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The thermodynamic, dynamic, structural, and rigidity properties of densified liquid germania (GeO2)
have been investigated using classical molecular dynamics simulation. We construct from a thermo-
dynamic framework an analytical equation of state for the liquid allowing the possible detection of
thermodynamic precursors (extrema of the derivatives of the free energy), which usually indicate
the possibility of a liquid-liquid transition. It is found that for the present germania system, such
precursors and the possible underlying liquid-liquid transition are hidden by the slowing down
of the dynamics with decreasing temperature. In this respect, germania behaves quite differently
when compared to parent tetrahedral systems such as silica or water. We then detect a diffusivity
anomaly (a maximum of diffusion with changing density/volume) that is strongly correlated with
changes in coordinated species, and the softening of bond-bending (BB) topological constraints
that decrease the liquid rigidity and enhance transport. The diffusivity anomaly is finally substan-
tiated from a Rosenfeld-type scaling law linked to the pair correlation entropy, and to structural
relaxation. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927707]

I. INTRODUCTION

Germanium dioxide (GeO2) and silicon dioxide (SiO2) are
chemical analogues which share a certain number of similar-
ities, the most obvious one being their common local sp3 tetra-
hedral geometry at ambient conditions, which changes with
increasing pressure P.1 At elevated pressures, the structure of
both materials becomes indeed octahedral2–5 and an important
body of research has been devoted to the understanding of
such changes which are accompanied by changes in thermal,
dynamic,6 and vibrational properties.7 The presence of two
possible local geometries can actually be simply understood
from the important difference in density (4.28 g/cm3 against
6.25 g/cm3) of the corresponding low tetrahedral (α-quartz)
and high pressure (rutile, octahedral) crystalline polymorphs.1

In GeO2 crystals, transformations under pressure are rather
well documented because the known phase diagram is rather
simple,8 at least when it is compared to silica. Because of the
lack of translational symmetry, much less is known in the liquid
state although it is now well established that important struc-
tural changes also take place,9 some of them being related to a
possible liquid-liquid transition (LLT).10 At ambient tempera-
ture, experiments2–5 and simulation work9,11–13 have provided
evidence that germania (i.e., amorphous GeO2) undergoes
changes with increase of the pressure, which manifest both at
the local and intermediate range order.14 When compared to
silica, it has been found that GeO2 displays an increased sensi-
tivity to pressure so that it undergoes pressure induced changes
at much lower pressures than in crystalline or amorphous SiO2
analogues.

However, the easy decomposition of liquid GeO2 at high
pressure and temperature into elementary germanium and

oxygen15 prevents unfortunately from a systematic experi-
mental study of the (P,T) phase diagram. A tentative one has
been proposed10 which shows a flattening of the crystallization
curve at ≃2-4 GPa, indicative of a considerable densification
of the melt. It is has been stated that this may be related
to a diffuse transformation from α-quartz to rutile-like poly-
morphs. Once the crystallization is bypassed upon cooling,
a critical point (Tc) is expected, similarly to other liquid
substances. Below Tc, the liquid is then supposed to develop a
mixing of a low density liquid (LDL) and high density liquid
(HDL), separated by a transition line.10,16 Corresponding glass
transition temperatures are expected to be different. At low
temperature, amorphous-amorphous transformations (AAT)
are detected from the time evolution of the volume which mani-
fest by irreversible relaxation in the region 3-4 GPa, associ-
ated with coordination changes and important compressibility
variations.17

In numerical studies of other tetrahedral systems (water
and silica), it has been possible to determine such a critical
temperature Tc at which the LLT onsets,18,19 as well as char-
acteristic patterns of “thermodynamic precursors”20–22 which
display an anomalous behavior (density and compressibility
maximum) for T > Tc. These anomalies are usually correlated
with changes in the local structure of the liquid, involving
higher coordinated species which can have two types of local
arrangements. In liquid germania however, such numerical
studies have not been considered. This is the purpose of the
present paper, and the output may be particularly interesting
since it is well-known that GeO2 displays typical temperatures
that are more accessible than the silica analogue, i.e., one has
Tm = 1388 K and Tg = 850 K,23 allowing for a possible study
for such changes in the liquid and the supercooled state, also

0021-9606/2015/143(6)/064502/14/$30.00 143, 064502-1 © 2015 AIP Publishing LLC
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facilitated by an increased sensitivity of structural changes
induced by pressure.2–5

It should be emphasized that there is no general agreement
on the link between such precursors, for instance, a “temper-
ature of maximum density” (TMD observed in, e.g., silica24),
and the LLT. Alternative frameworks for the liquid anomalies
(and eventually LLT) have been developed more recently (for
a review on water, see Refs. 25 and 26), and these involve
either secondary critical points27,28 or the decoupling of the
atomic interactions into strong/weak bonds29 that may be also
orientation-dependent.30 In a series of papers devoted to tetra-
hedral liquids,31–34 several authors have suggested that the
excess entropy Se may be responsible for the observed anom-
alies in thermodynamic, structural, and dynamic properties in
relationship with LLTs. These anomalies are thought to result
from the presence of two possible structures reminiscent of a
high and low density local order, and which can be quantified
from a Rosenfeld-type scaling35 showing that transport prop-
erties behave as exp[αSe]. Similarly, using a two-state model
for thermodynamics of LLT, Holten and Anisimov36 have also
detected the role played by entropy upon increasing pressure,
which ultimately controls the critical temperature of the LLT
through the equilibrium constant ruling the two-state liquids.

Given the similar structure and tetrahedral to octahedral
conversion under pressure, it is to be expected that GeO2
displays polyamorphism or polyamorphic transitions in very
much the same fashion as in water,10 silica, or even other
materials covering a wide range of chemical bonding type. For
water, it has been proposed that the observed polyamorphism
is the sub-Tg extrapolation of the LLT line. More generally,
these transitions in the amorphous phase seem indeed to map
onto underlying density- or entropy-driven LLT taking place
at higher temperature, and such phenomena can be followed
only through an exhaustive numerical study of state responses
to changes in pressure and temperature. It is also important to
mention that such transitions bear some similarities with those
driven by changes in the chemical composition which lead to
immiscible melts. These are later well documented in silicates
and are usually characterized using classical thermodynamics.

Here, we build on an approach that has been developed by
Sciortino and co-workers.37 Using extensive MD simulations,
we establish an equation of state for the liquid at various
(P,T,V ) conditions by using a classical thermodynamic frame-
work. This allows establishing these “thermodynamic precur-
sors” to eventually locate a critical point (Tc ≃ 500 K). In sharp
contrast with silica and water, we find that the temperature
Tc is at a temperature which is lower than the glass transition
temperature. As a result, the possible detection of such ther-
modynamic precursors (and the potentially underlying LLT)
is hidden by the slowing down of the relaxation and might
not be accessible from experiments. In this respect, the present
results seem to bear similarities with immiscibility domains in
potassium silicates38 for which the spinodal line is also found
at T < Tg .

Changes in dynamic properties are furthermore analyzed
in the liquid as a function of both volume and temperature
and reveal not only diffusivity extrema but also anomalies
in corresponding activation energies that highlight the fact
that the relaxation dynamics is anomalous in selected volume

ranges. These extrema are linked with pair correlation entropy
extrema, and previous results for germania are recovered in
the present contribution. However, we also establish a link
between such transport anomalies and the stiffening of the
network structure. Using topological constraints, we estab-
lish a volume-temperature rigidity phase diagram, and it is
found that bond-bending constraints progressively soften with
the tetrahedral to octahedral conversion, while the number
of bond-stretching (BS) constraints increases with pressure,
leading on the overall to a complex (V,T) phase diagram for
rigidity. This underscores the existence of liquids able to adapt
their angular motion under increasing stress/pressure.

The article is organized as follows. Section II describes
the interaction potential and simulation details. Section III
is devoted to the phase diagram for liquid germania and the
search for the thermodynamic precursors, which are deter-
mined from the equation of state of the numerical thermody-
namic data. In Section IV, we calculate the number of topo-
logical constraints that lead to the rigidity phase diagram,
which is compared to the diffusivity of the densified liquids.
Finally, Section V summarizes our findings and brings up some
conclusions.

II. SIMULATION DETAILS

272 data points in the (P,T,V) phase diagram have been
obtained from trajectories that have been accumulated in the
NVE ensemble from 20 ps to over 20 ns, depending on the ther-
modynamic conditions (the lower the temperature, the longer
the runs). The isochores of the lowest temperature (900 K) have
been accumulated for 25 ns. Equations of motion have been
integrated using a leapfrog Verlet algorithm with a time step of
2 fs. The GeO2 system is composed of 512 oxygen atoms and
256 germanium atoms interacting via an Oeffner and Elliott
(OE) potential7 given by

Vi j =
qiqj

r
+ Ai j exp[−Bi jr] − Ci j

r
(1)

which contains a pairwise Born-Mayer repulsion and an attrac-
tive term for the O–O and Ge–O interactions plus a Coulomb
interaction with fractional charges, the latter being handled
with an Ewald sum, whereas the Ge–Ge potential part contains
only a Coulomb interaction. This potential has been fitted to
account for the vibrational and structural properties of crystal-
line GeO2 and has been used, in particular, to investigate the
stability of the crystalline α quartz-like and octahedral rutile-
like phases.7 In the glassy state, it yields an interesting agree-
ment with the experimental density39 (2.66 g/cm3) at ambient
pressure (2.70 g/cm3). Recently, the OE potential has been
used for the study of structural and thermal properties of liquid
GeO2 which have been found to reproduce not only reasonably
well experimental measurements on pair distribution functions
or structure factors9,11 but also enthalpy data of the supercooled
liquid.

The initial configuration has been started at a temperature
of 6000 K. Densification has been achieved by steps at this
temperature prior to a step-like decrease of the temperature
allowing for a complete investigation of the thermodynamic
diagram in (T,V,P). Ten steps ranging from 6000 K to 1500 K
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separated by 500 K have been investigated. Additional iso-
therms (1400 K, 1200 K, 1100 K, and 900 K) have been also
considered. Note that separate low temperature isotherms were
chosen for the study of the structural changes in the region
where the thermodynamic precursors are being found (see
below). Chosen volumes range from 0.20 to 0.37 cm3/g, the
glass density at ambient pressure being ρ = 2.70 g/cm3, and
corresponding to the upper boundary of the volume range (Vg

= 0.37 cm3/g). It should be stressed that in contrast to liquid
silica,40 no additional repulsion term was necessary in order to
avoid a collapse at high temperature and high density due to
spurious effects arising from a too attractive O–O interaction.

For completeness, we mention that alternative interaction
potentials do exist in the literature, and these have served to
describe either the crystalline phases of GeO2

41 or amorphous
germania.42 Most of these potentials have the form of Eq. (1)
although alternative (Morse)42 or polarizable ion potentials12

have been proposed to account for either liquid/amorphous
germania, or even germanates.

III. SEARCHING THERMODYNAMIC PRECURSORS

Thermodynamic precursors to a LLT have been detected
in silica37 and water19 from computer simulations using a
classical thermodynamics framework. Several thermodynamic
properties were derived from an analytical equation of state
which was computed from the total energy. We follow exactly
the same path, and remind for the reader’s convenience the
steps that led to the final results for silica,37 now applied on
liquid densified GeO2.

A. Temperature dependence of the potential energy

Using the MD thermodynamic data points, we start by
building a continuous form for the equation of state of the
liquid. First, we derive an isochoric temperature dependence
for the potential energy U(T,V ) and check that it scales as T3/5,
a behavior that corresponds to a functional dependence valid in
simple, dense, and cold liquids.43 Specifically, we fit our data
to the form

U(T,V ) = 27

a(V ) + b(V )T3/5


, (2)

where a(V ) and b(V ) are polynomial functions. To check the
validity of Eq. (2), we represent the simulated energy U(T,V )
of germania in a plot of U(T,V ) versus T3/5 (Figure 1) for
different isochores. We immediately note that the U(T3/5)
dependence is satisfied for all isochores. A linear fit of the
energy U reproduces very well the simulation data and al-
lows us to extract the parameters a(V ) and b(V ) appearing in
Eq. (2). A small deviation with respect to Eq. (2) sets in at
high temperatures for large volumes (e.g., V = 0.37 cm3/g),
i.e., for temperature and density/volume ranges which do not
correspond to the thermodynamic conditions at which Eq. (2)
is supposed to be valid.43 At low temperature, the deviation of
U(T,V ) with respect to its linear behavior in T3/5 at higher T is
an indication of the progressive departure from an equilibrated
liquid (gray zone in Fig. 1), and signals the onset of off-
equilibrium, as also obtained from other selected densities.9

FIG. 1. Behavior of the energy U(T,V) of germania represented as a func-
tion of T3/5 for several isochores. Symbols are the data points obtained
from MD simulations, while the straight lines represent fits using Eq. (2).
For clarity, each isochore has been shifted by a quantity kV with k= 10
(g MJ/(cm3/mol)). The gray zone indicates the glass transition region.

B. Equation of state from free energy

Having established the temperature dependence of the
potential energy U(T,V ), the parameters a(V ) and b(V ) can
be extracted from Equation (2), and these are now plotted in
Figure 2 as a function of the volume V . We note that the V

FIG. 2. Behavior of the fitted functions a(V ) (black symbols) and b(V ) (red
symbols, right axis) extracted from the fit of the data represented in Fig. 1,
using Equation (2). Data are fitted with a fourth order polynomial in V whose
parameters are given in Table I (solid lines).
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TABLE I. Fitted coefficients αn, βn, and γn of the V dependence of a(V )
and b(V ), and the density dependence of the pressure at T0= 4000 K.
The units of αn, βn, and γn are those which lead to units in MJ/mol,
(MJ/mol)/T3/5, and GPa for a(V ), b(V ), and P, respectively, the volume
V and the density ρ being given in cm3/g and g/cm3, respectively.

n αn βn γn

0 −27.874 0.181 89 93.622 9
1 215.15 −2.156 8 −128.955
2 −1180.10 11.388 70.501 9
3 2808.10 −26.027 −19.168 1
4 −2465.80 22.051 2.596 38
5 −0.134 279

dependence of a(V ) gives an estimate of Helmholtz free energy
that corresponds to the energy U(T,V ) at zero temperature.

Fourth order polynomials are used to fit a(V ) and b(V ),
given by a(V ) = 4

n=0αnV n and b(V ) = 4
n=0 βnV n, the coef-

ficientsαn andβn being listed Table I. Furthermore, the internal
energy E is then given by

E(T,V ) = a(V ) + b(V )T3/5 +
9
2

RT, (3)

with R the gas constant, and the added extra term corresponds
to the kinetic energy 9

2 RT .
From the established behavior of the energy E(T,V ) of

liquid germania (Eq. (3)), we now follow a standard framework
of classical thermodynamics. The equation of state can be
determined from the free energy F(T,V ) using the Maxwell
equation

P(V,T) = −
(
∂F
∂V

)
T

, (4)

while the free energy F(T,V ) is obtained from the equation
F(T,V ) = E(T,V ) − T S(T,V ). We use thermodynamic inte-
gration in order to determine the entropy S(T,V ) which can be
separated into a contribution of isothermal ∆ST and isochoric
∆SV transformations, and can be written as

S(T,V ) = S(T0,V0) + ∆ST + ∆SV , (5)

S(T0,V0) being the entropy of a reference state that we chose
to be T0 = 4000 K and V0 = 0.2 cm3/g. The entropy contribu-
tion ∆ST = S(T0,V ) − S(T0,V0) along an isotherm is computed
using

∆F = ∆E − T0∆ST , (6)

with

∆F = F(T0,V ) − F(T0,V0) (7)

and

∆E = E(T0,V ) − E(T0,V0), (8)

the latter being calculated from Equation (3). It can be
furthermore noticed that ∆F is essentially due to a volume
change along an isotherm T = T0, which can be deter-
mined from an isothermal integration of dF = −PdV leading
to

∆F = −
 V

V0

P(T0,V ′)dV ′. (9)

FIG. 3. Pressure evolution with volume along the T0= 4000 K isotherm. Data
points (diamonds) are the MD calculated pressures. The solid (red) line is a
fifth polynomial fit using the coefficients γn (Table I).

A functional representation of ∆F is now necessary to
compute ∆ST which requires in turn a functional representa-
tion of P(T0,V ). The latter is determined from the calculated
pressures along a reference isotherm at T = T0. A fifth order
fit P(T0,V ) = 5

n=0 γnρ
n (with ρ = 1/V ) is performed on the

simulated thermodynamic data points along the isotherm T0
= 4000 K, and the corresponding coefficients γn are given in
Table I. Results of the fit are plotted in Figure 3, together with
the simulated data points.

Having in hand a functional representation of ∆F and ∆E,
one can finally write a model function of ∆ST as

∆ST =
1
T0


E(T0,V ) − E(T0,V0) +

 V

V0

P(T,V ′)dV ′

. (10)

The other entropic contribution, ∆SV = S(T,V ) − S(T0,V ),
used in Eq. (5) can be calculated from a temperature change
between T0 and T at fixed volume V. Thus, an isochoric
integration of

dS =
dE
T
=

1
T

(
∂E
∂T

)
V

dT (11)

gives an expression of ∆SV ,

∆SV =
 T

T0

1
T ′

(
∂E
∂T ′

)
V

dT ′, (12)

where the partial derivative appearing in Eq. (11) is realized
from Equation (3).

From these different entropy contributions, Equation (5)
can be computed for several thermodynamic conditions in
volume and temperature, and using the free energy F(T,V )
allows determining the equation of state of liquid germania
from Equation (4). Results are plotted in Figure 4 as solid
lines while the symbols represent the numerical data from
the MD simulations for each isochore. Obviously, we have an
excellent agreement of the fitted equation of state (Eq. (4)) that
is able to reproduce the thermodynamic data point obtained
directly from the simulation. We note that the entire volume
0.2 cm3/g < V < 0.37 cm3/g and temperature (1500 K < T
< 6000 K) range can be reproduced with confidence.
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FIG. 4. Pressure evolution with temperature along different isochores. Sym-
bols represent the thermodynamic data points directly calculated from MD,
whereas solid lines are the isochoric equations of state using Equation (4).

C. Thermodynamic precursors

Different thermodynamic conditions can now be deter-
mined from the parametrized equation of state P(T,V ). In
the context of LLTs, three curves acting as thermodynamic
“precursors” are of importance,20 and we follow here again the
strategy developed for water23 and silica37 to detect a possible
LLT.

A first condition is related to the TMD. It expresses the
temperature at which the pressure is minimal for a given
volume, and such TMD lines have been found not only in wa-
ter44 and silica45 but also in another tetrahedral liquid (BeF2

46).
The condition of temperature of maximum density is given by
the following expression:(

∂P
∂T

)
V

= 0. (13)

The presence of a TMD line is found to be correlated to the
transformation of tetrahedral to octahedral order, and also to
local structural order parameters47 defining orientational and
translational order, in relationship with a pair correlation en-
tropy maximum,46 as discussed below.

The second condition or precursor is the spinodal line
which is the usual consequence of a demixing phenomenon
between two liquids. Such a line is rather well characterized in
the case of demixing of a binary compound, and corresponds
to an inflexion point of the free energy F, with the second
derivative of F being performed with respect to the compound
concentration.48 In a LLT driven by density/volume changes,
one can define a similar inflexion point37 for the free energy,(

∂2F
∂V 2

)
T

= −
(
∂P
∂V

)
T

= 0. (14)

Finally, a third condition has been proposed by Sciortino and
co-workers,37 corresponding to the “Kmax

T ” (or Widom line)
which defines the maximum of the isothermal compressibility

KT with respect to the volume,(
∂KT

∂V

)
T

= 0, (15)

with the isothermal compressibility given by

KT = −
1
V

(
∂V
∂P

)
T

= 0. (16)

An inspection of Fig. 4 immediately reveals that germania
does not have a minimum in the P(T) curve which indicates
directly that a TMD line cannot be found in the investigated
temperature range. However, it can be seen that there is a
tendency towards a TMD line at low temperatures and elevated
volumes, which is hidden by the slowing down of the dynamics
for T ≤ 1200 K.

These three conditions (13)–(15) are now represented in
Fig. 5. It is found that a possible spinodal line builds up at

FIG. 5. (a) Results of Equations (13)–(15) defining a TMD line (blue), a
spinodal (black), and the maximum of the isothermal compressibility (red)
for liquid germania. (b) Comparison of the present results with those of BKS
silica37 and ST2/SPCE water.28,46,49 Data have been rescaled with respect to
their experimental glass transition temperature (850 K, 1450 K and 130 K50

for GeO2, SiO2, and H2O, respectively), and with respect to the volume
of the corresponding glasses (0.37 cm3/g, 0.45 cm3/g, and 0.94 cm3/g,
respectively). Note that the water data arise from different MD potentials.
(c) Same figure as panel (b) but data have now been rescaled with respect to
their experimental melting temperature Tm and volume Vm at zero pressure
(1388 K, 2023 K, and 273 K for GeO2, SiO2, and H2O, respectively) and
(Vm = 0.23 cm3/g, 0.45 cm3/g, and 1.00 cm3/g, respectively).
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very low temperatures (typically 200-500 K) and at small
volumes (0.15-0.25 cm3/g) corresponding to densities of about
5.0 g/cm3. The “Kmax

T ” line and the TMD lines are found at
somewhat larger volumes and temperatures. A critical point is
found at Tc = 483 K and Vc = 0.18(7) cm3/g.

D. Discussion

It is important to emphasize that all curves lie in a (V,T)
domain that is outside the investigated range from equilibrated
MD simulations which is a serious drawback of the application
to GeO2. There is a simple reason for this. The laboratory
glass transition (850 K) and the numerical glass transition
regions are larger than those (200-700 K) involved in the
three conditions (13)–(15), but they are also smaller than the
temperatures of the investigated range of equilibrated data
points (1200 K-6000 K). As a consequence, one can neither
obtain equilibrated (T,V,P) numerical data points that could
serve as input for the fitting procedure using Eq. (2) nor an
equilibrium energy E(T,V ) in the (T,V ) range where the three
conditions can eventually be met. One must, therefore, have
confidence in the fit performed at higher temperatures and in
its extrapolation to lower temperatures. Still, we find that our
critical temperature Tc is in reasonable agreement with the one
proposed from an experimental phase diagram,10 suggesting
that one has Tc ≃ 1000 K and Pc = 4 GPa for liquid germa-
nia. Using our fits of Eq. (4) and the determined value of
Vc = 0.18(7) cm3/g (Fig. 5(a)), we arrive to a similar critical
pressure (Pc = 3.1 GPa). An additional signature of thermo-
dynamic instability that may lead to a LLT is provided by the
behavior of the coefficient a(V ) which is equal to the zero
temperature value U(0,V ) (Helmholtz free energy) or F(0,V ).
Given that a(V ) exhibits a negative curvature with increasing
volume (Fig. 2), i.e., it indicates that the condition of stability
of a single phase (∂2F/∂V 2)T > 0 is not satisfied, and suggests
that GeO2 might undergo a phase separation at low temperature
and high volume.

Similar features (i.e., a spinodal at T ≤ Tg) are actually
observed in potassium silicates and the corresponding spin-
odal line is driven by changes in composition. It has been
found, indeed, that the consulate point (i.e., the temperature
maximum) of the miscibility gap in K2O–SiO2 melts is below
the glass transition temperature.38,51,52 Despite this, phase
separation which is a consequence of liquid immiscibility has
been evidenced.53,54

In liquid germania using the same OE potential, Jabes
et al.46 find a TMD line in the deep supercooled liquid
(1350-1400 K) and over a very narrow range in volume
(0.24-0.25 cm3/g), a situation which substantially contrasts
with other tetrahedral systems such as water, silica, or BeF2
for which the TMD line is found to be quite far away from
the glass transition region, e.g., for silica the TMD region
extends from 0.33 to 0.5 cm3/g and 4000-5000 K,37,46 i.e., at
temperatures which are much larger than the numerical glass
transition temperature (2000 K).

We then compare the findings with those obtained for a
Born-Kramer-Van Santen (BKS) simulated silica (Fig. 5(b)).
Even when the behavior in (T,V ) of the thermodynamic precur-
sors is rescaled with respect to the measured glass transition

temperature Tg and to the (glass) volume at zero pressure
and low temperature (Vg), the location of the thermodynamic
precursors appears to be quite different. First, the critical point
of silica is found in the liquid or supercooled régime at T > Tg ,
and at volumes that are close to Vg , in sharp contrast with
the present result on germania. One furthermore notices that
the TMD line of germania is found to be located at volumes
fulfilling V > Vc only, whereas it displays a maximum value at
V/Vg ≃ 0.85 in the case of silica. When rescaled with respect
to the melting points (Tm and Vm) of the low density crystalline
phases (e.g., cristoballite), it is furthermore detected (Fig. 5(c))
that while the location of Tc of both silica and water is rather
similar, and close to their corresponding melting temperature,
the location of the germania critical point is found to be much
lower. However, the volume Vc/Vm appears to be similar for
silica and germania. This might suggest that for both sys-
tems, similar changes under isochoric transformations could
be observed along the isotherm T = Tc.

In silica, Sciortino and co-workers37 characterize inde-
pendently the existence of a LLT by detecting at the relevant
(T,V ) condition structural changes in the vicinity of the sili-
con atom. Specifically, for T < Tc, the fifth oxygen neighbor
distribution is unimodal and lies outside of the first coordi-
nation shell. However, as T approaches Tc, this distribution
becomes bimodal which indicates that two distinct populations
are present in the liquid. The presence of two coordination
environments, thus, provides a possible structural signature of
LLT, while also substantiating the analysis from the thermo-
dynamic precursors. Following this path, we have analyzed
in a similar fashion the structural correlations in densified
liquid GeO2 along an isotherm (Tc ≃ 400 K) from the available
volume range. Figure 6 shows the results of the Ge-centred
partial pair correlation function gGe(r) at V = 0.37 cm3/g. A

FIG. 6. (a) Decomposition of the partial pair correlation function gGe(r ) of
a 400 K germania system into Ge-centred neighbor distributions. Here, V =
0.37 cm3/g. The red curve represents the fifth neighbor distribution g5(r ).
The inset shows the evolution of g5(r ) for selected volumes and temperatures
(400 K thick lines and 2500 K thin lines), including in the vicinity of the
critical point (Fig. 5(a)). The x-axis has been rescaled with respect to the
minimum rmin of gGeO(r ) which permits splitting the first and the second
shells of neighbors. One has rmin= 2.12 Å, 2.19 Å, and 2.24 Å for 0.37,
0.40, and 0.50 cm3/g, respectively. Contributions due to Ge–O and Ge–Ge
correlations are indicated (see text for details).
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decomposition into neighbor distributions shows that only four
neighbors are part of the first coordination shell, as expected9,12

for low temperature germania at ambient conditions (Vg), and
these all correspond to the Ge–O correlations of the tetrahedra.
The fifth neighbor distribution g5(r) (red curve in Fig. 6) be-
longs to the second shell of neighbors (r > rmin and r/rmin

= 1.45) and corresponding oxygen atoms are associated with
the second (r/rmin ≃ 1.45) neighbouring GeO4/2 tetrahedra at
a distance of 3.07 Å.9 We furthermore note a minuscule contri-
bution from Ge–Ge correlations (r/rmin = 1.15). However, as
the volume decreases to values corresponding to the loci of the
thermodynamic precursors, similarly to silica, the distribution
of g5(r) becomes bimodal within and without the first coordi-
nation shell, and signals that the fifth neighbor has now two
well-defined possibilities and is found to be species related.
In fact, a decomposition of gGe(r) into correlations arising
from Ge and O atoms shows that the fifth neighbor in the first
coordination shell (r/rmin < 1) is entirely due to Ge–O corre-
lations for V = 0.25 cm3/g, whereas a shoulder peak builds
up at r/rmin = 1.15 that arises only from Ge–Ge correlations.
However, this distance is somewhat smaller than the Ge–Ge
correlating distance that comes from Ge–O–Ge linkages. An
inspection of the corresponding structure shows that this shoul-
der peak originates from the growing presence of edge-sharing
(ES) tetrahedra/polyhedra, similarly to chalcogenides55 that
lead to a typical distance of 2.50-2.55 Å, i.e., r/rmin ≃ 1.15.
This tendency is enhanced as the critical point is approached
(V = 0.20 cm3/g). On the other hand, the behavior of the
very first neighbor distributions (from g1(r) to g4(r)) do not
change much under volume change, and the fifth neighbour
distribution outside the first shell of neighbours comes from
the Ge–Ge correlations of ES connections. Given that these
findings bear obvious similarities with the silica liquid,37 it
provides some support to the possibility of a LLT in the deter-
mined thermodynamic (T,V ) domain for germania, although
the detail of the Si or O contributions to g5(r) has not been
reported. The same analysis on a high temperature liquid satis-
fying T > Tc (2500 K, inset of Fig. 6) shows that these features
have completely vanished, and instead a broad distribution
over distances 0.8 < r/rmin < 1.5 is found. These dramatic
changes also indicate the important structural modifications
with temperatures decrease, and once the liquid has densified.

IV. DYNAMICS, STRUCTURE, AND TOPOLOGICAL
CONSTRAINTS

A. Dynamics

We now investigate the effect of volume change on the
dynamics.

1. Diffusivity

An appropriate means to probe the dynamics is to compute
the mean-square displacement of an atom of type α in the melt,
given by

⟨r2(t)⟩ = 1
Nα

Nα
i=1

⟨|ri(t) − ri(0)|2⟩, (17)

FIG. 7. Isothermal diffusivities for germanium (red) and oxygen (black) in
liquid germania as a function of volume system.

where Nα is the number of atoms of species α. The depen-
dence of ⟨r2(t)⟩ at long times becomes linear and signals the
onset of diffusion. Using the Einstein relation limt→∞⟨r2(t)⟩/6t
= D, one can have access to the diffusion constants D for both
oxygen and germanium atoms at selected isotherms, and these
are represented in Fig. 7.

Fig. 7 shows a clear diffusivity maximum Dmax at V
≃ 0.23 cm3/g, and a diffusivity minimum Dmin at V ≃ 0.32
cm3/g for both Ge and O atoms, and these extrema tend to
become more marked as the temperature is decreased (e.g.,
900 K). Here, we recover previous diffusivity results obtained
for liquid germania using the same potential,46 and extrema
were also found for isotherms found between 1300 K ≤ T
≤ 1600 K. However, our results span over larger volume and
temperature variations, allowing for an extended investigation
in an Arrhenius representation (Fig. 8(a)).

Self-diffusion constants are plotted for the system of in-
terest as a function of the inverse temperature, revealing an
Arrhenius behavior (Fig. 8(a)). This behavior of the form D
= D0 exp[−EA/kBT] is found to be rather well satisfied for
the equilibrated liquids, but a progressive deviation (curvature)
sets in for lower temperatures (900 K, i.e., 103T = 1.11). For
the high temperature régime, it can be remarked that the cor-
responding slope (i.e., the activation energy EA for diffusion)
depends on the volume V of the system, as noticed from
the different slopes for D(1/T) at fixed volume. When EA

is followed as a function of V (Fig. 8(b)), one furthermore
remarks that EA goes through a minimum for volumes fixed
between roughly 0.22 cm3/g and 0.26 cm3/g. When compared
to Fig. 7 representing D as a function of V along a selected
isotherm, one realizes that the region where one has Dmax

coincides with an activation energy minimum for diffusivities.
This correlation signals that when energy barriers for viscous
flow are low, transport properties are optimized and lead to an
enhanced diffusion that results in a Dmax.
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FIG. 8. (a) Arrhenius plot of oxygen diffusivity for se-
lected system volumes. (b) Activation energy for germa-
nium (red) and oxygen diffusion (black) as a function of
system volume. The solid line is a quadratic fit to the
global set of data.

In addition, assuming that the glass transition temperature
Tg does not evolve much with volume, and using the known
formula56M(V ) = EA ln10 2/kBTg(V ), one can conjecture that
the minimum in EA(V ) (Fig. 8(b)) might induce a minimum
in liquid fragility for V ≃ 0.23 cm3/g. Such a conjecture is
supported from similar results on another densified tetrahedral
system, namely, 2SiO2–Na2O.57 For the latter, the location of
Dmax was found to correlate with the minimum in activation
energy EA for both viscosity and diffusivity, and also with a
minimum in viscosity.

2. Relaxation behavior

Since an anomalous behavior is obtained for the activation
energy EA, and for D, one may wonder if this results from a
particular relaxation behavior.

Additional information can therefore be gathered from
the density correlations which provide an interesting means
to decode the obtained anomalies in dynamics. We have
computed the intermediate scattering function Fs(k, t) for a
given isotherm (1400 K) exhibiting well defined diffusivity
anomalies at Dmax and Dmin. This function follows the Fourier
components of density correlations and characterizes the slow-
ing down of the relaxation as one approaches the glass tran-
sition. We focus in the forthcoming on this function at the
wavevector k = kmax, the principal peak position of the static
structure factor S(k).

Figure 9(a) represents Fs(k, t) for all investigated sys-
tem volumes. Fs(k, t) exhibits the usual two step relaxation
behavior with a small β-relaxation58 plateau behavior (e.g., at
Fs(k, t) ≃ 0.40 for V = 0.37 cm3/g) that is similar to the
case of silica.59 When investigated along the present isotherm
(1400 K) as a function of volume, it is seen that the Fs(k, t)
shifts to higher times, thus indicating that the system needs
more time to relax to equilibrium (Fs(k, t) = 0), the lowest
volume (0.20 cm3/g) exhibiting the slowest dynamics, and a
β-relaxation plateau that is found to be substantially higher.
A standard means60 of evaluating a relaxation time τ is to
calculate the time at which one has Fs(k, t) = 1/e, and corre-
sponding results are represented in Fig. 9(b). It is found that
the diffusivity maximum Dmax coincides with a local minimum

in relaxation time τ(V ) at V ≃ 0.25 cm3/g that permits to relax
to equilibrium on time scales that are of about 2 ps. Finally,
we note that the smallest relaxation time is found for the
liquid at nearly ambient pressure and volume Vg = 0.37 cm3/g
corresponding to the glass density.

B. Pair correlation entropies and diffusivity scaling

The diffusivity results represented in Fig. 7 actually
recover an interesting relationship between diffusion and the
pair correlation entropy defined by

S2/kBN = −2π
V


i, j

xix j

 ∞

0


gi j(r) ln gi j(r)

− [gi j(r) − 1]

r2dr, (18)

FIG. 9. (a) Oxygen intermediate scattering function for different volumes at
T = 1400 K at k = kmax= 2.4 Å−1. The thin lines correspond to all volumes
different from 0.37, 0.25, and 0.20 cm3/g. The horizontal line corresponds
to 1/e. (b) Calculated relaxation time τ as a function of system volume V for
1400 K.
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where gi j are the partial pair correlation functions, and xi

and x j represent the molecular fraction of species i and j
(Ge,O). This entropy is defined31,61 as the difference between
the entropy of a liquid and the one of an ideal gas62 at the same
temperature and density and can be accessed from numerical
simulations63 by expanding correlation functions. Here, it has
been shown that while S2 represents a reasonable estimate
of the excess entropy of the liquid, it connects to transport,
structure, thermodynamics, and mobility in liquids, as also
recently emphasized from the investigation of a set of densified
tetrahedral liquids46 among which, GeO2. We also find that
for the isotherms exhibiting the most pronounced extrema in
diffusivity (1200 K and 1400 K, Fig. 7), the calculated entropy
using Eq. (18) displays the same trend as D (Fig. 10(a)), i.e., a
clear maximum in S2 is found at around 0.22 cm3/g, whereas a
broad minimum is obtained for the 1400 K isotherm, centred at
V ≃ 0.32 cm3/g. The calculated values of S2 are actually very
close to those found46 in a previous study of GeO2.

The connection with transport can be quantified by rescal-
ing the diffusivity D via

D∗ =
D

V 1/3


kBT
m

. (19)

Rosenfeld and others35,64 have shown that diffusivity, viscosity,
and thermal conductivity in simple liquids follow a simple
semiempirical relationship of the form A expαSe and is satis-
fied for a variety of complex liquids.65–68 Here, Se stands for the
excess entropy of the liquid with respect to the corresponding

FIG. 10. (a) Pair correlation entropy S2 as a function of volume in liquid
germania for three selected isotherms (1100 K, 1200 K, and 1400 K). (b)
Rosenfeld scaled diffusivity D∗ as a function of pair correlation entropy S2.
The solid lines are fits using AexpαS2 for a given isotherm. The inset shows
the behavior of S2 with ln ρ and serves for the discussion on anomalous
diffusivity criteria31 (see text for details). Broken lines have a slope of 1/3α
and serve for comparison.

ideal gas, and in dense liquids it is essentially driven by the
effect of the interactions that lead to structural correlations
(i.e., the functions gi j). As a result, a convenient way31–34,46,68

to check for such scaling laws is to compare the calculated
diffusivities with the pair correlation entropy S2. Fig. 10(b)
shows the dimensionless diffusivity results using Eq. (19) as
a function of the pair correlation entropy (Eq. (18)). It is seen
that the correlation is very well satisfied for the three consid-
ered isotherms, and a global fit for the whole data leads to α
= 1.41. One has furthermore α = 2.41, 1.49, and 1.13 for the
separate isotherms 1100 K, 1200 K, and 1400 K, respectively.
For the same range of temperatures (T > 1200 K), these values
are slightly lower than those determined from isochoric fits
(1.67-1.73) extracted from a set of numerical data on densified
germania46 but the result is expected and has been pointed out
from a separate Rosenfeld-type fit on isochores and numerical
isotherm of diffusivity/entropy data of liquid silicon.69

Although the Rosenfeld-type scaling law is found to agree
for the present germania liquid, it is possible to test an addi-
tional probe for the presence of entropy driven diffusivity
extrema as proposed in Refs. 31 and 69. Assuming that a
Rosenfeld-type scaling holds, one can take the partial deriv-
ative of Eq. (19) with the scaling form, and one obtains(

∂Se
∂ ln ρ

)
T
=

1
3α


1 + 3

(
∂ ln D
∂ ln ρ

)
T


(20)

and in this case a criterion31 for the observation of an anoma-
lous diffusivity will be given by(

∂Se
∂ ln ρ

)
T
>

1
3|α| , (21)

where we remind that α appears in the functional represen-
tation of the rescaled diffusivities D∗ = A exp[αSe]. From the
inset of Fig. 10(b), it is seen that when the excess entropy
is represented as a function of ln ρ and when the slopes of
S2(ln(ρ)) are compared to the value of 1/3|α|, condition (21)
holds more or less for the regions in thermodynamic phase di-
agram (e.g., ln ρ < 1.2, ln ρ > 1.3 for T = 1200 K) where such
diffusivity extrema are obtained. For the different isotherms,
one notes, indeed, that the volume range for which the diffu-
sivity maxima are obtained (0.20 cm3/g ≤ V ≤ 0.25 cm3/g),
condition (21) is satisfied. In fact, as just described, separate fits
along the isotherms using the Rosenfeld scaling (Fig. 10(b))
lead to different parameters α, and when corresponding lines
with a slope of 1/3|αi | are represented in a (ln ρ,S2) plot
(broken lines in the inset), the slope of the excess entropy with
ln ρwill always be higher in the region where Dmax is obtained.

C. Coordination numbers

In real space, we examine the behavior of the coordination
number nGeO in liquid germania. Here, we have defined nGeO
as the average number of nearest oxygen neighbors in the first
coordination shell of a Ge atom,

nGeO =
4π
V

 rmin

0
r2gGeO(r)dr, (22)

i.e., we obtain nGeO by integrating up to the corresponding
first minima rmin the partial pair correlation function gGeO(r)
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FIG. 11. Behavior of the coordination number nGeO as a function of system
volume for different isotherms. The gray zone indicates the volume range
where diffusivity anomalies are obtained (see Fig. 7).

at the different volumes and temperatures (e.g., Fig. 6). Given
the well-defined first minimum of gGeO(r), one has a well-
separated shell of nearest-neighbors for a large range of tem-
peratures and volumes. Fig. 11 shows the behavior of nGeO as
a function of volume for selected isotherms. It can be seen
that the coordination number steadily increases as the volume
decreases, this trend being obtained for all temperatures in
the range 1200 K ≤ T ≤ 4000 K. Starting from the “tetrahe-
dral” value nGeO = 4, one reaches a coordination number of
5.1-5.3 at V = 0.2 cm3/g, but neither threshold nor anomaly
is obtained for volumes at which a diffusivity maximum or
minimum is obtained (Fig. 7).

The population of r-coordinated oxygen and germanium
species can also be followed, and corresponding results are
shown in Figs. 12 and 13 for germanium and oxygen, respec-
tively. At low temperature, the majority of Ge atoms are
found to be in tetrahedral environment at the largest volumes

FIG. 13. Behavior of the oxygen coordinated species as a function of system
volume V at 1200 K (filled symbols) and 3000 K (open symbols). The gray
zone indicates the region of Dmax.

(0.37 cm3/g). However, as the volume is reduced (or pressure
increased), higher coordinated species appear. While these
manifest, on average, by an increase of nGeO (Fig. 11), the
detail of the Ge population shows that five- (GeV) and six-fold
coordinated (GeVI) Ge atoms are likely to occur, the former
being systematically larger (by a factor two) when compared
to GeVI, and already present in the range 0.25 cm3/g ≤ V
≤ 0.30 cm3/g. The presence of this “intermediate” coordina-
tion is consistent with experiments performed in the glassy
state70 where five-fold Ge atoms have been detected in densi-
fied germania, and the fraction of the GeV species shows an
increase from 0% to ≃20% when the volume is reduced from
V = 0.27 cm3/g (i.e., ρg = 3.7 g/cm3) to 0.20 cm3/g.

The increase of temperature leads to a lowering of the
fraction of GeIV at large volumes, and also leads to the pres-
ence of under-coordinated Ge atoms (GeIII), a feature that is
typical of stretched melts71 having a negative pressure (Fig. 4)
which usually contains elements having a coordination number
that is lower than the one anticipated by the octet rule. One

FIG. 12. Behavior of the germanium coordinated
species (GeIII, GeIV, GeV, and GeVI) as a function of
system volume V at different temperatures. The gray
zone indicates the region of Dmax.
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furthermore notes that the fraction of octahedral Ge is nearly
temperature independent, and most of the structural changes
at short range order are triggered by the five-fold Ge which
increases more importantly in the volume range 0.27 cm3/g
≤ V ≤ 0.33 cm3/g. Finally, we remark that the thermodynamic
region where the diffusivity maximum is observed, liquids
have a no dominant local structure (tetrahedral or octahedral)
because all species are found to have a population of the
same order (30%-40%), this observation being valid for all
considered temperatures.

Similarly, we find that the oxygen speciation behaves quite
similarly. Figure 13 displays the fraction of r-fold oxygen
species (r = 1,2,3,4) as a function of system volume for two
selected temperatures (1200 K and 3000 K), and, again, it is
to be noticed that higher coordinated species (OIII and to a
lesser extent, OIV) populate the liquid network structure as the
volume is lowered.

D. Topological constraints

The topology of the liquid structure can be also charac-
terized in the context of coordination number increase and
diffusivity anomalies by making a connection with network
rigidity, as discussed now. Diffusivity anomalies have been
recently detected in liquid sodium silicates57,72 and have been
linked with anomalies in topological constraints, derived from
rigidity theory.73 We follow here the same path. In rigidity
theory, the number of dominant interactions which are usu-
ally near-neighbor BS and next-near-neighbor BB forces, and
the associated number of topological rigid constraints can be
exactly computed in a mean-field way,74–76 and is given by

nc =


r ≥2

nr[ r2 + 2r − 3]
r ≥2

nr
, (23)

where nr is the concentration of species being r-fold coordi-
nated. The condition nc = 3 corresponds to the well-known
Maxwell stability criterion for isostatic trusses or macroscopic
structures.77 Its application to network glasses has led to the
identification of a flexible to rigid transition.75,76 In contrast
with usual applications (e.g., network glass or glass-forming
liquids) for which nc is tuned with composition, here nc is
driven by pressure, as in densified sodium silicates.57 The two
contributions appearing in Eq. (23) arise from (i) BS given
that each bond is shared by two neighbors, and one has r/2
BS bond-stretching constraints for an r-fold atom, and (ii)
BB (angular) constraints. For the latter, one notices that a 2-
fold atom involves only one angle, and each additional bond
will need the definition of two more angles,75 leading to the
estimate of (2r-3).

1. MD based constraints

Equation (23) applies at zero pressure and temperature
for fully connected networks. In order to explore an appli-
cation of topological constraint counting with volume and
temperature, and especially for the present thermodynamic
domain of interest, one relies on a MD-based enumeration, as
introduced recently.57,78,79 We determine, indeed, topological

FIG. 14. Schematic method of constraint counting from MD-generated
configurations. Large (small) angular excursions around a mean value are
characterized by large (small) standard deviations on angular distributions,
representing broken (intact) topological constraints.

constraints by following doublets (pairs, bonds) or triplets
(angles) of neighbors over the simulated trajectory at a given
(T,V,P) condition. One extracts from the radial (angular) mo-
tion of such doublets (triplets) a pair (angular) distribution
which is characterized by a first moment (i.e., a mean) and
a second moment (i.e., a standard deviation) σi with i = r or
i = θ depending on the considered situation, bonds, or an-
gles. It quantifies the excursion around the mean value and
provides information about the strength of the underlying BS
(BB) interaction. If the angular excursion is small, one will
identify a corresponding topological constraint (e.g., angular,
see Fig. 14), otherwise the constraint is considered as broken
and does not contribute to rigidity. We focus in the forthcoming
on BB constraints, given that the fraction of Ge and O BS
constraints is directly given by nGeO/2 = nGe/2 and by nO/2.

Equation (23) can be made more general by taking into
account an explicit (T,V ) dependence that is written80 as

nc(T,V ) =

i,r

ni
r(T,V )[ r (T ,V )

2 + qi
r(T,V )(2r − 3)]

i,r
ni
r(T,V ) , (24)

where qi
r(T,V ) is a function quantifying the fraction of broken

BB constraints of an r-folded (i = Ge,O) atom, and nr(T,V )
represents the population of r-folded species (Figs. 12
and 13). This function qi

r(T,V ) has two obvious limits because
all relevant constraints can be either intact at low temperature
(degrees of freedom are all frozen) or entirely broken at high
temperature. At a finite temperature however, a fraction of
these constraints are broken by thermal activation. Different
forms can be proposed for qi

r(T,V ), based either on an energy
landscape approach81 or involving a simple activation energy
for broken constraints.82 A simple step-like function allows ob-
taining analytical expressions for fragility and glass transition
temperature,80 heat capacity,83 and hardness84 as a function of
composition for binary and multicomponent glasses.

Figures 15 and 16 now represent the calculated functions
qGe(T,V ) and qO(T,V ), respectively, the average over the r-
speciation having been performed. At fixed volume, both func-
tions behave as they should, i.e., with increasing temperature
and the lowering of the energy barriers associated with BB
constraints, one obtains a global decrease of qGe(T,V ) and
qO(T,V ), and, at high temperature (2800 K), they are nearly
equal to zero, i.e., angles do not contribute to the rigidity of
the liquid.
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FIG. 15. Contourplot of the fraction qGe(T ,V ) of intact Ge BB constraints.

Several other conclusions emerge from an inspection of
the contourplots, especially when they are compared to the
obtained anomalies in transport properties (Figs. 7 and 8).
It is seen, indeed, that both Ge and O display a minimum in
their fraction of BB constraints in the volume range (0.2-0.25
cm3/g), i.e., roughly in the region where Dmax is detected. For
instance, for T = 1200 K qGe(T,V ) decreases from a value of
about 0.82 at V = 0.2 cm3/g to 0.63 for V = 0.22 cm3/g, before
increasing again at larger volumes, and to nearly qGe(T,V ) = 1
at V = 0.35 cm3/g. In addition, we note that the existence of a
minimum in qGe(T,V ) can be unambiguously detected as long
as T ≤ 1800 K, i.e., for the temperature range at which a Dmax

can be obtained (Fig. 7). For larger temperatures, qGe(T,V )
does not exhibit a non-monotonic trend anymore, and so does
the diffusivity. One has, thus, a strong correlation between BB
constraints and Di (i = Ge,O). A similar trend is obtained for
the corresponding function qO(T,V ) (Fig. 16). For the latter,
a local maximum emerges in qO(T,V ) at 0.33-0.35 cm3/g
(i.e., BB constraints are restored with increasing volume), and
this local maximum is found to coincide with the observed Dmin

that is detected for T ≤ 1400 K only (Fig. 7).
Finally, using Eq. (24), one can evaluate the total density

of constraints nc(T,V ), represented in Fig. 17. It can be re-
marked that the obtained minimum in qGe(T,V ) and qO(T,V )
at 0.2-0.24 cm3/g induces also a minimum in nc(T,V ) for T
≤ 1800 K. Interestingly, the deep supercooled liquid (1200 K)
is found to be isostatically rigid (nc ≃ 3) for volumes that are

FIG. 16. Contourplot of the fraction qO(T ,V ) of intact oxygen BB con-
straints.

FIG. 17. Contourplot of the total fraction nc(T ,V ) of topological con-
straints.

somewhat lower than the (glass) volume Vg = 0.37 cm3/g. For
such systems, a local maximum is detected in nc(T,V ) which
is driven by the stiffening of the oxygen BB interactions (i.e., a
maximum in qO(T,V ), Fig. 16). This signals that germania at
ambient pressure is flexible, and becomes isostatically rigid
under the effect of a moderate pressure increase, a conclusion
that is consistent with reported pressure driven transforma-
tions85 showing that isostatic rigidity (i.e., nc = 3) is achieved
in GeO2 at P ≃ 0.5 GPa. This usually is manifested by space-
filling tendencies under annealing and are correlated with the
vanishing of low-frequency modes and the distortion of the
basic tetrahedra under pressure.86,87

2. Adaptive liquids

The physical picture that emerges from the topological
analysis is the following. The obtained anomalies (Figs. 15-17)
result from the growth of liquid connectivity with volume
decrease, which is induced by the tetrahedral to octahedral
coordination change (Fig. 12). The increase in connectivity
leads in fact to additional stress74–76 induced by an increase
of the number BS constraints which is found to increase with
decreasing volume. To counterbalance such effects and accom-
modate stress, bond-angles increase their angular excursion
which leads to a partial softening of the BB interaction and
reduces the number of corresponding constraints. At ambient
pressure (for V = Vg) and low temperature, liquid germania is
flexible (nc = 2.62 at 1200 K, Fig. 17).

At the network level, the global increase of BS constraints
arising from the growth of rGe and rO can be reduced by break-
ing the energetically softer BB constraints so that qGe(T,V ) and
qO(T,V ) tend to decrease at larger volumes. This is network
adaptation in a fashion that is very similar to what has been
found in rigidity tuned by composition76,88–90 at ambient pres-
sure. In fact, the observed features display striking similarities
with the self-organized intermediate phase found in network
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glasses91–93 where the growing stress induced by cross-linking
atoms is partially released over a finite compositional interval
fulfilling nearly nc ≃ 3.94 Similarly, in the present densified
germania liquid as both rGe and rO continue to increase with
decreasing volume, the adaptive behavior can only hold up to
a certain point (≃0.22 cm3/g). Beyond, the softening of BB
constraints can no longer accommodate the steadily increasing
pressure-induced stress resulting in an onset of stiffness under
pressure,57 which is manifested by an increase of qGe(T,V ) for
smaller volumes.

V. SUMMARY AND CONCLUSION

In this article, we have investigated by MD simulations
structural, thermodynamic, dynamic, and topological prop-
erties of densified germania, a densified tetrahedral liquid that
bears not only similarities but also differences with archetypal
systems such as silica or water. In a first part, a thermodynamic
framework has been used to determine the equation of state
of liquid GeO2. It is based on the fitting of the system energy
which allows to compute an analytical equation of state repro-
ducing very well the simulation data, in line with a previous
similar application on SiO2.23

Then, different thermodynamic properties and thermody-
namic precursors for a possible detection of LLTs have been
derived from the determined equation of state, such as the
TMD, the spinodal line, and the maximum of the isothermal
compressibility. In the case of germania, such precursors are
found at temperatures well below the glass transition temper-
ature, so that their possible signature is hidden by the slowing
down of the dynamics. We are aware of only another system
(potassium silicates) displaying part (i.e., immiscibility) of
these unexpected features. The study of the structure (coor-
dination numbers) shows a steady increase of, e.g., nGeO with
decreasing volume, and in the region of the spinodal line no
marked change is obtained.

In a second part, we have detected diffusivity anomalies,
which manifest for a given isotherm by a maximum and a
minimum with volume in the germanium and oxygen diffusion
constant. In addition, it has been found that the diffusivity
maximum is correlated with a minimum in activation energy
which signals the possibility to have strong glass-forming liq-
uids with a lower fragility index. We have then established a
relationship between such diffusivity anomalies and topolog-
ical constraints characterizing the liquid rigidity. It has been
found that the diffusivity anomaly Dmax takes place in a ther-
modynamic region (T,V ) where angles soften and experience
larger bond angle excursions in order to accommodate the
stress induced by the increase of the oxygen and germanium
coordination numbers which induce an increase of the number
of bond-stretching interactions. This provides evidence that
such an angular adaptation drives the observed anomalies in
diffusivities by reducing the liquid rigidity.

To which extent this result has a general ground and may
be also valid for other tetrahedral systems is a question of
great interest but open at this stage. However, evidence for its
general character is supported by the recent example of densi-
fied silicates57,72,94 showing exactly the same salient features

and relationship between transport anomalies and isostatic
rigidity.
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