
is cooled or heated respectively.

To evaluate V0 in Eq. (7), values for m, Δ and Ω were assigned and
fixed in all results using units were the Boltzmann’s constant is =k 1B

and =τ 10 . Here we used =m 1, =Δ 0.4, =Ω 0.2 and =ω Ω/6. The free
parameters in V0 are the density of floppy modes f and the density of
constraints nc, both related by = −f n3 c. Once V0 is parameterized, we
simulated the cooling of the oscillators by means of solving Eq. (12)
from a high temperatures T0 to a low temperature Tl. The initial energy
at T0 is given by assuming thermal equilibrium =V T /21 0 . T0 goes to Tl
according to Eq. (17), therefore a cooling rate was set. To perform the
heating, the final temperature and final energy of the cooling were the
initial temperature and initial energy of the heating in Eq. (12).

Fig. 1 shows the resulting normalized energy V(T)/V1 evolution as a
function of the normalized temperature T/T0 for different constraint
values and by fixing the cooling/heating rate at =q 0.0001. In the same

figure, we observe a glassy behaviour at low temperatures as V(T)/V1

deviates from its equilibrium value =V T/2eq (see Eq. (16)). From
Fig. 1, one notices that as nc increases, the systems are more rigid and
their energies at the end of the cooling are higher. For example, the
system with =n 0c ( =f 3) departs more from equilibrium in the
cooling/heating process and its final energy in the cooling is the lowest.
In contrast, for =n 3c ( =f 0) the system is more rigid and its final
energy during the cooling is higher than the rest of the systems. The
previous observations are in qualitative agreement with the experi-
mental evidence, as flexible systems are related with fragile glasses and
rigid systems with strong glasses in general [4,27].

According to Eq. (15), the heat capacity C(T) can be determined
from the curves presented in Fig. 1. Fig. 2 shows the evolution of C(T)
normalized by the heat capacity at high temperature C(T0) for different
constraints at a fixed heating rate =q 0.0001.

An experimental procedure to measure the glass transition tem-
perature Tg is to look for the inflection point in the heat flow or heat
capacity [4,26]. We follow the same procedure to extract Tg from C(T)
(see Eq. (15)), i.e., during heating we find the inflection point at low
temperatures (see Fig. 2). Fig. 3 presents Tg normalized by T0 as func-
tion of nc. One notices that Tg increases as the system is more rigid
which is in agreement with observational trends [4,26,27,35–37]. If the
system is more flexible (nc<1.5), it is difficult to identify Tg because
the inflection point in the heat capacity is not well defined at low

Fig. 1. Normalized energy V(T)2/T0 as a function of the normalized tempera-
ture T/T0 for different constraint number with a fixed cooling/heating rate of

=q 0.0001. For a fixed constraint number, the upper curve corresponds to the
cooling while the lower is the heating. Notice the hysteresis of the cycles, which
is specially prominent for the most flexible system =n 0c .

Fig. 2. Normalized heat capacity C(T)/C(T0) as a function of the normalized
temperature T/T0, for different constraint number with a fixed heating rate of

=q 0.0001. The inflexion point in the jump corresponds to Tg. Observe how Tg
grows with nc, in agreement with many observational trends.

Fig. 3. Glass transition temperature Tg, normalized by T0, as a function of ri-
gidity for a fixed heating rate. For this heating rate of =q 0.0001, only for
nc≥ 1.5 it was possible to identity a defined Tg. Lower values require higher-
heating speeds.
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temperatures. One solution to this issue is to increase the heating speed
to push Tg at higher temperatures.

Fig. 4 presents the energy V(T) normalized by the energy at high
temperatures =V T /21 0 as a function of T/T0, for =n 1c and different
cooling/heating speeds. The glassy behaviour is present in all systems
at low temperatures. This phenomenon is amplified with the use of
higher cooling/heating rates, in fact, this trend has as a consequence
that the energy is bigger at the end of the cooling.

As it was mentioned before, the heat capacity can be obtained from
V(T) through the relation (15). Fig. 5 shows C(T)/C(T0) as a function of
T/T0 for a fixed constraint number =n 2c and different heating speeds.
We observe that C(T)/C(T0) is well defined for low and intermediate
heating rates, however, for higher ones C(T)/C(T0) behaves in a dif-
ferent way. One natural consequence of this tendency is the difficulty in
finding Tg from the inflection point in C(T), although one can always
increase the cooling rate to obtain a readable Tg.

The fragility index is an important parameter in glass forming as is
related with the liquid precursor ability to form a glass on cooling.
According to Angell’s fragility classifications [28], there are two types
of glasses, strong and fragile. The fragility index M can be found in the
presented analytical model when the system is heated. As shown in
Appendix B, M is given by,

= +M V
T

3
2 4

,
g

0

(18)

where V0 is given by Eq. (7) and Tg is the glass transition temperature.
Although in Eq. (18) we have =M M V T( , ),g0 it turns out that

=V V f n( , )c0 and =T T f n T( , , ˙ )g g c . Thus, we conclude that M depends on
the density of constraints nc, floppy modes f and the heating rate Ṫ .

Fig. 6 shows the fragility index M (see Eq. (18)) as a function of nc at
a fixed heating rate =q 0.0001. M presents a minimum when the system
goes to flexible ( =n 1.5c or =f 1.5) from rigid ( =n 3c or =f 0). M
decreases from =n 1.5c to =n 2.0c and then it increases up to =n 3c .
This behaviour is similar to the isostatically rigid intermediate phase
that present some chalcogenide melts when such a systems goes to
flexible to rigid [7]. Low and high M values are related with strong and
fragile glasses respectively. In our model, strong glasses are represented
for low values of M when =n 2.0c and =n 2.5,c and fragile glasses for
high values of M when =n 1.5c and =n 3c .

4. Discussion

From the previous results, is clear that C(T), Tg and M are constraint
and cooling/heating ratio dependent quantities as seen in experiments.
The advantage of the present model is that allows to isolate in detail the
nature of such effects. To see why these effects happen, in the Appendix
A we show that according to Eq. (A.15), Tg is given by an implicit
function of the density of constraints nc, floppy modes f and the heating
rate Ṫ . These results are basically due to the constraint dependent re-
laxation time. As shown in Appendix B, near Tg the relaxation time has
the form =τ τ π exp E T[ /4 ]/2A0 where = +E T V T V12 log( / )A 0 0. By
using the definition of V0 given Eq. (7), we obtain that,

= + −V m γ nΔ Ω
2

(3 (1 ) )c0
2 2

2
(19)

As V0 is a measure of the entropy barriers, we see that such barriers
increase as nc grows, in agreement with previous analysis of experi-
mental data [21,35]. From this result, one obtains Eq. (18), which re-
lates M with f and Tg.

It is interesting to compare the present results with those obtained
from the temperature-dependent constraint theory, which started with
early work by Gupta and Mauro [49–51] and eventually evolved into a
new and highly accurate viscosity model known as the Mauro-Yue-El-
lison-Gupta-Allison Model (MYEGA) [52,53]. This model allows to
understand the chemical composition and temperature effects on the
viscosity of glass-former melts [52,54,55]. In the temperature-

Fig. 4. Normalized energy 2V(T)/T0 as a function of the normalized tempera-
ture T/T0 for a fixed constraint number =n 1,c but with different cooling/
heating rate. For a fixed cooling/heating speed, the upper curve corresponds to
the cooling while the lower is the heating. The hysteresis and energy is reduced
by slowing the cooling/heating. Eventually, Tg can not be defined according as
the inflection point in C(T) disappears.

Fig. 5. Normalized heat capacity C(T)/C(T0) as a function of the normalized
temperature T/T0 for different heating rates with a fix constraint number

=n 2c . Observe that for the highest heating rate it is no longer possible to define
a Tg.

Fig. 6. Fragility index M as function of rigidity for the fixed heating rate
=q 0.0001. Observe thatM presents a minimum as the system goes from flexible

( =n 1.5c or =f 1.5) to rigid ( =n 3c or =f 0). The tendency of M qualitatively
agrees with the experimental and simulated behaviour of the fragility index
along the isostatically rigid intermediate phase of some chalcogenides melts
[7].
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dependent constraint theory, fragility and glass transition temperature
are shown to be dependent on constraints, which are activated by the
temperature. To calculate the fragility, a relationship is invoked be-
tween the constraints and entropy. Such results are akin to those pre-
sented in this work, as we found here that entropy barriers are con-
straint and temperature dependent.

5. Conclusions

We presented the effects on the specific heat, glass transition tem-
perature, energy hysteresis cycle and fragility index of a simple aging
linear oscillator model in which constraints and floppy modes are in-
cluded. The results reproduce the trends observed in experiments with
some chalcogenide glasses,i.e., as the constraints are increased, Tg
grows and the specific heat is modified. The glass forming tendency,
measured by the cooling speed ratio to observe the glass transition, is
also constraint dependent. The fragility index is also dependent on the
rigidity and shows a minimum around the rigidity transition as ob-
served in real glasses.

We adscribe all these effects to modifications in the height of the

entropy barriers which are fully responsible for the system dynamics.
Although in real glasses both energy and entropy play a role, the fact
that experiments follow the trend observed here suggest that at least for
systems below the rigidity transition, entropy produced by floppy
modes is the main driving force behind the observed trends.
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Appendix A

In this Appendix A, an approach is presented at low temperatures to find out Tg on heating using the harmonic model (see Section 2). As a natural
consequence Tg will be related with nc and the heating rate in concordance with experimental evidence.

Tg is obtained by finding out the inflection point in C(T) during heating. In order to do that, low temperatures (β→∞), the adiabatic approach
(relation (14)) and long time limit (V→ 0) are considered. In the adiabatic approach, the evolution of the energy V(t) given by Eq. (12) is rewritten
as,
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At low temperatures and in the long time limit, → ∞V
V8
0 and − → ∞βV(4 1) ,V
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0 then the complementary error functions in the Eqs. (A.1) and

(A.2) can be expanded up to first order, in a generic way, like
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with =x V
V8
0 or = −x βV(4 1)V
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0 respectively. Finally, from previous results the Eq. (A.1) is transformed to
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Using the Eq. (15) and the approach (A.4), the heat capacity C(T) can be expressed as

≈ − ⎡
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C T
τ T πV

V V V
βV

( ) 1
˙

32 exp( /8 ) 1
(1 4 )

1 .
0 0

3/2
0 2 (A.5)

To find out the inflection point of C(T) at low temperatures, the first and the second derivative of C(T) are needed, because the inflection point is
a maximum in ∂C(T)/∂T and such a maximum is localized at Tg when ∂ ∂ =C T T( )/ 02 2 .

The first derivative of Eq. (A.5) is
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where
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and the second derivative is the following,
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From the condition ∂ ∂ =C T T( )/ 02 2 imposed in Eq. (A.8), the following couple of equations are obtained,

=C T( ) 0, (A.9)

and
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where G(T) is given by Eq. (A.7).
The Eq. (A.9) is satisfied when =V T T( ) /2 at low temperatures. Therefore, Tg can be approximated as the temperature an intersection between V

(T) and T/2 at which occurs[45].
On the other hand, Eq. (A.10) can be worked out in the following way.

− − + =C T
V

G T G T C T
V

βG T β G T( ) (2 ( ) ( )) ( ) (3 ( )) ( ) 0,
2

2
2 2 2 2

(A.11)

where dominant terms appear around the inflection point. This last Eq. leads to the next couple of relationships,

=G T( ) 02 (A.12)

and

⎛
⎝

⎞
⎠

− ⎛
⎝

⎞
⎠

+ =C T
V T

C T
V T

( ) 3
2

( ) 1
2

0.
2

2 (A.13)

If the Eq. (A.12) is not satisfied due to the form of G(T) (see Eq. (A.7)), then the relationship (A.13) could contain the root that corresponds to an
inflection point in C(T). Eq. (A.13) is solved by taking the factor C(T)/V as the variable and the terms 3/2T and 1/2T2 as the coefficients. The
corresponding solutions are

⎛
⎝

⎞
⎠

= ±
±

C T
V T T
( ) 3

4
1

4
,

(A.14)

where the right solution in this context corresponds to the positive sign. Then from Eq. (A.14), Tg is estimated at the temperature where C(T)/V(T) is
equal to 1/T. If the explicit form of C(T) (see Eq. (A.5)) is used, Tg could be seen as an implicit function of the rest of the parameters, given by

⎡

⎣
⎢ −

− ⎤

⎦
⎥ =−

τ T πV
V T e

T
T V T T

1
˙

32 ( )
[ 4 ( )]

1 1 .g
V V T g

g g g0 0

1/2 /8 ( )
2

2
g0

(A.15)

From Eq. (A.15) is clear that T τ T V f n( , ˙ , ( , ))g c0 0 and thus Tg is a function of the density of constraints nc, floppy modes f and the heating rate Ṫ .

Appendix B

FragilityM is one way to quantify the ability of a system to form a glass. In this appendix we obtainM from the harmonic model (see Section 2).M
results in a function of the rigidity and the glass transition temperature Tg.

When a linearization of the energy V is performed around the equilibrium solution Veq (see Eq. (16)), a relaxation time τ is found [45]. In order to
get this time, V is expanded like,

= ⎡
⎣
⎢ +

− ⎤
⎦
⎥V V

V V
V

1 1
2

( )
.eq

eq

eq (B.1)

If the relation (B.1) is introduced in Eq. (12) with the condition <− 1,V V
V

( )eq

eq
then
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2

eq eq0
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(B.2)

with the relaxation time τ given by

= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
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=τ τ π V
V

e τ π V
T

e τ π e
32 * 2 2

,V T V T E T
0

0
3

/4 0 0
3

/4 0 /4A0 0
(B.3)

where = +( )E T V12 logA
V
T 0
0 .
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The fragility M is defined as

=
∂

∂
=

M
η

T T
log

( / )
,

g T Tg (B.4)

where η is the viscosity, however this quantity is proportional to the relaxation time τ. In this way, M can be obtain from Eq. (B.3) and (B.4) like,

=
∂

∂
= +

=

M
τ

T T
V
T

log
( / )

3
2 4

.
g T T g

0

g (B.5)

It is clear from the previous Eq. (B.5) that M(V0, Tg), however V0(f, nc) and T τ T V f n( , ˙ , ( , ))g c0 0 (see Eq. (A.15)). Then as a natural consequence of the
model, the fragility M depends on the density of constraints nc, the floppy modes f, and Tg.
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