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PACS. 61.43.Fs – Glasses.

PACS. 63.50.+x – Vibrational states in disordered systems.

PACS. 61.20.-p – Structure of liquids.

Abstract. – The non-reversing heat flow, ∆Hnr(x) near Tg in ternary GexAsxSe1−2x glasses
is examined by temperature-modulated differential scanning calorimetry. The ∆Hnr(x) term
shows a deep minimum (which is almost zero) in the 0.09 < x < 0.14 range, identified with
the intermediate phase, and an increase, both at low x (< 0.09) in the floppy phase and at
high x (> 0.14) in the stressed rigid phase. Expressed in terms of mean coordination number,
r̄ = 2 + 3x, the large width, ∆r̄ = rc(1) − rc(2) = 0.15, of the intermediate phase and its low
onset value rc(1) = 2.27 are shown to be consistent with the presence of Se = As(Se1/2)3 units in
addition to pyramidal As(Se1/2)3 and tetrahedral Ge(Se1/2)4 units in the stress-free backbone.
The vanishing of ∆Hnr(x) in the intermediate phase is in harmony with the notion that the
number of Lagrangian constraints/atom exhausts the three available degrees of freedom, and
leaves the backbone in a mechanically stress-free state.

Introduction. – A floppy-to-rigid transition in network glasses was predicted [1, 2] in
the early 1980’s. The transition has enjoyed widespread interest in science, not only because
the glass forming tendency is optimized near this transition, but also because it serves as
a paradigm of percolative transitions in condensed matter [3], and computational complex-
ity [4] in computer science (NP — complete problem). In random networks numerical calcu-
lations [2] have shown that a solitary floppy-to-rigid transition occurs when the connectivity
or mean coordination number r̄ increases to 2.385, quite close to the predicted mean-field
value of 2.40. Experimentally, new details of the transition have recently emerged [5–8] in
binary (Ge or Si)xSe1−x glasses by Raman scattering and T -modulated Differential Scanning
Calorimetry (MDSC). In contrast to numerical simulations on random networks [2], Raman op-
tical elasticities provide evidence of two transitions, a second-order transition near rc(1) = 2.40
from a floppy to an unstressed rigid phase, and a first-order transition near rc(2) = 2.52 from
an unstressed rigid to a stressed rigid phase. The unstressed nature of the intermediate
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Fig. 1 – MDSC scan of indicated glass sample taken with a model 2920 instrument from TA Instru-
ments, Inc., using a modulation of 1 ◦C/100 s, and a scan rate of 3 ◦C/min. Ḣt, Ḣnr and Ḣr represent
the total, non-reversing and reversing heat flow rates. The shaded area represents the non-reversing
heat flow, ∆Hnr.

phase, r̄c(1) < r̄ < r̄c(2), bounded by the two transitions emerges from T -Modulated Differ-
ential Scanning Calorimetry (MDSC) measurements [5–8] that reveal that glass transitions
become almost thermally reversing in this compositional window. The potential of MDSC as
a tool to probe the nature of Tg in chalcogenides goes far beyond DSC, and is illustrated in
several recent publications [5–8]. These new experimental results are much closer to recent
numerical simulations on self-organized networks [9] that predict two transitions.

In this work we report, for the first time, on the observation of a thermally reversing
window in the GexAsxSe1−2x ternary, which suggests that the backbone forms at xc(1) = 0.09
or r̄c(1) = 2.27, while the transition to the stressed rigid state occurs at xc(2) = 0.14 or
rc(2) = 2.42. The large width (∆r̄ = 0.15) of the window and particularly its formation
at a value substantially lower than the usual mean-field value [1, 2] of r̄ = 2.40, constitutes
a new feature of the rigidity transition in the present ternary. The feature is suggestive of
the presence of optimally coordinated quasi-tetrahedral Se = As(Se1/2)3 units in addition to
tetrahedral Ge(Se1/2)4 and pyramidal As(Se1/2)3 units in the backbone of the ternary glasses.

The GexAsxSe1−2x ternary has been viewed as a paradigm of a Zachariasen glass consisting
of a random network of As-pyramids and Ge-tetrahedra cross-linking Sen-chain fragments.
The connectivity of these glasses can be changed in a continuous fashion by changing the
cation concentration x. Assuming Ge, As and Se to possess coordination numbers of 4, 3, and
2, respectively, one obtains the mean coordination number [10]

r̄ = 4x + 3x + 2(1− 2x) = 2 + 3x , (1)

which spans the range 2.0 < r̄ < 3.0 as x changes in the 0 < x < 0.33 concentration range.
Inelastic neutron scattering measurements [11] on this ternary have shown that the density

of vibrational states at low frequencies (0 < ω < 10meV) depends exclusively on r̄, a result
that has been described as the vibrational isocoordinate rule. The topological rule apparently
also describes trends in vibrational lifetime of a water guest molecule [12] in spectral hole-
burning experiments. Furthermore, relaxation of an external stress in flexural studies has
revealed [13] that the activation energies EY (r̄) show a global minimum in the 2.30 < r < 2.42
range.
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Experimental results. – The glasses were synthesized [4–8] in the usual way by quenching
homogeneously alloyed melts in water. The glass transition endotherms were deconvoluted
into reversing and non-reversing heat flow terms the usual way using a model 2920 MDSC
from TA Instruments, Inc. Figure 1 displays an actual scan of a sample at x = 0.24 in
the present ternary showing the convolution. Figure 2 provides a summary of the present
MDSC results. The Tg’s deduced from the inflection point of the reversing heat flow rate
are plotted in fig. 2a, the non-reversing heat flow term, ∆Hnr(x), is plotted in fig. 2b, and
the change ∆Cp(Tg) from the reversing heat flow rate is plotted in fig. 2c. Tg’s are found
to increase with x, as the connectivity of the backbone increases as also recognized earlier in
DSC measurements [14]. The central result to emerge from the MDSC measurements is the
deep global minimum in ∆Hnr(x) for 0.09 < x < 0.14. Frequency corrections to ∆Hnr were
made in the usual way [15] by first scanning up and then down in T across Tg. To facilitate a
comparison of the present MDSC results with flexural studies [13], we plot ∆Hnr(r̄) variation
as a function of r̄(= 2 + 3x) in fig. 3a, and have reproduced the activation energy for an
external stress relaxation, EY (r̄), reported by Bohmer and Angell [13] in fig. 3b. There is a
striking similarity in the compositional trends of these two observables.

Discussion. – The Ge-As-Se ternary represents a benchmark test of agglomeration theory
which provides a means to predict Tg-variation as a function of network connectivity as shown
by one of us [16, 17]. According to this theory, a glassy liquid is visualized to be composed
of well-defined structural units in which the agglomeration of units is thermally activated
and proceeds over finite time steps in a stochastic fashion. The glass transition temperature
is identified with the temperature at which the agglomeration processes are frozen in. At
its simplest level of description (single-bond formation), the construction yields a random
bond distribution, and in favorable cases, parameter-free predictions for Tg in terms of the
concentration of the structural units, or glass chemical composition.

For the present Ge-As-Se ternary, one assumes tetrahedral Ge(Se1/2)4- and pyramidal
As(Se1/2)3-units crosslink Seq-chain fragments in a stochastic fashion, and the results [18]
are shown as the smooth line in fig. 2a. The predicted curve is in reasonable accord with the
observed Tg(x) trend for x < 0.14. For x > 0.14, the departure between theory and experiment
becomes qualitative, suggesting that the randomness of bonding between local structural units
is apparently replaced by the presence of extended range structural correlations. It underscores
the non-stochastic nature of the backbone emerging in overcoordinated glasses. Such glasses
represent the stressed rigid phase of the present ternary. And it is striking indeed that the
onset of this phase suggested by these Tg(x) trends actually coincides with a large increase
in the ∆Hnr(x) term, both independently showing (compare fig. 2a and 2b) that glasses at
x > xc(2) = 0.14 are rigid.

Constraint counting algorithms [1, 2] provide a simple but elegant means to understand
the thermal results on the present glasses. The glasses are viewed to be floppy at r̄c <
2.27, optimally constrained in the 2.27 < r̄ < 2.42 range, and stressed rigid at r̄ > 2.42.
Stressed rigid glasses [19] consist of mechanically overconstrained backbones in which the
mean constraint per atom n̄c exceeds 3. Bond-stretching constraints of the backbone increase
and exhaust the floppy modes of the Se matrix, thus pushing Tg’s up to 350 ◦C (fig. 2a).
The high Tg’s assist in the relaxation of an external stress, and result in a smaller increase in
∆Hnr(r̄) and EY (r̄) in the stressed rigid phase than in the floppy phase. In undercoordinated
networks (n̄c < 3) cyclical modes [19, 20] proliferate, and one would have expected ∆Hnr(r̄)
and EY (r̄) to steadily decrease as the number of floppy modes increases when r̄ is lowered to
2 from 2.4. However, one must remember that the presence of dihedral angle- and van der
Waals- forces in floppy Seq-chain segments upshifts the mean energy of floppy modes, Ef , from
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Fig. 2 – (a) Tg(x) variation, (•) present MDSC results, (�) DSC results from ref. [13]. The continuous
line is a calculation of Tg(x) based on agglomeration theory, (b) ∆Hnr(x) and (c) ∆Cp(x) variation in
the present ternary. In (b) the open circles represent results on finely crushed (10µm) glass samples
while the filled circles represent those on glass chips (2 mm).

Fig. 3 – (a) ∆Hnr (r̄) variation in GexAsxSe1−2x ternary and GexSe1−x binary, showing the inter-
mediate phases. The results on the binary glass are taken from ref. [4]. (b) This figure taken from
ref. [12] shows activation energies for viscosity (�) and activation energies for stress relaxation (◦) in
the present ternary.

zero to 5 meV, as shown by inelastic neutron scattering measurements [20]. Furthermore, since
Tg’s monotonically decline to acquire values close to room temperature, Tg � 40 ◦C (fig. 2a) as
r̄ → 2, it becomes increasingly difficult for floppy glasses to soften or an external stress to relax
unless the network is given enough heat of melting to overcome these internal stresses. The
result of a monotonic increase in ∆Hnr(r̄) and EY (r̄) as r̄ decreases to 2 in the floppy phase
(fig. 2b) leads then to a global minimum of these observables when the network is optimally
constrained. ∆Hnr(r̄) can thus be viewed as an intrinsic measure of network stress which
increases due to entropic considerations in undercoordinated glasses, and due to enthalpic ones
in the overcoordinated networks.

The absence of network stress in the 2.27 < r̄ < 2.42 compositional window is both
a striking and unusual result. It is striking for its large compositional width, ∆r̄ = 0.15
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Table I – Building blocks of present ternary glasses and their mean coordination number, r̄, and
mean constraints/atom, n̄c.

Building block Mean coordination Mean constraints
r̄ n̄c

2.67 3.67

2.40 3

2.285 3

2.0 2

and it is unusual for its onset at r̄c(1) = 2.27. The latter is not consistent with bridging
tetrahedral Ge(Se1/2)4 and pyramidal As(Se1/2)3 units as the only building blocks of the
stress-free backbone in the glasses. These units possess (table I) a mean coordination of
2.67 and 2.40, considerably higher than the onset value of 2.27. The present observations are,
however, consistent with existence of an optimally coordinated building block in the backbone,
with a lower r̄ than in the pyramidal As(Se1/2)3 units. Indeed, constraint counting algorithms
show that the mean constraint per atom for a quasi-tetrahedral Se = As(Se1/2)3 unit exactly
equals 3 even though its mean coordination number r̄ = 2.285, because of the terminal [21]
nature of the double-bonded Se. This can be seen by enumerating the total number (Nc) of
bond-stretching (nα = r/2) and bond-bending (nβ = 2r− 3) constraints in a Se = As(Se1/2)3
formula unit, and normalizing with respect to the number N (= 3.5) of atoms in such a unit
to obtain n̄c:

n̄c = [Nc(As) + Nc(b-Se) + Nc(nb-Se)/N = [7 + 3 + 1/2]/3.5 = 3 . (2)

In calculating Nc above, we consider [21] bond-stretching constraints only for the non-
bridging (nb)-Se, but both bond-stretching and bond-bending constraints for the bridging
(b)-Se. The mean coordination number r̄ of the Se = As(Se1/2)3 unit, then follows as

r̄ = [r(As) + (3/2)r(b-Se) + r(nb-Se)]/N = [4 + 3 + 1]/3.5 = 16/7 = 2.285 . (3)

The intermediate phase [6] in binary GexSe1−x glasses extends from r̄c(1) = 2.40 to r̄c(2) =
2.52 yielding a width, ∆r̄, of 0.12 (fig. 3a). The narrower width is due to the limited ways
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a stress-free backbone [6] can form with only two building blocks; an overcoordinated one,
Ge(Se1/2)4 (r̄ = 2.67), and an undercoordinated one: Seq (r̄ = 2.00). The down shift of the
rigidity onset from the usual mean-field value [19] of r̄c(1) = 2.4 to r̄c(1) = 2.27 in the present
ternary, most likely stems from the optimally constrained nature of the 4-fold coordinated
As unit. This feature of structure probably also contributes to the width, ∆r̄ = 0.15, of
the intermediate phase, which derives from the high multiplicity of optimally coordinated
units in the backbone. Thus, in addition to a combination of Ge(Se1/2)4 tetrahedral units
(n̄c = 3.67) and Seq-chains (n̄c = 2), the existence of pyramidal (As(Se1/2)3 units (n̄c = 3), and
quasi-tetrahedral Se = As(Se1/2)3 units (n̄c = 3) in the backbone substantially increases the
number of ways in which a stress-free network can be realized in the intermediate phase. These
ideas could be independently confirmed by molecular dynamic simulations of the intermediate
phase in the present ternary. We are currently examining these glasses in Raman scattering
measurements to establish vibrational signatures of the various building blocks.

It is possible that the small deviations between the calculated and observed Tg’s in the
0.02 < x < 0.08 range are due to the presence of some 4-fold coordinated As units in the
present ternary, which were excluded in our calculations. Fourfold coordinated P units (Se =
P(Se1/2)3) have been observed in the P-Se glass system [22] by NMR, where the ratio η(r) of
4-fold to 3-fold coordinated P is found to decrease linearly with r̄, starting from a value of 1.0
at r̄ = 2 to vanish at r̄ = 2.40. If such an η(r) variation is also observed in the present ternary,
the concentration of 4-fold As sites would show a maximum near r̄ = 2.2 corresponding to
the composition x = x′ = 0.07 (see fig. 2a). Tg(x) calculations based on agglomeration theory
including 4-fold coordinated As sites as well are currently being performed.

The ∆Hnr(x) results were typically obtained on glass samples of about 2 mm on an edge
(filled circles in fig. 2a). Such measurements were also performed on finely crushed glass
samples measuring about 10µm on an edge, and gave the same ∆Hnr(x) trends as illustrated
by the open circles in fig. 2a. These results are reminiscent of the neutron spin echo structural
studies [23], and flexural studies of an external stress on Se glass [24], both of which gave
identical Kohlrausch stretched exponent β of 0.45(2) even though the length scales probed in
these two measurements differed by 12 orders of magnitude [25]. It thus appears that both
the magnitude of internal stress (∆Hnr) and its relaxation in time (β) near Tg scales over
several orders in magnitude in linear dimension.

Conclusions. – MDSC experiments on the present ternary glasses show the existence of
a rather wide thermally reversing window, rc(1) = 2.27 < r̄ < rc(2) = 2.42 with a low onset
value at r̄c(1) = 2.27. The window is identified with the existence of a stress-free intermedi-
ate phase separating floppy from rigid compositions. The wide width and low onset of the
intermediate phase is consistent with the presence of optimally coordinated Se = As(Se1/2)3
units in these glasses, in addition to tetrahedral Ge(Se1/2)4 and pyramidal As(Se1/2)3 units.
Glass network stress at Tg as measured by the non-reversing heat flow, ∆Hnr(r̄), appears to
display scaling over several orders of magnitude in sample dimension.
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