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Abstract. – We study rigidity transitions in covalent amorphous networks using size-increasing
cluster approximations and constraint-counting algorithms. Possible consequences of the pres-
ence of self-organization are examined. The analysis reveals two transitions instead of the
usual (mean-field) single transition: one from a floppy to an isostatic rigid phase at a mean
coordination number r̄c1 where the number of floppy modes vanishes and a second one from
an isostatic to a stressed rigid phase at r̄c2. The value of the two critical mean coordination
numbers as well as the width ∆r̄ = r̄c2 − r̄c1 of the intermediate phase depend very strongly
on the presence of medium-range order elements such as rings.

Introduction. – The notion of constraints and their application to classical macroscopic
physics problems such as the stability of bridges and trusses have been introduced and first
considered by Lagrange and Maxwell [1,2]. On this basis, Phillips asserted [3,4] some twenty
years ago that covalent networks can be mechanically constrained by interatomic valence forces
such as bond-stretching and bond-bending and optimal glass formation is attained when the
network sits at a mechanically critical point. This happens when the constraints nc per atom
estimated by Maxwell counting equal the degrees of freedom per atom in 3D, i.e. nc = 3.

Such mechanical systems have been examined in terms of percolation theory by Thorpe [5]
who showed by a normal mode analysis that the number of zero frequency solutions (floppy
modes) f of the dynamical matrix equals f = 3−nc and vanishes when the mean coordination
number r̄ of the network reaches the critical value r̄c = 2.4. In this mean-field approach,
one considers a network of N atoms composed of nr atoms that are r-fold coordinated. The
enumeration of mechanical constraints in this system gives r/2 bond-stretching constraints and
(2r−3) bond-bending constraints for an r-fold coordinated atom. Since then, a certain number
of structural possibilities have been taken into account such as rings, broken bond-bending
constraints [6] or the effects of one-fold coordinated atoms [7]. These powerful ideas have led to
the prediction of a floppy-to-rigid transition in random networks and various examples where
rigidity percolation threshold occurs have been reported [8]. Also, applications of rigidity in
biology and computational science have been reported [9, 10]. Nevertheless, experiments on
binary and ternary chalcogenide glasses have shown the existence of two transitions at r̄c1 and
r̄c2 instead of the single mean-field transition [11–13], suggesting that the mean-field constraint
counting alone, as has been realized up to now, may be insufficient to accurately describe the
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underlying phase transitions. These transitions show up in Raman scattering experiments
where characteristic mode frequencies display a marked change in behavior. For r̄ < r̄c1 these
frequencies are almost composition independent whereas for r̄ > r̄c2 they show a power law
behavior [13], consistently with numerical calculations [14]. In the intermediate region, a
linear increase is observed [13]. Also, modulated differential scanning calorimetry (MDSC)
realized on different chalcogenide glasses shows that in the intermediate region r̄c1 < r̄ < r̄c2,
the non-reversing heat flow almost vanishes, suggesting evidence [15] for the growth of a self-
organized (isostatic rigid) intermediate phase between the floppy and the stressed rigid phases,
for which evidence is also obtained from numerical simulations [16].

However, a certain number of questions remain at this stage. What controls the values r̄c1

and r̄c2, the width ∆r̄ = r̄c2 − r̄c1? Recent results show that this width can be particularly
sharp [17]. How does isostatic regions and self-organization influence the absolute magnitude
of these quantities? What can be done which goes beyond the elegant mean-field approach?
This letter attempts to address these basic issues. We report here on the role of medium-
range order (MRO) in glasses of the form BxA1−x with coordination numbers rA = 2 and
rB = 4, and r̄ = 2 + 2x. Typical glasses are the Group-IV chalcogenides such as GexSe1−x

or SixSe1−x which have been extensively studied in this context. To construct MRO, we have
used size-increasing cluster approximations (SICA) to generate sets of clusters on which we
have applied constraint-counting algorithms. The results show two transitions, one at which
the number of floppy modes vanishes. Another transition (a “stress transition”) where stress
in the structure cannot be avoided anymore, is located beyond. In between, this provides
evidence for a self-organized network for which the probability of stress-free clusters has been
computed. The width ∆r̄ increases with the fraction of MRO elements. Finally, in case of
random bonding, a single transition is obtained.

Construction. – SICA have been first introduced to elucidate the formation of borate
glasses [18] and fullerenes [19], but also to infer the intermediate-range order in amorphous
semiconductors [20]. They rely on the statement that the fraction of significant MRO struc-
tures converges very rapidly to a limit value when the size of the considered clusters is increas-
ing [21]. The construction is realized in Grand Canonical Ensemble with particular energy
levels. One starts from short-range order molecules (the basic units at the initial step l = 1
which will serve as building blocks) and construct all possible structural arrangements of two
basic units (l = 2, see table I), three basic units (l = 3) and so on. This is supposed to be
realized at the formation of the network, when T equals the fictive temperature Tf which is
defined by the intersection of the extrapolated supercooled liquid and glass curves [22]. Here,
we have chosen as basic units the A2 and the stoichiometric balanced BA2 molecules (e.g.,
Se2 and GeSe2) for a reason which will become clear below. We have checked that the results
do not depend on this particular initial choice. These basic units coming from an infinite
reservoir have respective probabilities 1 − p and p = 2x/(1 − x), x being the concentration of
B atoms. The creation of a chain-like A2–A2 structure will involve a chemical potential gain
of E1, isostatic A2–BA2 bondings will use a chemical potential gain of E2 and the creation of
corner-sharing (CS) and edge-sharing (ES) BA4/2 tetrahedra, respectively, E3 and E4. The
latter quantity will be used to tune the fraction of ES among the structure. The produced
probabilities have different statistical weights which correspond to the number of equivalent
ways a given cluster can be constructed. This quantity can be regarded as the degeneracy of
the corresponding energy level (see fig. 1). For instance, given the coordination number 4 of
the basic unit BA4/2 and labeled covalent bonds a CS B2A4 cluster has the multiplicity 4× 4,

whereas for a ES cluster, we count 2 ×

(

4
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)

= 72 in three dimensions.
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Fig. 1 – Some of the MRO clusters generated by SICA at step l = 3 with their statistical weight.
a) A six-membered ring with nc = 3.67. b) An edge-sharing tetrahedra chain typical of vitreous SiSe2

with nc = 3.22. c) A six-membered ring with chalcogen inclusions and nc = 3.25.

Due to the initial choice of the basic units, the value of the chemical potential E2 will
influence the probability of isostatic clusters since this quantity is involved in the probability
of the isostatic BA4 cluster (nc = 3, see table I). If we have E2 � E1, E3, E4, the network will
be mainly isostatic.

At step l = 2, we can generate three types of clusters (table I), A4, BA4 and B2A4 having
two isomers (the CS and ES tetrahedra). Their unrenormalized probabilities are given by
pA4

= 4(1 − p)2e1, pBA4
= 16p(1 − p)e2, pCS = 16p2e3 and pES = 72p2e4 out of which the

concentration x(l=2) of B atoms can be extracted. The quantities ei = exp[−Ei/Tf ] are the
Gibbs weights at Tf . Next, we compute the number of mechanical constraints (bond-bending
and bond-stretching) per atom on each cluster by Maxwell counting. Special care has to be
taken in order to avoid the counting of redundant constraints on clusters containing rings,
following the procedure described by Thorpe [5]. The probabilites depend on two parameters
(i.e. the Gibbs weights e1/e2 and e3/e2) and eventually e4/e2 if one considers the possibility
of ES or rings. One of these two weights can be calculated by writing a conservation law for
the concentration of B atoms [23]:

x(l) = x . (1)

These weights become composition dependent in solving eq. (1) which means that either the
chemical potentials Ei or the fictive temperature Tf depend on x [22] but here only the ei(x)-
dependence is relevant for our purpose. With increasing cluster size, it is obvious that the
number of potential isomers will increase (table I), and also the different types of rings which
have some evidence in chalcogenides [24]. We have realized the construction up to the step
l = 4. At each step, we have determined either e1/e2 or e3/e2 solving eq. (1) and computed
the total number of constraints nc per atom on the set of clusters (see table I). Finally, we
have looked for the concentration of B atoms (or the mean coordination number r̄) for which
the number of floppy modes vanishes.

Results. – Random bonding is obtained by setting the above-defined Gibbs weights ei

to one and the cluster probabilities are then only given by their statistical weights. Solving
f = 0, one obtains a single transition for all steps in the mean coordination number range
[2.231, 2.275], somewhat lower than the usual mean-field value. This comes from the fact that
the number of equivalent ways to connect BA4/2 units together is substantially higher than
for the connection of (chain-) A2 units. We do not obtain an intermediate phase in the case
of random bonding.
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Table I – Clusters generated at the different SICA steps l with the chemical formula in case of

GexSe1−x glasses, the number of isomers and the number of constraints nc per atom. The number

of clusters containing rings is indicated in brackets. GeSe4 and Ge2Se8 are isostatic clusters with

respective energy levels E2 and 2E2.

Size l Cluster Number of isomers nc

1 Se2 1 2
GeSe2 1 3.67

2 Se4 1 2
GeSe4 1 3
Ge2Se4 2(1) 3.67

3 Se6 1 2
GeSe6 2 2.71
Ge2Se6 4(2) 3.25
Ge3Se6 4(3) 3.67

4 Se8 1 2
GeSe8 3 2.56
Ge2Se8 11(6) 3
Ge3Se8 12(9) 3.36
Ge4Se8 10(9) 3.67

Let us turn to self-organization and proceed as follows. Starting from a floppy cluster
of size l (almost a chain-like structure made of A atoms), we allow the agglomeration of a
new basic unit onto this cluster to generate the cluster of size l + 1 only if the creation of a
stressed rigid region can be avoided on this new cluster (due to the agglomeration of a BA4/2

basic unit onto another BA4/2 tetrahedron being part of the l-sized cluster). With this rather
simple rule, upon increasing r̄ we will accumulate isostatic rigid regions on the size-increasing
clusters because BA4/2 units are only accepted in A2–BA4/2 isostatic bondings. Alternatively,
we can start from a stressed rigid cluster which exists at higher mean coordination number
(r̄ ≤ 2.67) and follow the same procedure but in opposite way, i.e. we allow only bondings
which lead to isostatic rigid regions, excluding systematically the possibility of floppy A2–A2

bondings. Here, the simplest case deals with dendritic clusters, where we have removed all
possibilities of ring creation. For l → ∞, this would permit to recover the results on Random
Bond Models [25] for which there are no loops or rings in the thermodynamic limit and to
obtain equivalence with Bethe lattice solutions [26]. We obtain a single transition for even
l steps at exactly the mean-field value r̄ = 2.4, whereas for the step l = 3 there is a sharp
intermediate phase defined by f = 0 (again at r̄ = 2.4) and the vanishing of floppy regions
(i.e. e1/e2 is zero) at r̄ = 2.382(6). The probability of isostatic clusters as a function of the
mean coordination number has been computed and shows that the network is entirely stress
free at the point where f = 0 (solid line, fig. 2). If there is a width (for l = 3), then the same
probability is less than one and displays a narrow distribution.

Next, we have allowed a certain amount of medium-range order (MRO) by setting the
quantity e4/e2 �= 0. Two transitions are then obtained for every SICA step. The first one is
at r̄c1 where the number of floppy modes vanishes. The second one is at r̄c2. When starting
from a floppy network close to r̄ = 2 and allowing only isostatic bondings, there is a point
beyond which stressed rigid regions created by the connection of at least two BA4/2 units
cannot be avoided anymore. This is the definition of the point at r̄c2. Mathematically, this
is translated in the SICA approach by a non-zero Gibbs weight e3/e2, and is composition
dependent in the region r̄c2 < r̄ < 2.67. We call this point the “stress transition”. We show
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Fig. 2 – Probability of floppy, isostatic rigid and stressed rigid clusters as a function of the mean
coordination number for different fractions of ES at l = 2. The solid lines correspond to the dendritic
case where no edge-sharing tetrahedra are allowed. The broken lines correspond to the same quantities
for ES fraction at the stress transition of 0.156, 0.290 and 0.818. For an ES fraction of 0.156, the
filled squares indicate the point r̄c2 at which the stress transition occurs and serves to define the
intermediate phase ∆r̄.

the l = 2 result (fig. 2) where f = 0 at r̄c1 = 2.4 for different fractions of ES tetrahedra,
defining an intermediate phase ∆r̄. r̄c1 does not depend on the ES fraction, as well as the
fraction of stressed rigid clusters in the structure. To ensure continuous deformation of the
network when B atoms are added and keeping the sum of the probability of floppy, isostatic
rigid and stressed rigid clusters equal to one, the probability of isostatic rigid clusters connects
the isostatic solid line at r̄c2. Stressed rigid rings first appear in the region r̄c1 < r̄ < r̄c2

while chain-like stressed clusters (whose probability is proportional to e3) occur only beyond
the stress transition, when e3 �= 0. We conclude that when r̄ is increased, stressed rigidity
nucleates through the network starting from rings. Results remain similar for the even l = 4
step. It appears from fig. 2 that the width ∆r̄ = r̄c2 − r̄c1 of the intermediate phase increases
with the fraction of MRO. We have represented this quantity as a function of the MRO fraction
at the rigidity transition in fig. 3, which shows that ∆r̄ is almost an increasing function of the
ES fraction as seen from the result at SICA step l = 4. Here, there is only a small difference
between allowing only four-membered rings (ES) (lower dotted line) or rings of all sizes (upper
dotted line) in the clusters. Finally, one can see from fig. 2 and the insert of fig. 3 that the
probability of isostatic clusters is maximum in the window ∆r̄, and almost equal to 1 for the
even SICA steps, providing evidence that the structure is almost stress-free.

Discussion. – Chalcogenide glasses represent the ideal systems to check these results.
Different types of experimental measurements have given evidence of the two transitions and
the nature of the self-organized intermediate phase. Raman scattering has been used [11, 13]
as a probe to detect elastic thresholds in SixSe1−x and GexSe1−x glasses. Specifically, changes
in the CS mode chain frequencies have been studied with glass compositions and show a kink
(or a jump) at the mean coordination number r̄c1 = 2.4 and r̄c2 = 2.52 in Ge- and r̄c2 = 2.54
in Si-based systems, suggesting onset of a new rigidity at r̄c2. A clear correlation between
these results and the vanishing of the non-reversing heat flow ∆Hnr (the part of the heat flow
which is thermal history sensitive) in MDSC measurements has been shown [11, 13]. Obvi-
ously, since this ∆Hnr term provides a measure of how different a glass is from a liquid in a
configurational sense, this suggests that in the intermediate phase, glass and liquid structure
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Fig. 3 – Width of the transition ∆r̄ as a function of the fraction of MRO clusters at the rigidity
transition for l = 2 (solid line), l = 3 (dashed line) and l = 4 (dotted lines). At step l = 2, the MRO
clusters reduce to the edge-sharing GeSe4/2 tetrahedra. For larger steps, different rings sizes (4, 6, 8)
have been taken into account. The lower dotted line corresponds to a system at l = 4 having only
ES as MRO element. The insert shows the probability of isostatic clusters with mean coordination
number r̄ for l = 4 (dotted line) and l = 3 (dashed line). The shaded region of l = 4 is defined by the
corresponding ∆r̄.

are closely similar to each other.
The SICA and constraint-counting algorithms show that the width ∆r̄ of the intermediate

phase increase with the fraction of ES tetrahedra and more generally with MRO composed
of small rings (fig. 3). We stress that the width should converge to a lower limit value of ∆r̄
compared to the step l = 2, therefore one can observe the shift downwards when increasing l
from 2 to 4. This limit value is in principle attained for l → ∞, or at least for much larger
steps than l = 4 [20]. For Si-Se, ∆r̄ = 0.14 is somewhat larger than for Ge-Se (∆r̄ = 0.12)
consistently with the fact that the number of ES is higher in the former [13].

In summary, we have shown that size-increasing cluster approximations could be used to
go beyond the mean-field approach of the rigidity transitions. We have estimated for the
different approximation steps the number of mechanical constraints and the number of floppy
modes f and shown that two transitions were obtained in this situation: one at which f
vanishes and another at which stressed rigid regions appear on the clusters. The width ∆r̄ is
an increasing function of the MRO fraction. In the window ∆r̄, the rate of isostatic clusters
is at its maximum. These new results should motivate developments on the role of local
structure and MRO in the rigidity transition, and applications to Group-V chalcogenides such
as AsxSe1−x glasses.
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