
Journal of Non-Crystalline Solids 357 (2011) 2530–2537

Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids

j ourna l homepage: www.e lsev ie r.com/ locate / jnoncryso l
Atomic scale foundation of temperature-dependent bonding constraints in network
glasses and liquids

M. Bauchy, M. Micoulaut ⁎
Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, Boite 121, 4, place Jussieu 75252 Paris Cedex 05, France
⁎ Corresponding author.
E-mail address: mmi@lptl.jussieu.fr (M. Micoulaut).

0022-3093/$ – see front matter © 2011 Elsevier B.V. A
doi:10.1016/j.jnoncrysol.2011.03.017
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 17 September 2010
Received in revised form 21 February 2011
Available online 13 April 2011

Keywords:
Glasses;
Bond constraint theory;
Molecular simulations;
Silicates
The behaviour of bonding constraints with temperature is analyzed from an atomic scale approach (Molecular
Dynamics, MD) combined with partial bond angle distributions (PBAD). The latter allows to have access to the
second moments (standard deviations) of the distributions. Large (small) standard deviations correspond to
large (small) angular excursions around a mean value, and are identified as broken (intact) bond-bending
constraints. A similar procedure is used for bond-stretching constraints. Systems examined include glassy and
liquid disilicate 2SiO2–Na2O (NS2). In the glass, MD constraint counting closely matches Maxwell
enumeration of constraints using the octet binding (8-N) rule. Results show that the standard deviations of
the partial bond angle distributions increase with temperature and suggest a softening of bond-bending
constraints. A bimodal bonding oxygen distribution is obtained for TNTg, and the fraction of thermally
activated broken bond-bending constraints computed as a function of temperature. Overall, these results
provide a microscopic rationale for extending constraint counting from chalcogenides to complex oxides, and
also a numerical basis for recent functional forms of temperature-dependent constraints proposed from
energy landscape approaches.
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1. Introduction

Rigidity theory offers a practical computational scheme using
topology, namely the constraint Maxwell counting procedure, to
address several issues in contemporary investigations of non-
crystalline solids [1–4]. It has led to the recognition of a rigidity
transition [2] which separates flexible glasses, having internal degrees
of freedom that allow for local deformations, from stressed rigid
glasses which are “locked” by their high bond connectivity. Mathe-
matically, this transition (also termed Phillips-Thorpe rigidity perco-
lation) is reached when the number of bonding constraints (radial,
stretching [BS] and angular, bending [BB]) per atom nc equals the
number of degrees of freedom, that is 3 in three dimensions.
Applications on chalcogenide network formers such as Ge–Se [5],
binary oxides (GeO2–Na2O, [6]) or multicomponent glasses (Ge–P–Se,
[7]) have shown that a certain number of physical and chemical
properties display a threshold behaviour or a change in régime when
passing through the transition [8], so that rigidity theory provides a
basic framework to analyze in depth compositional trends in physical
properties of network glasses. More recently, one has found that the
onset of rigidity takes place over a finite compositional interval [9],
corresponding to an intermediate phase (IP) with some remarkable
properties such as absence of network stress and ageing, space-filling
tendency, non-linear ionic conduction, and maximal configurational
entropy Sc [10]. Concerning the latter, as Sc is found to be proportional
to the inverse of the activation energy EA for viscous flow [11], one
also expects to have EA minimum found to be the minimum in the IP,
or a strong behaviour for the corresponding glass-forming liquid,
which is indeed observed experimentally for selected systems [12].
On the other hand, it has been shown that the primary contribution to
Sc is through floppy modes [13] which only exist in the flexible phase
and, to some extent, in the IP. The nature of the IP and a link with the
configurational entropy (and eventually the entropy of mixing) is still
under consideration.

Enumeration of bonding constraints works well in fully connected
networks at T=0 K. In practice, this situation is fulfilled as long as the
viscosity (i.e. the bonding fraction) of the system is very high,
typically at TbTg. Extension of constraint theory to the liquid phase
poses new scientific challenges but with new rewards: it can lead to
an increased understanding of oxide and chalcogenide glass-forming
liquids. Such an extension would permit investigating how far liquid
properties can be described in terms of the topology/rigidity of the
underlying low-temperature network structure.

Recently, it has been shown from neutron spin-echo spectroscopy
that the rigidity concept could be extended from the glass to the liquid
[14]. The parameters giving the temperature dependence of the
relaxation patterns of binary chalcogen melts have indeed shown to
be linearly dependent on the low temperature mean coordination
number r, the central quantity in rigidity theory. Relaxational
phenomena in Ge–Se using the constraint approach have been also
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reported from liquid-state NMR [15]. In parallel, new ideas have been
brought into rigidity theory byMauro et al., using an energy landscape
approach [16]. These ideas permit to describe accurately the fragility
and glass transition temperature in different binary liquids [17,18],
based on a construction that uses a function q(T) encoding the
temperature behaviour of bonding constraints via nc(T)=q(T)nc
(T=0). It leads to the function q(T) with the property,

limT→0q Tð Þ = 1 limT→∞q Tð Þ = 0 ð1Þ

Other applications have, since then, been reported [19,20]. In fact,
in the limit of zero temperature, there is no thermal energy that can be
used to overcome the energy associated with a constraint. It
corresponds to the usual situation where constraint counting
algorithms can be applied with confidence. At a finite temperature
however, a fraction of these constraints are broken by thermal
activation. Nevertheless, one may expect that the low temperature
behaviour q(T)≃1 holds as long as the system is in the glassy state. In
the other limit corresponding to the high temperature liquid, all
constraints must be broken so that they do not contribute to the
rigidity of the system and q(∞)≃0. A simple expression fulfilling the
aforementioned limits and introduced in Ref. [16] is:

q Tð Þ = 1−exp −ΔF�

kBT

� �� �νtobs
ð2Þ

where ΔF* is the activation energy needed to break a constraint, ν is
the associated vibrational attempt frequency and tobs is the observa-
tion time. Assuming that νtobs is large, q(T) can be approximated by a
step function [16] with a reset temperature at which the constraints
are considered as broken. Since BB are considered to be softer than BS
interactions (e.g. 19 meV against 31 meV in Ge–As–Se [21]), a
hierarchy of reset temperatures can be defined, depending on the
atoms and the nature of the chemical bonding associated with a
constraint.

The aim of this paper is to derive a physical basis for Eq. (2) and,
more generally, to provide an atomic scale picture that could account
for the behaviour of the number of rigid constraints with temperature,
using Molecular Dynamics (MD). Our results are obtained for the
2SiO2–Na2O system (NS2) which represents a base material for
various multicomponent systems found in Earth Sciences and glass
industry. The choice of a silicate system is also motivated by the fact
that a direct constraint counting following the “8-N” (or octet) rule
[22] leads to results for the rigidity transition location which are
consistent with experimental observation [6,23]. Here N represents
the outer shell electrons, and this rule works well for directional
covalent bonds. However, it is well known that the coordination
number of certain species do not follow this rule. For instance, sodium
interacts mostly through electrostatic non-directional forces, making
the application of a rule proposed for directional covalent bonds
unlikely. This departure from the 8-N rule manifests in binary oxides,
and it has been found that sodium has between four and six
neighbours [24–27]. In silicate glasses, a variety of coordination
numbers have been found for the alkali and alkaline earth cations [28–
30], although the underlying bond distances are not equivalent
[28,31].

Our results are consistent with the findings on structure and
coordination numbers reported for silicates [32], but they also show
that in the glassy state the enumeration of relevant bonding
constraints very closely follows what would be obtained from the 8-
N rule [23]. An analysis of partial bond angle distributions derived
from Molecular Dynamics (MD) trajectories in the glassy state,
provides a framework to evaluate bending constraints with temper-
ature that can be used to describe the liquid state. The present results
support the aforementioned phenomenological Mauro model [16],
and provide a numerical estimate of the involved parameters. As the
construction is rather general, we believe that the method can be
applied for any system studied byMolecular Simulations. It, therefore,
opens the perspective to study glass-forming liquids using topological
tools resulting from a combination of MD and constraint theory. On
the NS2 system, it would be beyond the scope of the present work to
give a complete description of its physical and chemical properties.
We refer the reader to a certain number of relevant topical reviews
[33–35].

2. Results

To obtain the results presented in this work, we have simulated in
a (N,V,T) Ensemble a 3000 atomic system of a 2SiO2–Na2O (NS2) glass
using a two-body potential initially introduced by Teter [36] and
extensively used for structural and dynamics studies in sodium
silicates [37,38]. The size of the simulation cell has been fixed to
recover the experimental density [39] of the glass (2.37 g/cm3). The
equations of motion have been integrated using a leap-frog Verlet
algorithm with a time-step of 2 fs. Starting from an initial temper-
ature of 5000 K, we have selected a certain number of temperatures
in steps of 500 K in the liquid state, and obtained a glass after a quench
at a cooling rate of 1 K/ps. The resulting numerical Tg determined from
the slope break between the low and the high temperature behaviour
of the total energy E(T) is found to be of about 2120 K. Averages have
been performed over 104−105 steps on the final configuration. The
resulting structure at 300 K is by all means comparable to the one
obtained in [37,38]. Instead of analyzing the obtained structure in
terms of Si-, O and Na-based correlations, we adopt here a slightly
different framework and split the analysis performed on oxygen into
contributions coming from bridging oxygens (BO, connecting two
tetrahedra) and so-called non-bridging oxygen (NBO, non-bridging
oxygen, found in the vicinity of a sodium atom), which are responsible
for the depolymerization of the network.

Fig. 1 shows respectively Na-, NBO- and BO-centred pair
distribution functions, yielding the relevant bond distances at the
first peak position. We find dSi−O=1.61 Å (observable from the first
sharp peak in the BO and NBO-centred pair distribution functions of
Fig. 1), dO−O=2.62 Å, dSi− Si=3.15 Å and dNa−O=2.38 Å (first peak
in the Na-centred pair distribution function) which compare
favorably to experimental results, as it has been found from neutron
diffraction [40,41] (respectively EXAFS) dSi−O=1.622 Å (respectively
1.668 Å [42]), dO−O=2.626 Å, and dNa−O=2.36 Å (respectively
2.30 Å for a NS4 glass [43]). The first peak in NBO and BO pdfs is
found at a distance of 1.555 Å and 1.605 Å respectively. Such a
difference in bond length is found in the corresponding crystalline α-
Na2Si2O5 for which it is found dBO−NBO=0.06 Å [44], while quantum
orbital calculations lead to dBO−NBO=0.1Å [45]. A detailed discussion
on model accuracy can be found in Ref. [38].

The secondary peak at 2.615Å in the NBO-centred pdf contains a
shoulder which is identified with the NBO-Na distance at 2.36 Å, also
seen from the principal peak in the Na pdf. The main contribution to
this secondary NBO peak comes from NBO-BO correlations, as also
detected from the corresponding peak in the BO-centred pdf. With
increasing temperature (from 300 K to 2000 K, red curve in Fig. 1), the
peaks broaden or even vanish as seen from the Na-centred pdf. Angles
and bond angle distributions (BAD) are discussed below.

2.1. MD method of constraint counting

In rigidity of macroscopic structures, tensile forces are enumerated
on bar networks or trusses [46]. In atomic scale networks, relevant
forces between atoms have to be identified, and these include bond-
stretching (BS) and bond-bending (BB) forces. As in classical
mechanics however, instead of treating forces and querying about
motion, onemay follow the opposite direction and try to relate atomic
motion to the absence of a restoring force which maintains bonds and
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Fig. 1. Na-, NBO- and BO-centred pair distribution functions of a NS2 glass at 300 K
(black) and 2000 K (red).
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angles fixed at a value around amean value (Fig. 2). This is the starting
consideration of the present approach derived from Molecular
Dynamics. Having generated the atomic scale configurations at
different temperatures from MD, we now apply a structural analysis
in relation to rigidity theory as follows. The coordination number (or
number of neighbours) ri, hence the number of BS constraints (equal
to ri/2), can be calculated by integrating first the pair distribution
function up to its first minimum.We find rSi=4, rBO=2, rNBO=1, and
rNa=5 (Fig. 3a), as in other simulations [37,38] and experiments [41].
An alternative means [47] for getting the coordination numbers is to
A

A

B α

β

ba

Fig. 2.Method of constraint counting fromMD-generated configurations. Large (small)
radial (a) or angular (b) excursions around a mean value are characterized by large
(small) standard deviations on bond B or angle β (small on A or α), representing broken
(intact) constraints.

b) Position of the neighbour distribution peaks at 300 K for Si, Na, NBO and BO atoms as
a function of neighbour number n. The horizontal broken lines at 2.36 Å and 1.622 Å
correspond respectively to the experimental Na–O and Si–O distances [40,41]. c) Same
quantities as in b) but now at 3000 K.
represent the decomposition into neighbour distributions (black
curves in Fig. 3a). The position of these distributions is shown in
Fig. 3b and c (i.e. neighbour peak positions (in Å) as a function of the
neighbour number n (from 1 to 10)). A clear jump is obtained
between the first and the second shell of neighbours, and reproduces
what is obtained from a usual direct integration of the pdfs: the
coordination number r found at the minimum of the pdf corresponds
to the rth neighbour distribution. Noteworthy is the fact that the
neighbour shells of sodium are not very well defined as the positions
are found to smoothly increase with neighbour number, in contrast
with e.g. the behaviour found for silicon. The single NBO neighbour
found at n=1 is a silicon atom which give rise to the peak found at
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1.61 Å in the NBO pdf (Fig. 3b), whereas the second neighbour
coincides, indeed, with the first sodium neighbour found at 2.36 Å
(Fig. 1). The peak broadening obtained at higher temperatures (e.g.
2000 K in Fig. 1) leads to a global settling of the distributions
corresponding to the second shell of neighbours although first and
second shells can still be well separated (see. also Fig. 5).

The splitting of the pdfs into neighbour distributions (such as
Fig. 3a) and the focus on their corresponding standard deviations σr

give an estimate of the strength of the interaction that is needed to
maintain a bond distance (a stretching constraint) of a given
neighbour fixed (see also Fig. 2). In other words, large σr's will be
associated with soft interactions and to an increased spatial extent for
the bond length, whose corresponding constraint can be considered
as ineffective (i.e. broken).

We remind the reader that the statistical averages are performed
over time (trajectories) and space (simulation box) so that the
computed σr represent a global estimate for the sample, regardless of
any possible time or spatial fluctuations of standard deviations and
constraints thatmay exist. This choice ismotivated by the fact that our
goal is to connect the MD simulation to the global (or Maxwell)
constraint counting procedure only. We keep in mind, however, that
alternative statistical mechanics averages may be used [48,49] to
study self-organized rigidity and the intermediate phase [50,51].

As already mentioned, it is found (Fig. 3a) that the number of
sodium neighbours is five, computed at the minimum of the Na-
centred pdf found at 2.75 Å, a minimum which coincides with the
location of the fifth neighbour distribution. However, the computation
of the second moments (standard deviations), σr, for the neighbour
distributions shows that these Na-based distributions have σr's that
are substantially higher (0.1 Å, Fig. 4) than those obtained for the
other atoms (NBO, BO, Si, all about 0.025 Å).

Concerning the NBO atoms, one can split the decomposition of
neighbour distributions, seen at a global level in Fig. 4, into
contributions coming from Na (NBO-Na) and from Si atoms (NBO-
Si) (blue curve, Fig. 5). It is seen that the radial excursion σr of the first
NBO-Si bond found at 1.55 Å is very similar to the one obtained for the
BO-Si at 1.605 Å, with σr≃0.03 Å. It contrasts with the value of σr

found for the first NBO-Na bond at a somewhat higher value
(σr=0.09 Å). The latter is, however, still low as compared to the
other contributions arising from the next shell of neighbours which
are found to be at least equal to 0.15–0.20 Å.

In conclusion, one can stress that low radial standard deviations
lead to intact bond-stretching constraints (∝ neighbours × 1

2). In the
NS2 glass, three constraints are well-defined and arise from the first
shell of neighbours: two for the silicon atom (4 × 1

2), one for the BO
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atom (2 × 1
2). An additional constraint (coming from the NBO-Na

interaction) can be considered (1 × 1
2), due to its low radial excursion,

less than 0.1 Å.

2.2. Partial bond-angle distribution and bending constraints

The number of bond-bending constraints is determined from
partial bond angle distributions (PBAD) P(θ) introduced recently
[52,53]. For each type of a central atom 0, the N first neighbours are
selected and the N(N-1)/2 corresponding angles î0j (i=1..N−1, j=2..
N) such as 102 ̂, 103 ̂, 203 ̂, etc. (see top panel of Fig. 6) are calculated.
The first moment of these PBADs gives access to the mean angle θ.
Computation of the second moment σθ

2, or standard deviation σθ, of a
P(θ) distribution gives a quantitative estimate of the angular
excursion around the mean value, thus providing a measure of the
strength of the bond-bending restoring forces.

Fig. 6 shows such PBADs for central Si, Na and BO in a NS2 glass. As
one can see, some angles display a very sharp distribution centred at
the tetrahedral angle of 109° (e.g. angle 1:102 in the Si panel of Fig. 6),
in agreement with the existence of sp3 hybridization of the Si atom.
Others PBAD arising from the second shell of neighbours (e.g. the fifth
neighbour of a central Si atom) have a broad distribution which will
be characterized by a large standard deviation σθ. Angles displaying a
broad distribution are, again, identified with intrinsically broken
constraints (this time, bond-bending) as there must be a weak
interaction to maintain the angle fixed around its mean value θ.

We find that most of the sodium distributions are centred at
≃100°, in agreement with an alternative analysis splitting the Na-
centred bond angle distributions into contributions coming either
from BO or NBO atoms [38,54]. We are not aware of any published
work on Na-centred BAD's. The BO-centred BAD (angle 102, Fig. 6b) is



Fig. 6. Ten Si-, BO- and Na-centred partial bond angle distributions of a NS2 silicate
glass for an arbitrary N=5. Note that one can distinguish between BO (bridging
oxygens connecting two Si tetrahedra) and non-bridging oxygens (NBO, not
represented), the latter being found in the vicinity of sodium atoms. The colored
curves correspond to distributions having a standard deviation σθ lower than 18° (see
also Fig. 7). Other distributions are represented by broken lines. The top (Si) panel
shows a molecule used for the PBAD ahgorithm: from the selection of a central atom 0,
and for a given number of neighbours (here N=5), one computes all possible bond
angle distributions between sets of neighbours (e.g. the marked 305).
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Table 1
Bond-stretching and bond-bending constraint counting in sodium silicate glasses, total
number of constraints nc, and the location of the optimally constrained network
composition xc. The composition (1−x)SiO2–xNa2O has been rewritten under the
form: Si1− xBO2−3xNa2xNBO2x.

SiBS SiBB BOBS BOBB NBOBS NBOBB NaBS NaBB nc xc

2(1−x) 5(1−x) 2–3x 2–3x 2x – x – 11–10x 0.2
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found to be centred at 150°, in agreement with previous MD
simulations [38], although this quantity has been found to be highly
sensitive to the interaction potential [55] when compared to
experiments [42].

Fig. 7 represents the standard deviations σθ of the Si-, BO-, NBO-
and Na-centred PBADs as a function of an arbitrary angle number (see
also the definition of the angle labelling in the inset of Fig. 6a). These
quantities have been computed from the PBADs represented in Fig. 6.
One finds that only a limited number of distributions have a low
standard deviation σθ: the six Si-centred angles defining the
tetrahedron, leading to five independent constraints, and one BO
bond angle. Contributions from NBO and Na have larger standard
deviations, with σθN25o, and we consider their contributions to
network rigidity to be ineffective. Thus, the present results on angles
are found to match exactly a Maxwell count assuming the 8-N rule,
including the assumption of a broken BB constraint for the NBO atom
[56] because of the increased angular motion that manifests from the
non-directional ionic Na-NBO interaction.
2.3. Consequences

In Table 1, we summarize the count of constraints in sodium
silicate glasses (1−x)SiO2–xNa2O. One finds a rigid to flexible
transition [2] in these silicates at the concentration of xc=20%
Na2O, where furthermore optimal glass formation is expected,
according to the Phillips stability criterion [1]. There is a large body
of experimental evidence which supports the existence of such a
transition.

The ease of vitrification in glasses can be tracked either from the
crystallisation rate or from the vitrification enthalpy. Fang et al. [57]
have reported such studies for alkali silicates, based on a measure of
the critical cooling rates to avoid crystallization, using the the so-
called temperature-time-transformation (TTT) studies [58]. Their
results show a minimum in the critical cooling rate, qc, near 20% Na2O
composition; the correlation between qc and xccan be extended with
confidence to potassium silicates [59]. Note that such correlations
have also been reported for the GexSe1− x binary inwhich slow cooling
allows glass formation only at compositions that are close to the
rigidity transition composition [60].

Glass forming tendency is also found to increase for systems that
are able to increase their melt viscosity down to lower temperatures
[61], for instance at eutectic compositions because such freezing-
point depressions bring the system to lower temperatures and higher
viscosities. For sodium and potassium silicates, the location of the
composition of the minimum of the critical cooling rate is found to
correlate well with the viscosity maximum [62] and with the rigid to
flexible threshold composition xc, a feature also reported for alkali
tellurates [63].

Finally, and most importantly, it has been observed that an elastic
energy providing ameasure of the number of floppymodes, is found to
be zero in the stressed rigid phase at xb 20%. Once the system becomes
flexible for xNxc [23], this energy becomes non-zero. The correspond-
ing floppy mode energy has been computed to be 0.12 meV [59]. In
parallel, a minimum in the non-reversing heat flow at the glass
transition has been detected from modulated differential scanning

image of Fig.�7
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calorimetry, similar to results found in chalcogenide network glasses
[64,65].

3. Constraints in the liquid phase

We now turn to the liquid state (TNTg) by following the analysis
performed in the glass at increasing temperatures. Specifically, we
focus on the radial and angular standard deviations computed from
neighbour and partial bond angle distributions. As TNTg, bond lifetimes
decrease [66], and diffusion onsets on computer timescales. We find
DNa=3.1×10−5 cm2 s−1 at 1500 K (and DNa=4.15×10−5 cm2 s−1

for the same temperature at zero pressure), which show a fair
agreement with the experimental value measured at 1600 K
[DNa=6×10−5 cm2 s−1 [67]], but contrasts with a value obtained
from another MD potential (0.8×10−5 cm−2 s−1 at 1900 K, [66]).

3.1. Stretching constraints

As seen earlier in Fig. 5, bonds having an intact stretching constraint
at 300 K (a low standard deviation σr) will soften as temperature
increases. While the three first oxygen neighbours of a silicon atom
show only amild changewith T (from 0.02 Å to 0.06–0.08 Å), the radial
excursion of the fourth atom increases substantially to nearly 0.2 Å at
4500 K (Fig. 8b). The latter figure tracks the behaviour of the radial
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standard deviations σr of low temperature rigid constraints with
respect to temperature. For the BO- and NBO-based standard de-
viations, the increase ofσr is found to bemore pronounced as compared
to silicon, with σr growing from 0.095 Å to 0.225 Å at 4500 K. No abrupt
change is found close to the glass transition.

Can a limit between a “broken” (or ineffective) and an “intact”
constraint be defined on a firm basis? From Fig. 5a displaying the
radial standard deviations, σr, at 300 K, we note that intact constraints
arise from strong Si–O bonds having a low standard deviation of about
0.02 Å, while weaker ionic NBO-Na bonds exhibiting a gap between
the first standard deviation (0.09 Å) and the second one (0.16 Å)
constitute broken constraints. On this basis, the shaded area in Fig. 8
defines approximatively the range of σr where rigid constraints
become ineffective as the temperature is increased. Thus the weakest
bonds such as NBO-Na1 (first Na neighbour of a NBO) and to a lesser
extent BO2 (corresponding to the neighbour number n=2) (Fig. 8),
have their bond-stretching constraints broken before the glass
reaches its transition temperature upon increasing T, the former
around T≃1000K, the latter at T≃Tg. Such a behaviour is not found for
all other bonds in the system. At higher temperatures, all bonds have a
standard deviation that is larger than σr=0.1 Å, indicative of broken
constraints. The silicon stretching constraints are found to be less
sensitive to temperature increase, and only one constraint is
considered broken at TNTg (Fig. 8b).

The present results agrees with the view described by Mauro and
co-workers [16–18] who propose that at least one of the constraint
onset temperatures Timust fall above Tg, as the glass transition cannot
occur unless one constraint is already rigid in the corresponding
temperature range. From our results, it is shown that Na fulfills this
requirement, as does partly the BO stretching constraints.

3.2. Bending constraints

We noted earlier (Fig. 7) that at low temperatures, NBO and Na
angular distributions have standard deviations which are consider-
ably larger (σθN 20o) than BO and Si ones. The former are separated by
a gap of about 10° with respect to the the latter ones. In this respect,
the feature appears to be similar to what has been found for radial
standard deviations (Fig. 5a). To gain deeper insights into what
constraints are relevant (low σ, intact) from those which are
irrelevant (large σ, broken), we focus on the distributions of the
standard deviations and their evolution with temperature across the
glass transition. We track a given angle having a low σθ at 300 K (e.g.
the BO angle 102 corresponding to Si–BO–Si) individually during the
length of the simulation at a given temperature. Each angle of each BO
has a certain angular distribution P(θ) and thus a unique standard
deviation σθ. Considering the whole set of BO atoms leads to a
distribution of standard deviations σθ that is followed with
temperature.

Fig. 9 shows such distributions for temperatures in the 300
KbTb4500 K range. At T=4500 K, where all rigid constraints are
broken because of thermal activation, we obtain a broad distribution
of standard deviations with a mean centred near σθ20–25°. At
T=300 K, the standard deviation is characterized by a rather sharp
distribution centred at a low value for σθ (6°). Interestingly, when the
glass approaches Tg (2120 K), the angular excursions increase from
their low temperature value, and display a bimodal distribution
located at a higher σθ. One distribution corresponds to broken
constraints (Fig. 9), and, in fact, it grows with increasing temperature.
The second distribution (narrow) arising from the low temperature
system corresponds to intact constraints, and it progressively
disappears. A broken line in Fig. 9 is drawn at the minimum of the
bimodal distribution, which represents the "approximate limit in σθ

separating intact from broken angular constraints.
It should be noted that we observe this feature not only for the BO

angle (i.e. 102) but also for the Si angle distributions. As we noted
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earlier, the fourth oxygen neighbour has its bond-stretching con-
straint broken (Fig. 8b) at high temperatures. One can see that the
distribution of standard deviations associated with the latter departs
from the other distributions once the temperature becomes larger
than Tg. On an average, results (Fig. 10) for the silicon atoms (i.e.
taking into account all four neighbours) display only amild increase of
the mean standard deviation σθ from 5 to 15° (insert of Fig. 11).
Finally,the general tendency for all angular standard deviations is the
increase of their mean σθ and their corresponding standard deviation
σσ (inserts of Fig. 11).

3.3. Parameters for the Mauro–Gupta model

For certain distributions, a double Gaussian fit of the σθ

distributions (red curves on Fig. 9) permits one to compute the
fraction q(T) of bond-bending constraints that are intact (Fig. 11). This
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Fig. 10. Behaviour of the Si-centred standard deviation distributions σθ for various
temperatures of a NS2 glass. The solid line correspond to angles 102, 103, and 203 and
the broken line to angles 104, 204, and 304.
is the case for the function qBOBB describing the fraction of bond-bending
constraints of the BO atoms that are intact. A fit to our results using
Eq. (2) leads to ΔF*=0.89 eV and νobst=34.3, and an onset
temperature (here the inflexion point of the fitted curve) equal to
2460 K, found somewhat greater than the simulated Tg (Table 2). The
value for ΔF* is the barrier needed for a BO atom to break a constraint.
It can be compared with the activation energy EA=1.7 eV for
viscosity/structural relaxation measured in the NS2 liquid [68] and
with the one (2.26 eV) determined in a NS2 glass from the
temperature behaviour of the oxygen diffusion constant using MD
simulations [66]. The difference between EA and our determined Δ F*

corresponds to the strain energy needed to locally deform the liquid
structure and allow for oxygen diffusion.

For the Si function q(T), we propose that qSiBB(T) simply decreases
from 5 to 3 at the onset temperature close to the Tg. This amounts to
having one bond lost and 2 associated BB constraints lost. This
happens over the temperature interval 2500–3000 K.

Finally, we stress that the present results should be rescaled with
respect to a true glass transition temperature. It is well known that the
very high quenching rates (here 1 K/ps) lead to glass transition
temperatures that are much higher than those reported experimen-
tally. For an NS2 glass, it is found indeed Tg=758 K [23]. Rescaling the
obtained onset temperatures (Table 2) using the latter gives an
estimation of some “true” temperatures (rescaled temperatures Tresc)
at which constraints can be considered as broken by thermal
activation. For instance, it is found that for TN360 K, all Na stretching
Table 2
Characteristic onset temperatures (in kiloKelvin) for the simplified Mauro–Gupta
model in sodium silicate glasses, computed from the behaviour of the standard
deviation with temperature.

Si–O1−3
BS Si–O1−3

BB Si–O4
BS Si–O4

BB BOBS BOBB NBOBS NaBS

T (kK) – – 3a Tg 2.5,4.0 2.46 3.8 1.0
T/Tg – – 1.42 1 1.18,1.89 1.16 1.79 0.47
Tresc(kK) – – 1.08 0.76 0.89,1.43 0.88 1.36 0.36

a For the stretching constraints, the temperatures have been determined fom the
standard deviation behaviour with temperature of Fig. 8 and their centroid with respect
to the shaded region.
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constraints should be ineffective, and also contribute to an increased
ionic conduction [69].

4. Summary and conclusions

In this article, we have applied a recently introduced method
[52,53] which allows to compute accurately bonding constraints used
in rigidity theory fromMolecular Dynamics simulations to examine in
detail the sodium silicate NS2. The central quantities of interest
include radial and angular standard deviation of local distributions
focusing either on neighbours or on partial angles. This allows to
compute the respective number of bond-stretching and bond-
bending constraints. In the silicate glass, we have found that the
enumeration of constraints closely follows the 8-N bonding (octet)
rule. The result provides excellent agreement with the observed rigid
to flexible transition near 20% soda in sodium silicates. Our
investigation of the liquid state leads to the identification of thermally
activated broken constraints, mostly located on the Si-BO-Si angle,
whose flexibility onsets close to Tg, and leads to a neat numerical
evaluation of the fraction q(T) of broken constraints. Silicon angular
constraints are by far the strongest ones because of sp3 hybridization
of the orbitals. We find that only one stretching constraint is broken at
high temperature, identified with the fourth neighbour distance,
which also leads to an increased angular excursion.

There is a dichotomy between an “intact” and a “broken”
constraint however. Although the strength of a BS force is about 3
times larger than a BB one [21], one clearly has weak Na–O and strong
Si–O bonds in a sodium silicate network, even though each force
qualifies as a constraint at the same level. This situation with
hierarchical forces is well known in mechanical trusses, as both bars
and springs with a variable spring constant need to be considered
when a Maxwell stability criterion is searched.

We believe that our results open new interesting perspectives to
study more challenging systems and/or systems undergoing struc-
tural changes which are not driven by composition but by pressure.
For the former, because of a lack of information on the local structures
and on the relevant motions that serve to qualify stretching and
bending interactions, rigidity theory has been always inefficient. For
the latter, until recently [17], subtle changes in structure induced by
e.g. pressure or temperature have been difficult to describe from
bonding constraints.
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Agence Nationale de la Recherche (ANR) n.09-BLAN-0190-01.
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