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Abstract. – Stochastic network description provide useful information about the link between
the glass transition temperature Tg and network connectivity. In multicomponent glasses, this
permits to distinguish homogeneous compositions (random network) from inhomogeneous ones
(local phase separation). The stochastic origin of the Gibbs-Di Marzio equation is predicted
at low connectivity and the analytical expression of its parameter emerges naturally from the
calculation.

Most inorganic solids can be made amorphous by vapor deposition onto cold substrates.
However, only a very few of inorganic melts can be supercooled by a water or air quench to yield
bulk glasses which solidify at the glass transition temperature Tg. Oxides as vitreous silica
(SiO2) and chalcogenides (e.g., GexSe1−x) represent some of the best-known glass formers
in nature. There have been numerous efforts to understand the nature of glass transition,
and to relate Tg to some easily measurable quantities. Tanaka has proposed a relationship
between Tg and the mean coordination number [1]. Gibbs and Di Marzio have developed a
second-order phase transition model and obtained an empirical relationship (GDM equation)
between the transition temperature and the density of cross-linking agents inserted inside a
system of molecular chains [2]. However, there is still no universal relationship between Tg

and the glass network connectivity, satisfied by allmost all kinds of glass formers. The first
attempt of such a quantitative description has been given only very recently [3]. We present
in this letter several important results concerning the glass transition temperature variation
as a function of connectivity in network glasses.

Mean-field estimates of Tg work only at low connectivity, but they do not work at high
connectivity because a stochastic description fails.

In the chalcogen limit (low connectivity), an adapted version of the GDM equation for
chalcogenides [4] can be obtained analytically from the stochastic description of the network.
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Consequently, the parameter β appearing in [4] can be computed in this limit from the
coordination number for any glass system, with simple and elegant sum rules.

The combination of the GDM equation in [4] and the topological calculation of the param-
eter β yields the correct trends in the Tg variation up to r̄ = 2.4, in agreement with Phillips’
constraint theory [5]. Moreover, it suggests that usual curve-fitting with GDM equation hides
the stiffness transition at r̄ ' 2.4, when realized over the whole concentration range because
of the occurrence of chemical ordering.

The prediction of the model is parameter-free and it can be easily extended from binary to
ternary, quaternary and multicomponent network-forming materials. We should stress at this
point that the model is not intended to describe the physics of glass transition, but rather the
connectivity dependence of the temperature of this transition. To this end, the chalcogenide
systems are of particular interest for the application of the model because of the minor role
played by kinetics, compared to the larger role of connectivity in determining the value of the
glass transition temperature [6]. For the reader’s convenience, let us first sketch the main ideas
of the stochastic model.

If the network of a certain glass system forms a random network, then one should be able
to treat statistically with equivalent fashion different states of structural description. For
example, in a binary BxA1−x structure the mean probability pb

A = 1/2[2pAA + pAB ] of finding
an atom A among randomly distributed bonds A-A and A-B (with probability pAA and pAB)
should be equal to the probability pa

A of finding it among a random distribution of A and B
atoms. Thus, pb

A = pa
A. We have excluded the possibility of a B-B bond which occurs only

in a modifier-rich glass structure. The bond probabilities pij (with (i, j) = (A,B)) should
be proportional to the concentration x and (1 − x) (or pa

A and pa
B), a statistical weight wij

related to the coordination numbers of the atoms A and B (rA and rB), and a Boltzmann
factor involving both the glass transition temperature Tg and the bond energies Eij . The
probabilities pAA and pAB can be written as follows:

pAA =
r2
A

Z
(1 − x)2e−EAA/kBTg , (1)

pAB =
2rArB

Z
x(1 − x)e−EAB/kBTg ; (2)

Z normalizes the bond probabilities. The statement: 1 − x = pa
A = pb

A can be solved in terms
of the concentration x, because pb

A is constructed with it:

x =
rBe−EAB/kBTg − rAe−EAA/kBTg

2rBe−EAB/kBTg − rAe−EAA/kBTg
. (3)

Also, eq. (3) can be made parameter-free (i.e. without involving ∆ε = EAB − EAA) by
condidering the limit x = 0 (pure chalcogen) where Tg(0) = T0. One gets from (3): ∆ε =
EAB − EAA = kBT0 ln[rB/rA]. Finally and most importantly, the relationship (3) can be
cast in a more compact presentation by performing the derivative of (3) with respect to Tg

in the limit x = 0, and inserting the energy difference ∆ε. We obtain then the following
parameter-free slope equation which is the central result [3] to be used in the present work:

[

dTg

dx

]

x=0,Tg=T0

=
T0

ln

[

rB

rA

] . (4)

As r̄ is defined by: r̄ = rA(1− x) + rBx, one can obtain the derivative of Tg with respect to r̄
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by replacing in all eqs. (1)-(3) x by (r̄ − rA)/(rB − rA):

[

dTg

dr̄

]

r̄=rA,Tg=T0

=
T0

(rB − rA) ln

[

rB

rA

] . (5)

The value of the coordination number rB can be determined in most of the situations by the
8 − N rule, where N is the number of outer shell electrons of the considered atom [7] (and
of course, in the forthcoming, rA = 2). From the second part of eq. (5), it is possible to
demonstrate the stochastic origin of the heuristic GDM equation at low connectivity (r̄ = 2)
and to show that the modified equation proposed by Varshneya and co-workers [4] is the
correct expression as long as this equation remains linearly extrapolated. The GDM theory of
glass transition (based on equilibrium principles) is intended to describe the variation of Tg of
long polymer chains of equal length, with chain stiffness produced by cross-linking agents [2].
The Tg of the cross-linked glass is suggested to behave as: Tg = T0(1 − κX)−1, where X
is the cross-link density and κ a constant. From the construction of the theory, it is easily
conceivable that it might describe chalcogenide glasses as well, because the initial selenium
network is also made of long polymeric chains, and the modifier atoms as Ge or As should
play the cross-linking agents. To this end, the GDM equation has been recently adapted with
success by Varshneya and co-workers in order to describe the Tg trends in chalcogenides [4]:
Tg = T0/(1 − β(r̄ − 2))−1 (which we will denote by VGDM equation). The parameter β
is obtained from a least-squares fitting of the experimental data. Now, if one performs the
derivative with respect to r̄ of the first-order Taylor expansion (linear) of the latter expression
in the vicinity of r̄ = 2, one obtains βT0. This can be compared with the right-hand side of
eq. (5) and yields an analytical expression for β: β−1 = (rB − 2) ln[ rB

2 ]. In a two-component
chalcogenide glass (A,B), the constant β has a topological origin and can be easily computed
from the coordination number of the modifier atom B.

We shall prove that the factor appearing in the expression of β has a universal character
and can be extended to M -component glass system, yielding the value of the parameter β for
any sytem, to be inserted in the VGDM equation. This result will still be obtained in the limit
where the VGDM equation emerges naturally from a stochastic description of the network.

Before, we shall consider a glass system made of three different kinds of atoms (say A, B
and C, with respective concentration 1 − x− y, x and y), one of them being the chalcogenide
atom of the chain-like initial structure (when x = 0 and y = 0). The coordination numbers
of the involved atoms are rA = 2, rB and rC . The average coordination number is r̄ =
rBx + rCy + 2(1 − x − y) and

dr̄

dTg
= (rB − 2)

dx

dTg
+ (rC − 2)

dy

dTg
. (6)

We can still identify the derivative of the first-order Taylor expansion of the VGDM equation
in the vicinity of r̄ = 2 with the right-hand side of (6),where consequently x = 0 and y = 0 and
where the quantities dx/dTg and dy/dTg have the form presented in eq. (4) (i.e. ln[rB/rA]/T0

and ln[rC/rA]/T0). By identification, this leads to the analytical expression of the parameter
β in a glass made of three components: β−1 = (rB − 2) ln[rB/2] + (rC − 2) ln[rC/2]. The
extension to multicomponent systems appears to be quite natural. β has the same sum rules
as the resistance in a parallel circuit in electrokinetics, i.e. it is the sum of the 1/β of each
related two-component system AB, AC, etc. Finally, for a system made of M different kinds
of atoms with coordination numbers ri, we just have to sum up the M − 1 contributions
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(ri − 2) ln[ ri

2 ] in order to obtain the theoretical value of β−1:

1

β
=

M−1
∑

i=1

(ri − 2) ln

[

ri

2

]

. (7)

In this notation, mM is the coordination number of the chain atom, equal to 2. However, when
applied to ternary systems, the stochastic description with three kinds of atoms A, B and C
is able to predict the VGDM equation up to r̄ ' 2.3 with the correct value of β, satisfying (7),
starting from a system which satisfies pa

B = pb
B and pa

C = pb
C [8].

Comparison with experimental data. – In order to minimize the influence of the prepara-
tion techniques, we have carefully selected data of i) glass systems prepared with the same
heating/cooling rate and ii) glass systems with more than five different compositions [9]. The
initial value T0 has been averaged over a set of data found in the literature (T0 of v-Se has been
taken as 316 K, of v-S as 245 K). We have plotted in fig. 1 several experimental data on binary,
ternary and quaternary systems with the parameter β computed from the involved coordination
numbers ri and the VGDM equation (solid lines). The dotted lines correspond to the slope
equation (5) and shows the stochastic origin of the VGDM equation at low connectivity (r̄ ' 2).
For other systems, we have performed a least-squares fit of the parameter β from the VGDM
equation, denoted as βexp. Then, we have compared the results with the predicted parameter
βpr obtained from (7). In the system Si-As-Ge-Te the involved coordination numbers of the
modifier atoms are ri = (4, 3, 4). Thus, βpr = (3 ln 2 + ln 3)−1 = 0.31, in excellent agreement
with the fit βexp = 0.30 [13]. Examples displayed in fig. 1a show also that the slope (5) yields
accurate trends in the variation of Tg with respect to the average coordination number r̄ at
low connectivity.

From fig. 1a, we can obviously see that the addition of a two-coordinated atom (as tellurium
or sulphur, ri = 2) in multicomponent glass systems does not affect the value of the parameter
β (because of the rate ln[ri/2]). A quaternary system which involves a two-coordinated atom
can therefore be considered as a ternary system. The simultaneous use of the VGDM equation
and the stochastic prediction of (7) can give the value of the glass transition temperature of
any composition, at least for r̄ ≤ 2.4 which is the limit imposed by Maxwell rigidity [5]. We
invite the reader to check on this basis that the Tg of Ga10B10S80 is about 325 K. For greater
values of r̄, one has to take into account intermediate-range order effects such as the existence
of rings [6, 14] or chemical ordering. However, the stochastic model suggests also that usual
curve-fitting with the VGDM equation [4, 15] does not permit to distinguish between floppy
and rigid regions (limited by r̄ = 2.4), whereas the combination of VGDM and (7) show direct
evidence of the stiffness transition between these two regions. This is due to the fact that β
is evaluated from the random network description and it fails around 2.4. To illustrate this
observation, we have plotted in fig. 1b for the P-Ge-Se compound the least-squares fit of the
VGDM equation (dotted line) (βexp = 0.66, realized over the whole concentration range [16])
and the VGDM equation, combined with the sum rule (7) for βpr = 0.55 (solid line). The
deviation occurs at r̄ = 2.43, consistently with constraint counting arguments [5]. We have
also plotted in the insert of fig. 1b the value βexp computed from the VGDM equation, as
a function of the average coordination number, in In-Ge-Se systems [15]. This clearly shows
the threshold around r̄ = 2.4 between the values β = 0.55 (predicted from the model by
the random network picture) and β = 0.72 (predicted from the model by the occurrence of
chemical ordering, as we shall see below). A global fit of the VGDM equation (dotted line)
with a unique value of β would not have given this information.
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Fig. 1. – a) Comparison of the VGDM equation with the stochastic calculation of β (7) with ex-
perimental measurements in binary, ternary and quaternary glasses (solid line). The slope equa-
tion (5) corresponds to the dotted lines. Systems Ge-Te-(Se), ri = (4, 2) and Ge-(Se), ri = 4 [17]:
βpr = 0.72. System Sb-Ge-Te-(Se), ri = (3, 4, 2) and Sb-Ge-(Se), ri = (3, 4) [4]: βpr = 0.55. System
Ge-Br-(S), ri = (4, 1) [18]: βpr = 0.48. b) Occurrence of chemical ordering in ternary selenides (data
from [4, 16, 12]). The stochastic description yields for all βpr = 0.55, since ri = (3, 4) in the three
systems. The solid line represents the combination of this description with the VGDM equation. The
dotted line corresponds to the VGDM equation with β fitted from the whole concentration range, as
realized in [4]. For r̄ > 2.4, the systems behave as a binary glass with ri = 4 and βpr ' 0.72. The
insert shows βexp vs. the average coordination number r̄ for the In-Ge-Se compound. All data sets
have been displaced by 100 K for a clearer presentation.

Effect of chemical ordering. – In most of the chalcogenide systems, chemical ordering
occurs for r̄ ≥ 2.4, and therefore stochastic description fails, as shown in fig. 1. However, the
description is still useful, if the network can be thought as a set of compound clusters inside
a random network.

Again, let us consider a ternary glass system A1−x−yBxCy with the corresponding coordi-
nation numbers rA = 2, rB and rC . If we assume that the general tendency of the glass is to
form a demixed structure of A and B in stoichiometric proportions, then we can rewrite the
system as: (BrA

ArB
)x/rA

CyA1−y−(rA+rB)x/rA
. For the glassy matrix, this defines an effective

concentration of C atoms yeff = y
1−x(rA+rB)/rA

and the average coordination number of the

glassy matrix is given by

r̄ = rA +
(rC − rA)y

1 − x
(rA + rB)

rA

. (8)

If we proceed as before, i.e. performing the derivative with respect to Tg and looking at the
limit (x, y → 0) in order to identify with the expansion of the VGDM equation, we can see
that the corresponding parameter β is defined as β−1 = (rC − rA) ln[ rC

rA
]. In other words,

the parameter β of a ternary system which displays chemical ordering can be computed
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by considering only the remaining two-component glass. We have checked the validity of
this rule on a set of germanium-incorporated chalcogenides. We have considered all possible
stoichiometric demixed structures at the tie-line composition (e.g., in GexAsySe1−x−y, the
possible structures are GeSe2 and As2Se3). Most of the ternary III-IV-VI systems such as
Sb-Ge-X glasses (X = S, βexp = 0.61 [19]; X = Se, βexp = 0.78 [20]; X = Te, βexp = 0.79 [21])
behave as a single binary IV-VI glass (as Ge-Se) with parameter close to βpr = 0.72 when
r̄ > 2.4. This is explained by the presence of Sb2X3 clusters (X = S, Se, Te) inside the
remaining random network of Se-Se and Ge-Se bonds. Also, data on Sn-Ge-Se systems show
that βexp = 0.68, when SnSe2 clusters are assumed, close to βpr = 0.72 [22]. Coming back
to the illustrative In-Ge-Se compound (insert of fig. 1b), the behavior of Tg versus r̄ can be
explained as follows. For r̄ < 2.4, the structure can be described by a random network of
Se-Se, Ge-Se, In-Se and Ge-In bonds. For this system, the VGDM equation and (7) describe
the Tg(r̄) behavior, with βpr = 0.55 is computed from (7) with ri = (3, 4). For r̄ > 2.4, the
network structure looses its random character because of the occurrence of In2Se3 clusters [15].
Thus, the system behaves as a pseudo-binary Ge-Se system with the effective concentration
(8) and βpr = 0.72.
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