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Abstract. – Ion-conducting (CaO)x(SiO2)1−x glasses and melts show a threshold behaviour
in dc conductivity near x = xt = 0.50, with conductivities increasing linearly at x > xt. We
show that the behaviour can be traced to a rigid (x < 0.50) to floppy (x > 0.50) elastic phase
transition near x = xt. In the floppy phase, conductivity enhancement is traced to increased
mobility or diffusion of Ca2+ carriers as the modified network elastically softens.

Electrical and thermal properties are directly related to the structure of silicate melts
and investigations into their structure have received therefore considerable attention in earth
science. It is indeed of fundamental importance to understand how magmas which contain
alkali and alkaline-earth silicates behave under different physical circumstances. Alkali silicate
glasses have been extensively studied within this context and numerous articles have focused
on the variation of structure [1], conductivity [2], glass transition [3], etc., with respect to
the alkali concentration. On the other hand, a small number of studies on alkaline-earth sili-
cate glasses have been reported to date. Some of them, however, have focused either on the
structure of glasses containing barium and calcium silicates [4], or on the thermodynamics
and miscibility of the corresponding melts [5] and density or specific volume [6]. It is worth
mentioning that most of these studies have been restricted around the 50% concentration
of alkaline-earth oxide where glass-forming tendency (GFT) is optimized [7]. Finally, even
though most of the fast ionic conductors (FIC) [8, 9] having potential applications in elec-
trochemical devices such as solid-state batteries are alkali (or silver) silicates or thiosilicates,
the conductivity of alkaline-earth silicates is non-negligible (about 2.10−7 Ω−1cm−1 at 550 ◦C)
and the role of the migrating calcium cations remains to be completely understood. Our work
attempts to address for the first time this basic issue.

In this letter, we report on (CaO)x(SiO2)1−x glasses and the common physical origin
for the behavior in both the GFT and the conductivity data that follow directly from the
Phillips-Thorpe constraint theory [10]. Calcium silicate melts and glasses near x = 0.5 are
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Fig. 1 – Compositional trends in glass transition temperature Tg(x) in (CaO)x(SiO2)1−x from DSC
and electrical measurements, compared to previous studies [11].

Fig. 2 – Dc conductivity σ in (CaO)x(SiO2)1−x glasses with Ca composition x for different tempera-
tures. The insert shows the conductivity in the melt from simulation and previous experiments [12]
at around 2000K.

optimally constrained and display percolative conduction in both melts and glasses. This is
a new feature that has never been observed in the corresponding alkali silicates, which links
ionic conductivity to glass elasticity and structure. Furthermore, we show that the sudden
increase of the conductivity at high calcium concentration has to be a consequence of the
calcium cation mobility percolation arising from the floppy-to-rigid transition [13]. The major
consequence is that here the carrier concentration does not dominate the conductivity, as
usually reported.

The samples were prepared by mixing pre-dried SiO2 (99.99%) and CaCO3 (99.95%) pow-
ders in the correct proportions. For each sample, the mixture was melted in a platinum crucible
at 1650 ◦C for two hours, and quenched by plunging the bottom of the crucible in cold water.
The glass transition temperatures were determined with a differential scanning calorimeter
Setaram DSC-1600 at a heating rate 10 ◦C/min. These values are slightly larger than those re-
ported by Shelby [11] using the dilatometric technique, but they exhibit the same global trend
(fig. 1), i.e. a plateau up to a calcium concentration in the range [0.45–0.48] and a more or less
linear increase for higher concentrations. In the solid state, the complex electrical conductivity
was measured with an impedance spectrometer 4194A in the temperature range 500 ◦C–950 ◦C
and in the frequency range 100 Hz–10 MHz. The samples were 0.5 cm2 glass pellets with a
thickness of about 1 mm. Platinum was evaporated as electrodes on both faces of the pellet.
The temperature was measured with a Pt/Pt-10%Rh thermocouple located at about 1 mm
from the sample [14]. We restricted our study in the molten state to only three compositions.

The dc conductivity σ displays almost the same trend as Tg(x), with a very small value
(about 10−7 Ω−1cm−1) for x < 0.47 and a sudden increase for larger compositions. The
almost constant value of σ in the low calcium region and the sudden increase for x > 0.47
have also been obtained in simulations and experiments for the molten state (fig. 2, insert [12]),
suggesting that molten and glassy states behave similarly. Furthermore, we have observed the
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Fig. 3 – Arrhenius plots of the ionic conductivity for (CaO)x(SiO2)1−x glasses in the solid and the
molten state. The fits for the estimation of EA and σ0 have been performed at low temperature in the
Arrhenius regime. Note the small deviation occurring close to the glass transition temperature. The
insert shows σT in the liquid as a function of temperature with corresponding Vogel-Fulcher-Tamman
(VFT) fits.

same kind of trend in our molten samples (see fig. 3) which are almost at the same temperatures
than those of ref. [12]. Figure 3 shows the Arrhenius plots [σT = σ0 exp[−EA/kBT ]] of the
conductivity σ for the glassy and the molten state. From the latter, it is also obvious that
the conductivity data of three compositions in the x ≤ 0.50 range map onto each other and
have the same global trend in the glass.

These results can be quantitatively understood using the tools of Lagrangian bonding
constraints as introduced by Phillips [10]. A network constrained by bond-stretching and
bond-bending forces sits indeed at a mechanically critical point when the number of constraints
per atom nc equals the network dimensionality. At this point, glass optimum is attained and
GFT is enhanced [15]. These ideas can be cast in terms of percolation theory by evaluating
the number of zero-frequency modes (floppy modes F/N) from a dynamical matrix [13],
which vanish at the floppy-to-rigid transition. The very accurate agreement of experiments
in chalcogenides with the predictions of the theory is quite remarkable [16, 17] but further
investigations devoted to alkali oxide glasses have been performed only recently [18,19].

We consider the CaO-SiO2 system as a network of N atoms composed of nr atoms that
are r-fold coordinated. Enumeration of mechanical constraints gives for bond-stretching forces
r/2 and for bond-bending forces (2r − 3) constraints. The average number of floppy modes
per atom F/N in a three-dimensional network is given by [13]

F/N = nd − nc = 3 − 1
N

∑
r≥2

nr

(
5r

2
− 3

)
(1)

which, applied to the present (CaO)x(SiO2)1−x case, yields

F/N = 3 − 11 − 7x

3 − x
, (2)

provided that Si is four-folded and calcium and oxygen are two-fold coordinated. The coordi-
nation number used in eq. (2) for Ca deserves some comments since computer simulations [12]
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and EXAFS studies [20] have suggested that the number of nearest neighbors of the calcium
atom may be about 6. However, the Debye-Waller factors in these studies on combined sys-
tems using either BaO or CaO as network modifier are slightly different, suggesting that the
oxygen neighbors of Ca were not all equivalent [20], thus promoting the chemical hypothesis
for the coordination number of Ca (r = 2). On the other hand, in constraint theory one
deals only with the bonds that provide a strong mechanical constraint, which means that the
covalent bonds are the most qualified. To be more specific, one can use Pauling’s definition to
determine the fractional ionic character f in the Ca-O bond [21], which yields here the value
f = 0.774 and a corresponding covalency factor of 0.226. With a coordination of 6 for Ca, the
corresponding covalent coordination is 1.36, somewhat lower than 2. Furthermore, mechanical
constraints provided by alkali atoms connected to more than one oxygen have been suggested
to be only resonating constraints [19], which do not participate in the global counting. Fi-
nally, alkali silicate and tellurate glasses are illustrative precedents [18]. In these systems, the
floppy-to-rigid transition occurs at the expected critical concentration [22] only if the involved
atoms (Na) have a covalent coordination number of 1 (and the “Pauling” analysis [23] yields
the covalent coordination 0.832–1.04), even though the number of nearest neighbors [24] of
the sodium atom is believed to be 5.

Our interpretation of the dc conductivity is as follows. At x = xc = 0.5, the number of
floppy modes F/N vanishes and the network undergoes a rigid-to-floppy transition, following
eq. (2). For x < 0.5 the system is stressed rigid, i.e. there are more constraints than degrees of
freedom. As a consequence, the mobility of the calcium cation is very weak because the cation
has to overcome a strong mechanical-deformation energy to move from one anionic site to an-
other. In an ideal floppy glass at x > 0.5, where only bond-bending and bond-stretching forces
are considered [10], this deformation energy is zero and related elastic constants (c11, c44) van-
ish [25]. Therefore, percolation of floppiness equals percolation of Ca mobility. As a result, one
has a substantial increase of the mobility, hence of the conductivity. In the strong electrolyte
Anderson-Stuart model [26], the activation energy for conductivity EA = EC+Em depends on
the Coulombic term EC (which controls the carrier rate) and a strain term Em related to the
mobility that can be thought of as the energy required to enlarge the radius of an anionic site
of length l(x) by an amount δr, the latter quantity being roughly equal to the cation radius:

Em(x) =
1
2
πc44(x)l(x)(δr)2. (3)

The energy term Em(x) depends on the shear modulus c44(x) which in turn depends on the Ca
concentration [27]. In a floppy model network, the shear modulus c44(x) is zero [25] leading
to a zero value for the strain energy Em(x) and a maximum in mobility.

Additional support for our interpretation derives from two other observations: 1) In the
molten (CaO)x-(SiO2)1−x, we still observe an increase in conductivity with x but with values
which are substantially higher compared to the glass (fig. 3) and which can be fitted with a
Vogel-Fulcher-Tamman (VFT) law:

σT = A exp
[ − ∆/(T − T0)

]
, (4)

arising from the variation in temperature of the calcium diffusion constant (via the Nernst-
Einstein equation) [26]. From the fits (solid lines in insert of fig. 3) it appears that the
pseudo-activation energy ∆ is constant for the two values in the floppy region (∆ = 2733.0
and 2740.7 K for, respectively, x = 0.44 and x = 0.5), while it increases for the composition
x = 0.53 (∆ = 3008 K). Also, the VFT temperature T0 at which the diffusion constant
(and the underlying relaxation time towards thermal equilibrium) diverges is dynamically
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Fig. 4 – Arrhenius parameters (activation energy EA (solid circles) and pre-exponential factor σ0

(open circles)) as a function of the mean coordination number r̄ in the glass phase.

inaccessible during glass transition, but it is accepted that its value is close to the ideal
Kauzmann [28] glass transition temperature TK. An ideal glass would therefore have its Tg

close to TK and T0, a situation which is met in the present system for the Phillips’ optimal
glass composition x = 0.5 (Tg/T0 = 1.0002 compared to Tg/T0 = 1.0218 for x = 0.44 and
Tg/T0 = 1.0621 for x = 0.53).

In fig. 4 the Arrhenius activation energy EA for conductivity and the pre-exponential factor
σ0 are represented as a function of the mean coordination number of the network [13] which is
r̄ = (8−4x)/(3−x). The former displays a minimum at r̄ = 2.4, which corresponds to x = 0.5.

This in turn can be compared to the non-reversing heat flow extracted from complex calori-
metric measurements at the glass transition temperature for various chalcogenide systems [29].
Here, this relaxing part of the total heat flow always exhibits a minimum at the floppy-to-rigid
transition (close to the mean-field [10] value r̄ = 2.4). The same global trend is observed in
numerous chalcogenides [29], and our calcium silicate glasses exhibit also a minimum in EA at
the mean coordination number r̄ = 2.4. From the chalcogenide example, we suggest that when
x = 0.5 structural relaxation of the glass network proceeds with minimal enthalpic changes

Fig. 5 – A1 mode frequency ν (open circles) and linewidth Γ (filled circles) of the Q4 line as a function
of Ca concentration. The insert shows part of the Raman spectra with the line of interest for x = 0.46
and the related Gaussian fits at 850 cm−1 (Q0-unit) and 950 cm−1 (Q2-unit) from [30].
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because the minuscule network stress is uniformly spread when the network is mechanically
critical (i.e. F/N = 0). Furthermore, we note that the variation of σ is here not driven by
the compositional trends of σ0. There appears to be rather a balance between the variation
of EA and σ0. 2) Rigidity percolation thresholds in Micro-Raman measurements performed
in backscattering geometry have been reported in ref. [16]. Therefore, we have studied in the
present work, as a function of the Ca concentration, the frequency ν and the linewidth Γ of the
stressed rigid SiO4/2 (Q4 unit, where the superscript denotes the number of network bridging
oxygens). The corresponding line (A1 stretching mode) exhibits a change of regime (fig. 5)
for the line frequency at the concentration x = 0.50, consistently with chalcogen analogs [16].
We concentrate here only on this (stressed rigid) line and will report separately the complete
Raman analysis elsewhere [31]. On the other hand, the evolution of the linewidth Γ with x
permits to follow the local environment of the Q4-unit. For x < 0.50, Γ remains constant,
related to the absence of change in the coupling of this unit with the rest of the network. It
is the coupling which makes possible the presence of rigid regions (through isostatic Q4-Q3

and stressed Q4-Q4 bondings), although the number of floppy Q2- and Q1-units is steadily
increasing. Above the critical concentration x = 0.5, the sharp drop of Γ clearly shows de-
coupling of the Q4-unit with respect to the network (fig. 5), signifying decoupling of stressed
rigid regions and thus percolation of floppiness.

In FICs, it is often believed that it is the carrier concentration that dominates the conduc-
tivity. In the strong electrolyte model [26], the cation electrostatic Coulombic energy barrier
has to be overcome to ensure conduction. On the other hand, in the weak electrolyte model
a dissociation energy is needed to create the mobile carrier [32]. These two pictures remain
of course valid as long as the sizes of the cations are weak compared to the interstices of the
glass network.

Our conclusion brings us back to the analogy with alkali oxide FICs and the popular con-
ductivity channel picture [24]. In these glasses, the rigid-to-floppy transition occurs at the
concentration xc = 0.20, which is very close to the reported threshold concentration separating
intrachannel cation hopping (involving a weak mechanical deformation of the network, since
the motion occurs only in macroscopic holes of the network) from network hopping (strong me-
chanical deformation only possible in a floppy network). However, in alkali silicates, no typical
behavior emerges in compositional trends of the conductivity because of the growing contribu-
tion of the free carrier rate [24]. This has to be put in contrast with our present study on cal-
cium silicates where the conductivity is almost constant up to a critical value xc � 0.48 beyond
which σ steadily increases. Therefore, the free-carrier concentration cannot be considered as an
increasing function of alkaline-earth composition. We believe that conductivity in calcium sili-
cates is driven by the carrier mobility in the network and percolates at the rigid-to-floppy tran-
sition. On this system, further investigations and measurements of physical quantities display-
ing usually a threshold behavior [33] at the rigidity transition will be achieved in close future.
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