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Abstract. This contribution focuses on the structural origin of flexible to rigid transitions and the possible un-
derlying intermediate phase which have been reported to occur in a variety of network glasses such as chalco-
genides or modified oxides. Here, using molecular dynamics simulations of densified glass-forming liquids,
2SiO2-Na2O, which are known to display a numerical reversibility window as a signature of an intermediate
phase, we focus on structural functions emphasizing topological ordering using the Bhatia–Thornton formal-
ism. Results not only reveal that densified silicates display topological ordering on lengthscales of about 25 Å,
but also display obvious threshold behaviors close to the isostatic condition when the network undergoes a
flexible to rigid transition. The mechanical constraint count of the atomic network structure reveals that a
typical lengthscale characterizing the decay of topological correlations emerges for stressed rigid systems at
≃3.5 Å, whereas small wavevector oscillations are found to be minimal when the isostatic condition is merely
satisfied. An additional analysis building on diffusivity and liquid entropy suggests that the locus of flexible
to rigid transitions has also connections with water-like anomalies of densified tetrahedral liquids.

Résumé. Cette contribution se concentre sur l’origine structurale des transitions de flexible à rigide et une
possible phase topologique intermédiaire sous-jacente qui se produisent dans une variété de verres structu-
raux tels que les chalcogénures ou les oxydes modifiés. Ici, en utilisant des simulations de dynamique molécu-
laire de liquides vitreux densifiés, 2SiO2-Na2O, qui sont connus pour présenter une fenêtre de réversibilité en
pression lors d’une transition vitreuse numérique, nous nous concentrons sur des corrélations structurales
mettant l’accent sur l’ordre topologique en utilisant le formalisme de Bhatia–Thornton. Les résultats révèlent
non seulement que les silicates densifiés présentent un ordre topologique sur des échelles de longueur d’en-
viron 25 Å, mais présentent également des comportements de seuil évidents à proximité de la condition iso-
statique lorsque le réseau subit une transition de flexible à rigide. Le comptage des contraintes mécaniques
de la structure du réseau atomique révèle qu’une échelle de longueur typique caractérisant la décroissance
des corrélations topologiques émerge pour les systèmes rigides sous-contraints à ≃3,5 Å, alors que les petites
oscillations du vecteur d’onde sont minimales lorsque la condition isostatique est simplement satisfaite. Une
analyse supplémentaire basée sur la diffusivité et l’entropie du liquide suggère que le lieu des transitions de
flexible à rigide a également des liens avec les anomalies observés dans les liquides tétraédriques densifiés
comme l’eau sous pression.
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1. Introduction : from mean-field rigidity to reversibility windows

The atomic scale description of non-crystalline solids and glasses has remained a challenging
field of inquiry in materials science because of the lack of translational periodicity that prevents
from using powerful techniques offered by e.g. crystalline band theory such as Brillouin zones,
k-space and Bloch functions. In addition, the structural information gathered from light, neutron
or X-ray scattering often remains at the level of short order (bond distances, coordination num-
bers) as long-range order made of the repetition of a well-defined unit cell is notoriously absent.
Some information can be gathered from the low wave-vector region of e.g. the structure factor
and permits to correlate salient features of scattering functions such as the first sharp diffrac-
tion peak (FSDP) to certain features of atomic ordering [1–3]. Only a limited number of glasses
where structural groupings are present, essentially ring structures, can be unambiguously anal-
ysed and their structure characterized from explicit spectroscopic signatures using Raman or Nu-
clear Magnetic Resonance (NMR) spectroscopy [4–6]. On the theoretical side, atomistic simula-
tions can be extremely valuable for understanding structural and dynamic properties including
aspects of the glass transition and relaxation of the supercooled state [7]. They also appear to be
useful for checking the validity of microscopic models, empirical approximations or theoretical
assumptions. The present contribution clearly belongs to this general scope, and attempts to link
certain features derived from simulations with results from rigidity theory.

The concept of rigidity in amorphous networks and glasses traces back to the early work of
Maxwell on the stability of macroscopic structures such as bridges or roof frameworks [8], and
to the introduction of mechanical constraints by Lagrange. These ideas and results were then
extended to atomic networks by Phillips [9] who highlighted the notion of mechanical isostaticity
as promoting glass-forming tendency of covalent alloys. It was recognized that so-called “good”
glass formers usually form at an optimal network connectivity, or mean coordination number
satisfying the Maxwell stability criterion of isostatic structures, i.e. nc = 3 in 3D, where nc is the
count of atomic constraints per atom arising from relevant neighbor interactions.

1.1. Mean-field molecular rigidity

It is useful to review basic results from the Phillips–Thorpe mean-field rigidity theory [10].
In structural glasses the relevant interactions can be near-neighbor bond-stretching (BS) and
next-near-neighbor bond-bending (BB) forces that characterize bonds and angles typical of the
network topology. In a mean-field approach, the atomic density nc of mechanical constraints can
be exactly computed, and is given by:

nc =
∑

r ≥2
nr

[ r
2 +2r −3

]
∑

r ≥2
nr

(1)

where nr is the concentration of species being r -fold coordinated. Here it should be noted that
the temperature is absent. The contribution of the two terms in the numerator is straightforward
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Figure 1. Fraction of floppy modes { as a function of average network coordination number
r̄ (adapted from Ref. [15]). The mean-field Maxwell line f = 3 − nc = 6 − 5r̄ /2 vanishes
exactly at r̄ =2.4 (solid red curve, eq. (3)), whereas percolation of rigidity is obtained from
bond-depleted networks at a somewhat lower connectivity (solid black, [10]). At T=0, a self-
organized removal of bonds (avoiding the presence of stressed rigidity, solid and broken red
curve) leads to two percolative stress and rigidity transitions (green squares), and define a
so-called intermediate phase (IP). See also Figure 2.

because each bond is shared by two neighbors, and one has therefore r /2 bond-stretching (BS)
constraints for a r -fold atom. For BB (angular) constraints, one notices that a 2-fold atom involves
only one angle, and each additional bond needs the definition of two more angles, leading to
the estimate of (2r -3). For one-fold terminal atoms, a special count [11] is achieved as no BB
constraints are involved, and in certain situations some constraints may be ineffective [12, 13].
By defining the network mean coordination number r̄ of the network by:

r̄ =
∑

r ≥2
r nr∑

r ≥2
nr

(2)

one can reduce (1) to the simple equation:

nc = r̄

2
+2r̄ −3 (3)

It is easy to verify that the Maxwell isostatic criterion (nc =3) corresponds to a threshold average
coordination number [9, 10] of r̄ =2.40 in 3D, corresponding usually to a non-stoichiometric
composition where glass-forming tendency has been found to be optimized experimentally (e.g.
GeSe4 instead of the silica analog GeSe2 in the Ge-Se system), including in systems with a strong
crystallization tendency [14].

The nature of the underlying phase transition associated with the isostatic criterion has been
revealed from a vibrational analysis of bond-depleted random networks [10, 16] constrained by
harmonic bond-bending and bond-stretching interactions. In such networks, the number of zero
frequency (floppy) modes f = 3-nc (i.e. the eigenmodes of the dynamical matrix) is vanishing for
r̄ =2.38 when rigidity percolates through the network (Figure 1). The Maxwell condition nc = 3
therefore defines a mechanical stiffness transition above which redundant constraints produce
internally stressed networks, identified with a stressed-rigid phase [16]. Here, r̄ acts as the
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Figure 2. Evidence for a stress-free intermediate phase (IP) from the Pebble Game analysis
(adapted from [15, 27]). Fraction of sites on isostatically rigid and stressed rigid percolating
cluster in a self-organized network as a function of the network mean coordination number
r̄ . The intermediate phase which is rigid but unstressed exists in these classes of models
between r̄c1=2.375≤ r̄ ≤ 2.392=r̄c2, and coalesces in random networks.

external control parameter of the transition, whereas f is the order parameter. For nc <3 however,
floppy modes can proliferate, and these lead to a flexible phase where local deformations with a
low cost in energy (typically 5 meV [17]) are possible, their density being given by: f = 3−nc . There
have been early experimental probes of this peculiar transition from Raman scattering [18], stress
relaxation [19] and viscosity measurements [20–22], vibrational density of states [17], Brillouin
scattering [13, 23], resistivity [24, 25], and Kohlrausch exponents [19, 26].

1.2. Beyond mean-field

The construction leading to the mean-field constraint estimate (eq. (3)) neglects fluctuations that
have been identified numerically at finite temperature [28, 29] and considers only network aver-
aged quantities, i.e. one assumes that all atoms of a given type have the same constraint den-
sity arising from an identical coordination number per chemical species. However, as in ordinary
phase transitions fluctuations in constraints or in the order parameter f may be expected close
to the critical point at nc = 3. It has been suggested (for a review, see [30]) that this non-mean
field scenario manifests by the onset of an isostatic or intermediate phase (IP) in which fluctua-
tions in coordination may be important, as well as network adaptation in order to lower the stress
induced by the increasing cross-link density during the glass transition (red curves, Figure 1).

A certain number of scenarios have been proposed to describe the observed behaviors, and
these emphasize either the role of fluctuations in the existence of a double threshold/transition
defining an IP between the flexible and the stressed rigid phase [15, 31–34], or on a non-trivial
elastic coupling between atoms with limited coordination fluctuations [27, 35]. In the latter
scenarios, such approaches lead to the emergence of locally distinct configurations that promote
an IP.

Following the path based on coordination fluctuations, several authors have modified the
initial mean-field theory [9, 10] to account for structural adaptation or self-organization in order
to avoid stress from additional cross-linking elements with an energy penalty if stressed rigid
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elements are considered [15,31,32,34,36]. This adaptation has been also revealed from molecular
simulations showing that rigid angles will soften (adapt) with increasing stress/pressure in order
to reduce the global increase of the constraint density upon cooling the melt [37]. In spirit, these
models (built from lattices [15,36], clusters [32,33], spin cavity expansions [31]), share in common
that the addition of bonds in a network with increasing average connectivity will be accepted only
if this leads to isostatically rigid regions. Once the network has undergone percolation of rigidity
at a first transition at r̄c1, an unstressed (isostatic) structure dominates, and characterizes the IP.
The addition of redundant bonds then will contribute to the occurrence of stressed rigid regions
clusters that finally percolate at a second transition at r̄c2, identified with a stress transition. Both
transitions then define a window in connectivity ∆r̄ =r̄c2 − r̄c1 (Figure 2).

Instead, using models of soft spheres in the context of jamming transitions, different au-
thors [27, 35] have suggested that the IP could result from the presence/absence of weak non-
covalent interactions in addition to harmonic elastic interactions. In a strong force régime, an IP
can be obtained that is characterized by an isostatic cluster spanning the whole system, driven
by fluctuations in coordination. However, when weak interactions are present, these features
vanish below a certain temperature suggesting that the transitions become mean-field at low
temperature and coalesce. These results are partially supported by MD simulations [37] taking
into account long-range interactions (Coulomb, Van der Waals) allowing to probe the weak-force
régime.

1.3. Reversibility windows

Experimental support to the predictions of non-mean-field rigidity is obtained from various
probes (Figure 3), the main one being of calorimetric nature. Modulated differential scanning
calorimetry at the glass transition permits, indeed, to measure an enthalpy of relaxation (a non-
reversing heat flow ∆Hnr ) which exhibits a deep minimum over a finite compositional inter-
val, sometimes exhibiting even sharp boundaries and a square-well behavior with composition
defining a reversibility window (RW) for which ∆Hnr ≃0. The latter behavior is thought to be a
T ̸=0 manifestation of the intermediate phase characterizing the T = 0 disordered network rep-
resenting the model glass [30]. There is actually a strong experimental support for these find-
ings connecting RW with the isostatic nature of the network glass structure, and a vast litera-
ture has been accumulated on this topic during the last decade for a variety of systems, modi-
fied oxides or chalcogenides, which exhibit a salient phenomenology of thermal, relaxation, and
vibrational anomalies (Figure 3). A certain number of measured anomalies are provided for Ge-
Se (Figure 3a) [39] and AgI-AgPO3 (Figure 3b) [26]. The former indicates that for isostatic com-
positions, a near stress-free character is suggested from Raman pressure experiments [38] and
manifests by a zero threshold pressure in the IP, as in crystals without residual stresses. Corre-
sponding volumes are found to be minimum and indicate space-filling tendencies (Figure 3a,
right axis [39]). In a very different glass (AgI-AgPO3), the boundaries of the RW [24] coincide with
a marked jump in ionic conductivity that grows exponentially once the network has become flex-
ible (Figure 3b, right axis [26]). It indicates that local deformation (floppy) modes will promote
ion hopping. These changes are accompanied by a maximum in dielectric permittivity (left axis).
Glasses with various bonding types display RWs (Figure 4), from ionic (silicates [13]) to iono-
covalent, covalent (Ge-Se, [21]), or semi-metallic (Ge-Te-In-Ag [41]). In certain of these systems,
e.g. for the simple binary network glasses such as Gex S1−x or Six Se1−x , the experimental bound-
aries of the RW are found to be all very close [21,42,43], i.e. located between 20 % < x < 25 %, and
aspects of topology fully control the evolution of rigidity with composition, given that there is a
weak chemical effect in case of isovalent Ge/Si or S/Se substitution. This compositional interval
defining the RW connects to the mean-field estimate of the isostatic criterion (eq. (3)) satisfying
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nc = 3 because coordination numbers of Ge/Si and S/Se can be determined from the 8-N (octet)
rule to yield an estimate of the constraints nc =2+5x using eq. (1). In fact, for these IV-VI glasses,
the lower boundary of the RW (xc =20 %) coincides with the Phillips–Thorpe [9, 10] mean-field
rigidity transition nc =3 and r̄ =2.4.

For most of the systems however, a direct constraint counting cannot be performed because
uncertainties persist regarding the relevant coordination numbers so that an enumeration of ac-
tive/inactive constraints must be derived from specific structural models (see, e.g. an example for
silicates [13]). This feature becomes obvious once Group V selenides/sulphides are being consid-
ered (Figure 4). Here, different RW locations are found for isovalent compounds, e.g. differences
emerge between As- and P-bearing chalcogenides, and between sulphides and selenides (e.g.
Px S1−x and Px Se1−x , [49]) so that differences can only be explained from structural models val-
idated from e.g. spectroscopic studies [56]. The above statements are also valid in tellurides for
which the increased electronic delocalization of the Te atoms lead to mixed local geometries that
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Figure 3. Experimental and numerical verification of anomalies in the intermediate phase
region (cyan background) for different glassy systems : (a) Raman threshold pressure (red)
and molar volume (right axis) as a function of constraint density in Ge-Se glasses [38, 39].
(b) Ionic conduction (red) and dielectric permittivity ε(0) (right axis) as a function of AgI
content x in (1-x)AgPO3-xAgI glasses [24, 26]. (c) Calculated enthalpy and volume hystere-
sis (red, right axis) as a function of pressure in MD simulations of densified silicates [37].
(d) Calculated enthalpy and internal network stress (red right axis) as a function of the cal-
culated constraint density in (1-x)Na2O-xSiO2 [40]. The cyan areas represent the reversibil-
ity window determined experimentally [39] or numerically [37, 40] in the glass transition
region.
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Figure 4. Experimental location of reversibility windows thought to be the manifesta-
tion of the topological intermediate phase predicted from models : modified oxides (phos-
phates [24, 44], borates [6], germanates [45], silicates [13]) and chalcogenides (Si-Ge-
Te [46, 47], Ge-Te-In-Ag [41], Ge-Sb-Se [48], Ge-P-S [49], Ge-P-Se [50], Ge-As-S [51], Ge-As-
Se [52], Ge-S-I [53], Ge-Se-I [54], P-S [55], P-Se [56], As-S [57], As-Se [22]). Only a limited
cases can be represented as a function of constraint density given the obvious atomic coor-
dinations fulfilling the octet rule : Ge-S [43], Ge-Se [39], and Si-Se [42].

are now composition dependent [14], so that a proper constraint count must rely on molecular
simulations, in conjunction with dedicated constraint counting algorithms.

Molecular dynamics simulations have been able to substantiate the characteristics of RWs [37,
40, 58, 59]. Using a similar methodology as the one used in experimental calorimetry, cooling-
heating cycles have been performed in pressurized silicates (Figure 3c [37]) and sodium silicates



8 Matthieu Micoulaut

((Figure 3d). Concerning the latter, the hysteresis resulting from enthalpic relaxation during a
numerical cooling-heating cycle has been found to be minimized for 12 %≤ x ≤ 20% Na2O
(Figure 3d [40]), which echoes with the experimental observation of the RW (18 %≤ x ≤ 22%
Na2O [23]). For both investigated silicates, the location of the RW corresponds to an isostatic
character of the network that is independently computed. In addition, a certain number of other
anomalies have been found from simulations, such as minimal activation energies in viscosity
and diffusivity [60], minimal relaxation time [37], growth of internal stress (Figure 3d, right
axis [40]) with a marked jump at the stress transition.

1.4. The structural signature of the intermediate phase

In the present work, we examine structural features that could be associated with the onset of
stressed rigidity or the IP. The question continues to be actively debated in the literature given the
rather elusive structural signatures of rigidity transitions in spite of thermal and spectroscopic
evidence. Direct structural signatures have been searched by different authors. For instance,
X-ray diffraction in Ge-Se glasses [61, 62] have revealed that the area and the inverse position
of the first sharp diffraction peak of the structure factor S(k) exhibited a plateau found in the
same compositional window as the reported IP, i.e. suggesting some effect of intermediate range
order for isostatic compositions. These conclusions were not confirmed by a similar study [63]
and the reported x-ray absorption fine structure analysis furthermore found no correlation
between the short-range order and the IP, as also evidenced from various NMR studies [64, 65].
Another x-ray absorption experiment on Ge-Se (near-edge structure) on Ge-Se glasses led to an
opposite conclusion [66] as spectra revealed compositional plateaus coinciding with the location
of the RW, providing structural evidence for the IP. More recently, the possibility of a structural
signature of the IP in Ge-Se has been examined from high-resolution neutron diffraction to
measure different quantities associated with topology [67], and results did not point to an
obvious structural origin of the IP. For instance, they did not confirmed the possible deviation
of atomic coordinations from the 8-N rule reported from first-principles molecular dynamics
simulations [68].

Molecular simulations have, indeed, attempted to characterize the origin of the IP. On the ar-
chetypal Ge-Se system, first principles simulations have shown that isostatic glasses originate
from a competition between amorphous GeSe2 and amorphous Se clusters to produce measur-
able signatures in electronic properties [66, 68]. On the same system, it was shown that while
no compelling evidence for signatures were found in structure functions (pair correlation g (r ),
structure factor S(k), in contrast with simulated As-Se glasses [69, 70]), constraint-counting al-
gorithms showed that broken bond-bending constraints are associated with the stressed-rigid
phase, a result that was also recovered for As-Se [70] and Ge-S glasses [71]. The softening of bend-
ing constraints under increased applied stress via cross-linking or applied pressure turns out to
be a specific feature in stressed rigid systems and this feature has been also found in different
densified tetrahedral liquids [72, 73].

The most noticeable structural anomaly related with onset of rigidity has been determined for
selected systems only. While principal peak characteristics (position, width) of total scattering
functions do not display any specific trend related to the underlying phases [1, 67], partial corre-
lations in Fourier space reveal that some change in structural ordering takes place as networks
become rigid. This is exemplified in densified 2SiO2-Na2O for which the FSDP found at ambi-
ent pressure (at wavevector position kF SDP =1.53 Å−1) evolves monotonically up to 1.9 Å−1 with
pressure/rigidity (black curve, Figure 5a). The behavior contrasts with the one calculated for cor-
responding network partials (Si-O, O-O [60]) which peak at nc ≃3. Corresponding trends are ob-
tained for the width of the FSDP (Figure 5b). As the position of the FSDP reflects some repetitive
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a function of the calculated constraint density nc . (b) Width ∆kFSDP of the FSDP (in Å−1).
Adapted from Ref. [60]

.
characteristic distance between structural units, the result indicate that an intermediate range
order lengthscale of distance 7.7/kF SDP emerges, and then decreases. Here the factor 7.7 relates
to the first maximum of the spherical Bessel function j0(kr ). Similarly, the broadening of the
FSDP is indicative of a correlation length, following the well-known Scherrer equation for micro-
crystals which connects the width ∆kF SDP of a Bragg peak with the average size of the micro-
crystals. Similar features have been obtained for partials in the As-Se system [69, 70]. While, the
total structure factor characteristics did not showed any specific trend across the rigidity transi-
tions as in experiment [1], it was found that kF SDP of the As-Se partial structure factor displayed
a threshold behavior at the Se-rich boundary of the IP, whereas ∆kF SDP displayed a minimum
value in the IP. These findings indicate that structural features might be material specific, and the
question of structural correlations in relationship with flexible to rigid transitions continues to be
questioned.

Here, inspired by the work of Wilson [74] and using large scale molecular dynamics we are
able to probe such structural correlations up to 20-25 Å in a network (sodium silicate) that is
known [37] to undergo flexible-intermediate-stress transitions/thresholds, to display a RW (Fig-
ure 3c) and a series of anomalies in dynamic heterogeneities [28, 29]. By focusing on structure
functions describing topological ordering at long-range (Bhatia–Thornton formalism), we show
that a typical lengthscale of about 3.5 Å characterizing the decay of correlations emerges once
the system becomes rigid. Similarly, the wavevector characterizing the long-range oscillations of
topological ordering is found to be minimal for a calculated nc ≃ 3 which signals that periodic
ordering takes place on larger lengthscales in isostatic networks. Since we are focusing on struc-
tural correlations, we also calculate the pair correlation entropy which measures excess contribu-
tions with respect to a non-structured reference state, and maximizes for nc ≃3. Taken together,
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these results indicate that isostatic systems bear striking similarities with densified tetrahedral
liquids displaying water-like anomalies, i.e. correlated extrema in transport coefficient (diffusiv-
ity), thermodynamics, excess entropy and structural features. These commonalities are discussed
and contrasted.

2. Simulation methods

2.1. System characteristics

The system under investigation is a densified sodium silicate supercooled liquid (2SiO2-Na2O,
or NS2) that has been investigated from classical MD simulations (integration time using the
Verlet algorithm with a 1 fs time step). The atoms interact with a rigid ion two-body potential
parametrized by Teter [75] of the form :

Φi j (r ) =ΦSR
i j (r )− Ci j

r 6 + qi q j

r
(4)

where ΦSR
i j (r ) = Ai j exp−ρi j /r is a short-range term arising from electronic repulsion between

atoms. The accuracy of the potentials has been demonstrated in various studies on structural [76–
79] and dynamic properties. Noteworthy is the fact that calculated diffusion and viscosity are
comparable to experimental data [80] so that the efficiency is substantially improved with respect
to alternative potentials [81]. The cut-off for both Buckingham and Coulomb part of the Teter
potential has been set to 18 Å.

Figure 6. A snapshot of the simulated system: 16767 atoms representing the NS2 liquid
(red: silicon, yellow: oxygen, blue: sodium). At zero pressure, the cell length is 65 Å.

In order to investigate long-range information of the partial pair correlations functions, the
initial configuration has been obtained from a rather large crystalline disilicate sample consisting
of 16767 atoms (1863 Na2Si2O5 units). The system has been melted at an equilibration stage at
4000 K over 1 ns, prior to sequential quenches at 3500 K, 3000 K, and finally the target temperature
of 2000 K corresponding to the numerical glass transition region where the reversibility window
has been obtained numerically [37]. The resulting structure (Figure 6) has a cell length at zero
pressure of about L=65 Å which permits to safely consider distances up to 20 Å< L/2 from
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simulations up to the most elevated pressures. Densification has been achieved by increments
up to 20.12 GPa in NPT Ensemble (L=55.39 Å).

2.2. Molecular dynamics based rigidity

In order to connect the structure to features of rigidity, and particularly the constraint density
nc with pressure and temperature, we enumerate mechanical constraints from the atomic scale
time dependent trajectories obtained at a given thermodynamic condition (2000 K, P ). Previous
applications of this methodology have been performed for the particular NS2 system [37,82], but
also on a variety of different chalcogenide network glasses [14, 71, 83] and liquids [84].

To determine the number of BS constraints, one focuses on neighbour distribution functions
around a given atom i , the global sum of all such functions yielding an i -centred pair correlation
function gi (r ) whose integration up to the first minimum gives the coordination numbers ri , and
hence the corresponding number of BS constraints nBS

c =ri /2. This number usually correspond
to small radial motion between two neighboring atoms.

To determine BB constraints, one uses partial bond angle distributions (PBADs) P (θi j ) which
split the usual bond angle distribution into partial contributions defined by a central atom 0 and
the N first neighbours which define N(N-1)/2 possible triplets or angles i 0 j (i =1..N-1, j =2..N),
i.e. 102, 103, 203, etc. The standard deviation σ

i j
θ

of each distribution P(θi j ) gives a quantitative
estimate of the angular excursion around a mean angular value, and provides an indication of the
bond-bending strength. Small values for σi j

θ
correspond to an intact bond-bending constraint

which maintains a rigid angle at a fixed value, whereas large σi j
θ

correspond to a bond-bending
weakness giving rise to an ineffective or broken constraint [82].

The use of such standard deviations permits to derive the constraint density under various
thermodynamic conditions nc (x,T,P ) (x-axis of Figure 3d) without any need of dedicated phe-
nomenological structure models. Model potentials (such as eq. (4)) are validated from a success-
ful comparison of structure functions (g (r ), S(k)) obtained from scattering experiments.

3. Results

3.1. Bhatia–Thornton formalism and the decay of correlation functions

In order to concentrate on long-range topological ordering, we use the Bhatia–Thornton (BT)
formalism [85] which focuses on the number-number correlations (via a corresponding structure
factor g BT

N N (r )) whose definition for binary mixtures can be easily extended to the present ternary
(Si,O,Na) system (see also Ref. [86]):

g BT
N N (r ) =∑

i , j
xi x j gi j (r ) (5)

where gi j (r ) represent the different calculated partial pair correlation functions (not shown).
In scattering experiments, this function (or its counterpart SBT

N N (k) in Fourier space) probes
correlations that are independent of the chemical nature of the scattering centers and, therefore,
provides a measure on topological ordering at intermediate and extended lengthscales [2, 3]
depending on position/width of the FSDP and principal peak, respectively. Other partials can be
derived within this formalism and these focus on e.g. how chemical species are distributed over
the scattering centers and might provide information on chemical ordering, i.e. the preference
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to form unlike bonds (as Ge-Se bonds in Ge-Se glasses [2]). For a ternary alloy, concentration-
concentration correlations of the silica network can e.g. be characterized via:

x−1
Se g BT

CC (SiO)(r ) = xSi +xO +xN a

[
x2

Si gSi Si +x2
O gOO +2xSi xO gSiO −2xO(xSi +xO)gON a

−2xSi (xSi +xO)gSi N a + (xSi +xO)2gN aN a

]
(6)

with xN a=xSi =0.22 and xO=0.56 given by the stoichiometry of NS2. Note that for a three compo-
nent system there are three different concentration-concentration pair correlation functions and
g BT

CC (Si N a)(r ) and g BT
CC (ON a)(r ) are obtained by a cyclic operation on (Si,O,Na). In the high wavevec-

tor region r all concentration-concentration structure factors converge to the limit xi (x j +xk ) (i ̸=
j ,k) which is a direct consequence of the definition of g BT

CC (SiO)(r ), g BT
CC (Si N a)(r ) and g BT

CC (ON a)(r )
(eq. (6))). We won’t comment more on additional correlations (number-concentration, see Ref.
[86]).
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Figure 7. Plot of the Bhatia–Thornton Number-Number pair correlation function r hN N (r )
(a) for three different pressures in NS2 : total contribution (black curve) and network con-
tribution (SiO2, red curve) for P=0 GPa, P=1.96 GPa and P=18.80 GPa. (b) The representa-
tion |r hN N (r )| [87] permits to highlight the exponential decay of the partial pair correlation
function (same pressures and same color code for the contributions).

Figure 7a now represents GN N (r )=r hN N (r )=r [gN N (r )−1] for three different pressures corre-
sponding to the flexible phase (P=0, nc =2.92), to an isostatic condition (P=1.96 GPa, nc =3.01) and
to the stressed rigid phase (P=18.80 GPa, nc = 3.59, see Figure 3c). Usual features of such functions
are obtained and manifest by a very intense principal peak (r =1.65 Å) arising from the Si-O cor-
relations of the base silica network, together with a secondary peak found at r =2.81 Å which is
mainly due to O-O and Si-Si correlations, the alkali related correlations leading to much broader
distributions with principal peaks located at 2.44 Å and 3.66 Å for Na-O and Na-Si correlations,
respectively. In the region around r ≃5.0 Å, the pair distribution function r hN N (r ) is dominated
by a double peak structure that is due to Si-O secondary correlations and a superposition of dif-
ferent partials (O-O and Si-Si), respectively. Upon increasing pressure, the principal peak shifts to
larger distances (1.71 Å for 18.80 GPa) consistently with the usual tetrahedral to octahedral con-
version of Si which involves a lengthening of the Si-O bonds [80]. Noteworthy is the merging of
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the double peak at r ≃5 Å which is produced by a near equivalent contribution of Si-O, Na-O and
Si-Si partials at high pressure.

In order to highlight the asymptotic decay of r hN N (r ), we represent on the right side of Figure 7
the quantity ln |r hN N (r )|. While correlations become noisy at long-range distance due to the
limited sampling of the structure at long distances (r ≥20 Å), a clear signature of an exponential
decay exp[−r /ξ] is acknowledged (blue curve, bottom panel in Figure 7b). This feature is present
for the whole system but also if one focuses only on the underlying Si-O subnetwork red curves).
The asymptotic decay of total correlation functions has been interpreted by Ma et al. [88] as the
result of a self-similar packing of atomic clusters which leads to a medium range order having
the characteristics of a fractal network of dimension D f . From a variety of metallic glasses, the
asymptotic decay (r >6 Å) could be fitted using the functional form :

G(r )−1 = Ar D f −D exp[−r /ξ]cos
(
q1r +φ)

(7)

with D f −D = D f −3 = 0.69 in 3D, and ξ a cutoff length characterizing the finite cluster size and
possible cluster-entanglement effects [89]. Here, the sinusoidal function si n(q1r +φ) was intro-
duced to describe the oscillatory correlation of G(r ) with q1 the FSDP position. A similar form
inspired from the Ornstein–Zernike (OZ) theory of liquids [90] has been proposed for network
glasses by Salmon and co-workers [3, 91] without invoking the need of a fractal dimension, and
has been successfully applied to network glasses and liquids. The approach builds on a simple
rigid-ion pair potential model of the form given in eq. (4) and an exact solution indicates that at
long distance r hN N (r ) → r−5 in absence of the dispersion term (Ci j =0 in eq. (4)). A pole analy-
sis [87,92] of the k space solutions of the OZ equations then leads for the particular case of dense
liquids to an exponential decay of the form:

GN N = r hN N (r ) = 2AN N exp[−r /ξ]cos
(
q1r +φN N

)
(8)

with parameters ξ and q1 that are specific to the fitted functions (hN N , hCC and hNC ) in several
glasses and liquids (GeO2, GeSe2, ZnCl2 [93]). Importantly, it was found that in such tetrahedral
systems q1 is not related to the FSDP position. In the present study, while dispersion terms
are present in O-O, O-Si and O-Na interactions [75], the functional form proposed in eq. (8)
still provides an interesting guide for examining structural correlations (see however, the effect
of dispersion forces in Ref. [94]). Secondly, although the functional forms have been proposed
for binary mixtures [95] and since the Bhatia–Thornton pair correlation function r hN N (r ) also
displays an obvious asymptotic decay together with an oscillatory behavior, it is tempting to use
the proposed functional forms to extract an information on topological ordering with respect to
the rigidity status of the considered systems.

An inspection of Figure 7b shows repeated maxima obeying a straight line ln|r hN N (r )|
≃ −r /ξ+constant and clearly indicates an exponential decay of the oscillations. It, therefore, rep-
resents a convenient starting point for discussing extended-range ordering, as also performed
experimentally [91]. The fit using eq. (8) on the calculated functions hN N (r ) (Figure 8) now sug-
gests evidence that at large distance (here r ≥7 Å) the damped oscillations of topological corre-
lations can be reproduced using the OZ form. For the represented system at P=4.0 GPa, we find
ξ=2.86 Å and q1=2.61 Å−1. These values already indicate that q1 cannot be related to the FSDP po-
sition kF SDP as suggested by Ma et al. [88] given our calculated kF SDP =1.95 Å−1 [60]. Instead, q1 is
rather linked to the principal peak position found at kPP =2.98 Å−1, and this suggested correlation
appears to hold for the experimentally investigated glasses (e.g. q1=2.10 Å−1 against kPP =2.04 Å−1

and kF SDP =1.14 Å−1 in glassy GeSe2 [3, 93]). Similarly, the obtained ξ values for the present sili-
cates appear to be close to those obtained experimentally (e.g. ξ=3.00 Å in GeO2 [93], represented
in Figure 9b).
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set shows the entire function with the fit, and the gray zone defines the r−range over which
the fit has not been performed.

3.2. Threshold behavior in topological ordering

The resulting parameters ξ and q1 are now represented in Figures 9 and 10 as a function of applied
pressure (panels a) or calculated constraint density nc (panels b).

When represented as a function of pressure, ξ(P ) leads to a smooth increase (Figure 9a), and a
near constant behavior if only the SiO2 subnetwork is considered. This typical distance converges
to a limiting value of about ≃3.5 Å (for the total network) that is also close to the one determined
for the stressed rigid system GeSe2 [93] for which a mean-field estimate leads to nc =3.67 [30].
On the other hand, the other experimental data point (GeO2, nc ≃3 [96]) is compatible with the
obtained trend in ξ(nc ). Conversely, a minimum occurs for the parameter q1 that characterizes
the periodicity of topological ordering (Figure 10a). This minimum (less pronounced for the
underlying silica network) is obtained at the flexible-intermediate boundary of the IP previously
characterized [37], whereas for intermediate and stressed rigid system, a linear increase of ξ(P )
is acknowledged, suggesting a reduction of the periodicity of topological ordering upon further
compression.

The obtained behavior obviously suggests a structural signature for the IP as also previously
emphasized for peak characteristics in Fourier space at low wavector [60]. These signatures
are essentially obtained once all Faber–Ziman or BT partial correlations are being considered
(Figure 5) and are, therefore, barely visible from total correlations accessed from X-ray and
neutron scattering studies without isotopic substitution [63, 67]. Parameters of the FSDP region
display, indeed, an anomalous behavior in some of the partial structure factors. The position
kF SDP maximizes for a select number of partials only (Si-O, O-O Figure 5a), whereas the width
also show anomalies (minimum) close to the isostatic system.
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4. Discussion

We relate the anomalies in topological ordering in isostatic systems with a measure of structural
disorder, and with diffusivity extrema which underscore water-like anomalies found in densified
tetrahedral liquids.

4.1. Entropy

An additional and interesting insight is, indeed, provided by the pair correlation entropy which
measures from the atom-atom radial distribution functions gi j (r ) representing an excess entropy
with respect to the entropy of an ideal gas. The latter consists of a non-interacting mixture of
particles having the property gi j (r )=1 over all distances

S2/kB N =−2πρ0
∑
i , j

xi x j

∫ ∞

0

[
gi j (r ) ln gi j (r )− [

gi j (r )−1
]]

r 2dr (9)

where xi is the mole fraction of component i and ρ0 is the number density of the system. The
latter quantity permits to capture effects that departs from form random liquid networks and
show interesting correlations with calculated thermodynamic and transport extrema occurring
in densified tetrahedral liquids, known as “water-like” anomalies. These simply signal deviations
from regular liquid behaviour that the excess entropy is able to capture, and are characterized by
sets of state points (T ,ρ) or (T ,P ) for which the diffusivity increases with density/pressure.

Figure 11a represents the calculated entropy for the present system, as a function of the
constraint density nc . Unlike the monotonic decrease in S2 with density ρ as in simple liquids,
the present system has a well-defined anomalous regime where the excess entropy rises with
increasing density (Figure 11a) or pressure (not shown). The increase of S2 is large in flexible
networks with increasing connectedness, correlated with the increase in density (right axis),
and reaches a maximum close at the isostatic condition, while for nc ≥3 entropy decreases
moderately. These are linked with other anomalies noticed in transport coefficients when tracked
as a function of P or ρ or nc [58,80]. Here oxygen diffusivity (and silicon, not represented) displays
a minimum Dm at nc =2.85 and a maximum DM at nc ≃3, whereas Na is merely constant in the
flexible phase (Figure 11b), exhibits a dramatic jump in the identified intermediate phase [58]
and then decreases in a similar fashion to oxygen in the stressed rigid phase corresponding to the
high pressure NS2 system.

A closer inspection of the different Figures 10 and 11 indicates that the structural properties
not all track the locus of the IP. Parameters characterizing the topological ordering (q1 and ξ)
appear to display a change in behavior as the system is exactly isostatically rigid (nc =3), i.e. at
the flexible to intermediate boundary, whereas structural partial correlations involved in the
first sharp diffraction peak merely follow the location of the IP region. On the other hand,
previous investigations have shown that the change in dynamic properties (diffusivity) takes
place throughout the IP. These features signal that the signatures of the two IP boundaries
are essentially detected from calculated dynamic quantities (diffusivity [37, 58], viscosity [80],
enthalpy of relaxation [40]) or from experimental thermal/calorimetric measurements [30].

4.2. Water-like anomalies

The present behaviors obtained for pair correlation entropy and diffusivity correspond to salient
features of water-like anomalies which consist in a series of dynamic/thermodynamic anom-
alies that manifest by diffusivity maxima and minima in densified tetrahedral liquids such as wa-
ter [97], SiO2 [98] or GeO2 [72,99]. Such anomalies have been found in NS2 as well, and extrema in
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Adapted from Bauchy et al. [80] and Mantisi et al. [58]. The location of the reversibility
window (cyan) has been determined from NVT cooling-heating cycles [58].

diffusivities with density or pressure for the network forming species (Figure 11b and [58, 69]) or
viscosity [80] have been reported. In addition, when both diffusivity and viscosity are studied as a
function of temperature in an Arrhenius plot, it has been found that corresponding activation en-
ergies for viscosity or diffusion also display a minimum for the same range of pressures/densities
where the diffusivity anomalies are found [37]. The latter behavior indicates the increased ease of
relaxation in isostatic network-forming liquids that contributes to heterogeneous dynamics [29]
and to the nearly reversing character of the glass transition (Figure 3c).

In studies on structural and dynamic anomalies of densified tetrahedral liquids, it has been
stressed [97–99] that the definition of local structural order parameters could help in understand-
ing the relationships between such diffusivity anomalies, structural and thermodynamic anom-
alies under temperature and density change. One order parameter (translational) measures the
tendency of pairs of molecules to be separated by a preferential distance, while a second order



18 Matthieu Micoulaut

parameter (orientational) measures the tendency of a molecule and its nearest neighbours to
adopt preferential orientations.

Here, one now recognizes that the isostatic nature of the network leads to structural correla-
tions which manifest by a certain degree of topological ordering characterized by a decay length
ξ and a period q1 that is linked with the presence of an entropy maximum for nc ≃3. The dif-
fusivity anomalies are driven by constraint nc softening which is the dominant feature control-
ing the evolution of transport coefficient under density and temperature change [73]. We, thus,
view these transport anomalies as a consequences of structural rearrangements driven by stress
adaptation in a connectivity window located between roughly 2.85≤ nc ≤3.0, and the typical fea-
tures of diffusivity minima Dm and maxima DM can be related to the boundaries of the RW (Fig-
ure 11b) [37,58]. In light of these correlations, we now interpret the location of Dm as the bound-
ary for the onset of a rigid but stress-free network-forming liquid, whereas the location of DM is
related to the upper boundary of the IP. The trend with nc (Figure 11b) also reveals that local de-
formation modes which are present in the flexible phase will promote transport. Once the system
is becoming more rigid, atomic motion and diffusivity reduce. In the IP, the adaptive nature of the
structure (constraint softening [37,73]) will facilitate transport that is also induced by a reduction
of stress [40] (no redundant bonds/constraints), prior to an important decrease once the system
has become stressed rigid and the network is locked by an important bond density.

5. Conclusion

Here we have reviewed some features regarding flexible to rigid transitions in glasses and disor-
dered networks. The Phillips–Thorpe mean-field theoretical framework inspired by the Maxwell
treatment on trusses has been used for decades in glass science. More recent non-mean-field
scenarios indicate that measured reversibility windows at the glass transition might be the signa-
ture of the ability of networks to adapt under a stress imposed by composition or pressure, that
lead to a so-called intermediate phase. The picture of flexible to rigid transition appears, thus,
to be more complex than previously believed, and connects to certain anomalous features typi-
cal of densified liquids. Molecular dynamics simulations provide an interesting added value, able
to substantiate these key results derived from phenomenological models. Simulated sodium sil-
icates appear as attractive systems in this context given that they undergo a rigidity transition
with sodium content, and display with pressure a variety of anomalies that connect to the pres-
ence of a reversibility window, and an intermediate phase. Here we have focused essentially on
possible structural signatures of the IP, and the analysis of the decay of Bhatia–Thornton pair cor-
relation functions with pressure indicates that typical lengthscales for topological ordering dis-
play anomalies (thresholds, minima) across the IP or its related boundaries. These results ob-
tained from number-number correlations might suggest that structural signatures of the IP are
only visible from partial correlations, as also previously found in parent systems [60, 69].

The NS2 liquid displays striking similarities with densified tetrahedral liquids [97–99] which
display similar anomalous thermodynamic and kinetic properties, the most obvious one being
the existence of a regime of anomalous density behaviour where diffusivity and entropy maxi-
mizes. In contrast to those liquids which do not contain ions (i.e. Na), no negative isothermal
expansion coefficient is found that give rise to temperatures of maximum density in appropriate
density-temperature or temperature-pressure planes [99]. Instead, one acknowledges an obvious
threshold behavior once ρ0 is tracked with the constraint density nc (Figure 11b) which only un-
derscores the enhanced compaction tendency of the flexible phase and the rapid evolution of ρ0

with increasing rigidity.
These anomalies not only correspond to a set of thermodynamic state points for which e.g. the

diffusivity increases with density but also underscores the role played by network connectivity
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and structure. A unified explanation [100, 101] for such thermodynamic and kinetic anomalies
has been proposed on the basis of the existence of an excess entropy anomaly involving a rise
in excess entropy on isothermal compression. The collection of numerical data on NS2, once
represented as a function of constraint density nc highlights now the central role of network
rigidity and provides some indication that stretching and bending interaction softening [37,
73] will control the various obtained anomalies including the one detected in pair correlation
entropy, while also driving the onset of a near reversible glass transition where the enthalpy of
relaxation is minimal. This is the dominant feature of the intermediate phase. Ultimately, these
features give rise to some structural ordering that manifests once long-range correlations of the
network topology are investigated as a function of the order parameter of the flexible to rigid
transition, i.e. the fraction of floppy modes 3-nc .
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