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Abstract

Silicate glasses can be seen as connectivity networks where specific tools are used for the un-
derstanding of the behavior with composition of their chemical and physical properties. These tools 
make use of the effective interatomic interactions and mechanical constraints such as those used for 
analyzing the stability of macroscopic trusses. We first describe how complex interactions and coordi-
nation numbers can be efficiently handled within a general framework. The ingredients of the general 
framework, also known as mean-field bond constraint theory, are then presented. The theory predicts 
flexible to stressed-rigid elastic phase transitions at threshold compositions (or mean-coordination 
numbers). Applications to alkali- and alkaline-earth-silicates are considered and experimental signatures 
of the phase transition identified. Finally, we focus on the latest development in the field, namely the 
appearance of a new self-organized intermediate phase between flexible and stressed-rigid phases. 
Experimental signatures of these phases are reviewed, and the tools of adaptative silicate networks 
used to understand their features.
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Introduction

Silicate glasses not only have a huge technological and com-
mercial importance due to their applications in semiconductor 
devices, and window and optical glasses, but also represent the 
dominant part of the Earth’s crust made of a mixture of different 
alkali and alkaline-earth-rich alumino-silicate systems. In con-
trast with alkaline-earth silicates, there is a wide glass-forming 
range in the binary alkali-silicate systems. Modifying ions (from 
Li to Cs, or from Mg to Ba) usually enter the glass network as 
singly or doubly charged cations and occupy interstitial sites 
(Richet and Mysen 2005; Henderson 2005). Charge compensa-
tion is achieved through the creation of so-called “non-bridging” 
O atoms (NBO) that lead to an increased disruption (depo-
lymerization) of the base silica network made of an alternation 
of Si and bridging O atoms (BO) (Greaves and Sen 2007). The 
creation of NBOs therefore reduces the connectivity of the glass 
network and has some obvious implications for its physical and 
chemical properties. In fact, the thermal expansion coefficient, 
fluidity (inverse of viscosity), diffusion, and ionic conduction 
all increase with an increase of modifier content. The change 
in network structure with the type and concentration of modi-

fier ions has proven to be helpful in understanding the physical 
properties of glasses and melts. 

At a basic level, the molecular structure of a silicate glass 
can be visualized as a generic bars-and-nodes truss network 
where nodes represent atoms and bars the covalent bonds. The 
mechanical stability of such networks can then be analyzed at 
different levels, either from a global approach that relies only 
on the chemical composition, or on a more detailed level using 
statistical mechanics techniques.

Early attempts at microscopic modeling of network trusses 
have emphasized the central role played by the connectivity of the 
network (Phillips 1979, 1981), with a certain number of physical 
and chemical properties of a large family of glasses depending 
simply on the network mean coordination number r (Asokan et 
al. 1989; Feltz et al. 1983; Kamitakahara et al. 1991; Boehmer 
and Angell 1992; Senapati and Varshneya 1995). Furthermore, 
it has been shown that a system made up of weakly cross-linked 
chains will become rigid when r reaches a threshold value 
(Thorpe 1983; He and Thorpe 1985; Schwartz et al. 1985; Cai 
and Thorpe 1989). At low connectivity, networks have a flexible 
structure that is weakly constrained by interatomic interactions, 
whereas high cross-linked networks (i.e., with large connectivity) 
are found to be stressed rigid, i.e., one finds more constraints 
due to covalent interactions than degrees of freedom per atom 
on average. In mechanical engineering, these two extremely 
different networks (low and large connectivity), having either 
an under- or overconstrained nature, are respectively termed 
hypo- and hyperstatic. The threshold composition, i.e., the point 
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where the number of constraints matches exactly the number of 
degrees of freedom, is isostatic or optimally constrained (Phillips 
1979; Thorpe 1983). In binary silicates, the large connectivity 
(overconstrained) limit obviously corresponds to the silica-rich 
side, whereas the underconstrained (low connectivity) network 
is typical of a moderate or highly depolymerized glass.

On this basis, Phillips (1979) predicted that glass-forming 
tendency is maximized at this boundary because of the optimal 
interplay between degrees of freedom and constraints. In other 
words, there are no excess constraints. Also, exhaustion of all the 
degrees of freedom means that the network fills space efficiently 
(Feltz et al. 1983).

Simulations of bond-depleted amorphous Si networks with 
changing connectivity have furthermore shown that isostatic (i.e., 
optimally constrained) networks are located close to a mechani-
cal critical point where the number of zero frequency (floppy) 
modes f of the dynamical matrix vanishes (Thorpe 1983; Thorpe 
and Duxburry 1999). This critical point defines a flexible to rigid 
elastic phase transition as network mean coordination number r 
increases to 2.4, with f being the order parameter of the transition 
and r the control parameter.

As r can be easily defined in covalent network glasses of the 
form AxB1–x with well-known coordination numbers rA and rB and 
r = rA x + rB (1 – x), experimental studies of rigidity transitions 
have first focused on chalcogenides such as GexSe1–x or AsxS1–x. 
Raman scattering (Feng et al. 1997), stress relaxation and 
viscosity measurements (Tatsumisago et al. 1990), vibrational 
density of states (Kamitakahara et al. 1991), Brillouin scattering 
(Sreeram et al. 1991), Lamb-Mössbauer factors (Boolchand et 
al. 1995), and resistivity (Asokan et al. 1989) have underscored 
the central role played by network connectivity, and a system-
atic change in regime has been observed at the network mean 
coordination number of r = 2.4. In ternary systems involving 
three kinds of atoms, the demonstration has been even more 
persuasive as the threshold has been found not to depend on the 
particular compositional join (Tatsumisago et al. 1990; Sreeram 
et al. 1991).

How can these ideas be extended to oxide systems with 
partial ionic interactions, and ultimately, to silicate glasses and 
melts? Preliminary work in this direction has been accomplished 
by Zhang and Boolchand (1994) and Boolchand and Thorpe 
(1994), who considered the effect of onefold-coordinated atoms 
in chalcohalide networks, and broken mechanical constraints 
arising from the size of a cation in an Na tellurate system. What 
can we infer about glass and liquid properties of oxides that 
would interest geologists? The aim of this article is to address 
the issue by providing concepts and tools from rigidity theory for 
understanding of silicate glasses at a more basic level. This ar-
ticle is organized as follows: we first discuss the basic principles 
and notions about distance constraints and rigidity in silicate 
glasses, together with the basic assumptions that are needed for 
this approach. A certain number of straightforward examples 
are shown for (almost) purely covalent network glasses. We 
then apply these notions to the case of alkali and alkaline-earth 
silicates, and discuss experimental results on binary silicate 
glasses and melts. The case of adaptative molecular networks 
leading to a self-organized intermediate phase (Boolchand et al. 
2001b) is then considered in this perspective. This allows the 

understanding of new generic features of disordered solids that 
have been observed recently in network and in silicate glasses 
(Vaills et al. 2005). 

Bond strength, connectivity, and distance 
constraints

For silicate glasses, one has first to define the relevant coor-
dination numbers because the present approach requires only the 
underlying connectivity of the glass network. Then, one has to 
define bonding constraints imposed by the interactions between 
atoms, and finally check if all these interactions should be taken 
into account, or if some of them derive from sufficiently soft 
interactions to be considered as negligible. 

Oxygen neighbors and alkali coordination number
Since the goal is to build a theoretical framework that will 

mostly rely on the connectivity of the network, a crucial ques-
tion deals with the definition of the coordination number of the 
involved atoms.

 In covalent network glasses, the degree of cross-linking in 
terms of a mean coordination number r can be unambiguously 
defined from the coordination number of the atoms that follow 
the 8-N rule. Here N stands for the number of outer shell elec-
trons. As demonstrated in a neutron diffraction study of GexSe1–x 
(Salmon 2007), this quantity r can be exactly determined from 
the number-number Bhatia and Thornton (1970) pair distribution 
function gNN(r) via:

r n R g R dRNN

Rm

= ∫4 0
2

0
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where Rm is the distance at first minimum of gNN(R), n0 the number 
density, and gNN(R) is related to the ordinary pair distribution 
functions gαβ(R) by:

g R c c g RNN ( ) ( )
,

= ∑ α β αβ
α β 		
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with cα and cβ the concentrations of species α and β.
Indeed, whereas the area under the first distance peak in a 

standard Faber-Ziman gαβ(r) pair distribution function usually 
gives the number of β-atom neighbors in the vicinity of a central 
α atom, gNN(R) focuses on the neighbors irrespective of their 
chemical origin, α or β. Therefore, it provides a measure of the 
network topology (Salmon et al. 2005). In GexSe1–x, the behavior 
with x of the area under the first distance peak in gNN(r) follows 
exactly the quantity r = 2 + 2x that is what one would obtain from 
a straightforward calculation based on the 8-N rule (Fig. 1). 

Can these simple considerations now be applied to silicate 
glasses? We show in the same figure (broken line) the Bhatia-
Thornton pair distribution function of a simulated CaSiO3 system 
at 300 K (see details of the simulation below). The mean coordi-
nation number determined from the area under the principal peak 
leads to r = 3.93, a value that is very different from what one 
would obtain for this system having at our disposal the respective 
coordination number of 2, 4, and 2 for Ca, Si, and O:

r = + + × =2 4 2 3
5

2 4. 			   (3)

The analysis of the different Faber-Ziman partials of the 
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CaSiO3 system furthermore shows that the number of O neigh-
bors in the vicinity of a Ca atom is not 2 but about 6. This holds 
not only for Ca silicates. Structural studies of various binary 
silicates based either on extended X-ray absorption fine struc-
ture (EXAFS) (Misawa et al. 1980), X-ray diffraction (XRD) 
(Wilding et al. 2004), or neutron diffraction (Eckersley et al. 
1988; Gaskell et al. 1991), together with molecular simulations 
(Poole et al. 1995), have shown that the number of O neighbors 
in the vicinity of a metal cation was usually larger than the 
coordination number expected on a simple chemical basis. In 
alkali silicates, the modifier-O pair distribution function obtained 
from MD simulations furthermore shows a well-defined first 
distance shell between the O atoms and the alkali cation (see 
e.g., Du and Corrales 2006). Experimentally, EXAFS studies 
on different mixtures of alkaline earth silicates suggest that 
Mg, Ca, and Ba have a respective “coordination number” of 4, 
6, and 6 (Taniguchi et al. 1997). Similarly, the O coordination 
number for K or Na has been found to be between 6 and 8 from 
EXAFS studies (Greaves 1985). In neutron-scattering studies 
on Li disilicate glasses, the Li coordination number was found 
to range from 2.16 to 4.0 (Hannon et al. 1992; Zhao et al. 1998; 
Uhlig et al. 1996).

On the other hand, as the mean coordination number of Si 
is r = 2.67, the addition of higher-coordinated alkalis should 
increase the global connectivity of the network. And since the 
change in the glass-transition temperature, Tg, is directly cor-
related with the change in connectivity (Kerner and Micoulaut 
1997; Naumis 2006), one should expect that the increase of 
alkali content would lead to an increase of Tg. This conclusion 

runs against the experimentally observed Tg variation in alkali 
and alkaline earth silicates. In fact, in all silicates, the glass-
transition temperature drops from 1450 K for vitreous silica to 
800 K after several percent alkali oxide are added (Suzuki and 
Abe 1981), in quantitative agreement with statistical models 
that use an alkali coordination number of 1 (Micoulaut 1998). 
Obviously, connectivity-based approaches to network glasses can 
extract the cation-O coordination number from an 8-N rule, and 
do not need to take into account “extra” O neighbors visualized 
in spectroscopic studies.

A piece of evidence for the latter assertion comes from mo-
lecular simulation studies (both classical and first principles). 
These show that the metal-O distances found in silicates are not 
all equivalent. In fact, molecular orbital calculations on Na or 
Ca silicates have shown that the Na-NBO distances were shorter 
than the Na-BO distances (Uchino and Yoko 1998; Ispas et al. 
2002; Cormier et al. 2003). Experimentally, Debye-Waller fac-
tors measured in EXAFS studies on Ba or Ca binary silicates 
are slightly different, suggesting that the O neighbors of Ca are, 
again, not all equivalent (Taniguchi et al. 1997). 

With this in mind, one has also to remember that according to 
Pauling, bond strength (in our case the mechanical constraint) is 
a systematic function of the bond distance: the longer the metal-
O bond, the weaker is its strength. Moreover, one should also 
use the definition of Pauling to determine the fractional ionic 
character fi in the metal-O bond (Pauling 1962):

f X X
i = − − −1

4

2
exp[ ( ) ]M NBO 		  (4)

where XM and XNBO are the electronegativities of the metal (M) or 
O (NBO) atoms. Indeed, the present theory deals only with the 
bonds that provide a strong mechanical constraint, which means 
that the covalent bonds are the most qualified. For Ca-O bonds, 
one obtains from the electronegativities of Ca (XCa = 1.00) and 
O (XO = 3.44) a value fi = 0.774 and a corresponding covalency 
factor of 1 – fi = 0.226. With a coordination number of 6 for 
Ca, the corresponding covalent coordination is 6(1 – fi) = 1.36, 
somewhat lower than 2. In Na silicate glasses, one obtains from 
a “Pauling” analysis of Equation 4 a corresponding covalent 
coordination between 0.832 and 1.04, even though the number 
of nearest O neighbors of the Na atom is believed to be 5.

Hierarchical constraints from simulated CaSiO3

To illustrate further our approach, and the way relevant 
constraints should be selected among all possible bondings (i.e., 
neighbors), we construct by molecular dynamics simulation a 
structural model consisting of 307 Ca, 307 Si, and 922 O atoms 
confined in a cubic box of edge length 27.8 Å that corresponds 
to a glass with experimental density of 2.8 g/cm3. The number of 
atoms chosen and the potential employed, yields the wollastonite 
CaSiO3 compound. The atoms interact via a two-body Huggins-
Mayer effective potential in a (N,V,E) ensemble, which contains 
a Coulombic term and a short-range repulsive term:

V r A e
Z Z e

rij ij
d r i jij( ) ( )/= +− ρ

2
		  (5)

Parameters (Aij, dij, Zi, Zj, ρ) for this potential have been 
fitted (Abramo et al. 1992) to obtain a structure factor and a 
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Figure 1. Bhatia-Thornton number-number pair distribution 
function. gNN(r/r1) of a GeSe4 glass (solid line) (Salmon 2007) together 
with a simulated pair distribution function for a wollastonite CaSiO3 glass 
(broken line, see text for details). The scaling distance r1 corresponds 
to the distance of the first maximum of the pair distribution. The insert 
shows the network mean coordination number r extracted from the area 
of the first peak (filled circles) in the system GexSe1–x together with the 
estimate from an 8-N rule (r = 2 + 2x). 
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radial distribution function for Ca-Ca correlations that are in 
fair agreement with experimental results from neutron scatter-
ing (Eckersley et al. 1988; Gaskell et al. 1991) on the CaSiO3 
glass. Bond distances and coordination numbers satisfy experi-
mental measurements on glasses or wollastonite (Mastelaro et 
al. 2000).

The system has been first maintained during 1 ns (with a time 
step of 1 fs) at 3000 K and then cooled down at a quench rate of 
1012 K/s with positions and velocities saved at various tempera-
tures that have served as starting configurations for production 
runs up to 5 ns. The computed potential energy shows a marked 
change in slope around the temperature of T = 1100 K, which 
signals the glass transition. This value is slightly larger than the 
experimentally measured (Malki et al. 2003) one of 1065 K, but 
still in reasonable agreement as compared with usual large devia-
tions between simulated and experimental values of Tg (Guillot 
and Guissani 1996; Vollmayr et al. 1996).

The effective potential appears to be reliable in terms of 
thermodynamics as the variation of the enthalpy (H = E + PV) 
with respect to the temperature follows the experimental data 
of Richet and Bottinga (1984). Note that the deviation at high 
temperature, already noticed for a similar computation (Micou-
laut et al. 2006) in liquid GeO2, should arise from the variation 
of the density at high temperature.

For the present purpose, we focus on the structural properties 
of the amorphous CaSiO3 system at 300 K. As mentioned above, 
the computation of the network mean coordination number from 
the Bhatia-Thornton number-number pair distribution function 
gNN(r) leads to an overestimation of r. This difference mostly 
arises from the fact that the number of O neighbors in the vicinity 
of a Ca atom is found to be about 6.16, in agreement with the 
estimate from EXAFS measurements (Taniguchi et al. 1997). 
Here, the coordination number of Ca is calculated at a cut-off 
distance of 3.05 Å, which corresponds to the first minimum of 
gCaO(r) (see Fig. 2).

To estimate the number of bond-stretching constraints for e.g., 
the Ca-O pair, one needs to focus on the bond distance variability 
rather than on the bond distance itself. We compute at a given 
distance the probability of finding n O neighbors around a Ca 
atom, [n being labeled from 1 to 6, and 6 corresponding to the 
distance r = 3.05 Å where the first minimum of the gCaO(r) pair 
distribution function is found]. Results are displayed in Figure 
2. From each of these distributions, a characteristic radial width 
σn (the full-width at half maximum of the peak labeled n, see 
definition of σ1 in the insert of Fig. 2) shows that the first two 
O neighbors have a constant value for σn (Fig. 3). The latter 
increases starting from the third neighbor and up to n = 6. It 
suggests that O neighbors from n = 3 to 6 have a larger radial 
variability as compared to first two neighbors. The forces needed 
to maintain only small harmonic displacements from the equilib-
rium structure can be considered as negligible when compared 
to the first two O neighbors. Their corresponding mechanical 
constraints can therefore be considered as broken. It means also 
that even though there are six O neighbors around a Ca atom, one 
should only consider two bond-stretching constraints.

Radial variability and not cation coordination number appears 
therefore to control the number of relevant bond-stretching con-
straints. Moreover, from Figure 2, one sees also that the “effec-

tive” coordination number, which is needed for the enumeration 
of mechanical stretching constraints, is the one defined at the pair 
distribution maximum (i.e., at the bond distance). The additional 
neighbors contribute to the high-R tail of the first peak only and 
have a larger radial variability. In the following, we use therefore 
for constraint counting an alkali atom a coordination number of 
1, and for alkaline-earth atoms a coordination number of 2. 

Finally, since the bond-bending interactions can be taken into 
account only if a central atom is connected to other atoms (i.e., 
if stretching interactions do exist), bond-bending constraints 
are enumerated accordingly to the hierarchy enunciated for the 
bond-stretching interactions. 

In conclusion, based on the analysis performed in the previ-
ous two sections, one sees that the computation of mechanical 
constraints, which is based a chemical rule (8-N) rule in covalent 
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Figure 2. Ca-O pair distribution function gCaO(R) for a simulated 
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distributions contributing to the first peak in the simulated gCaO(R) of a 
wollastonite CaSiO3 glass. 
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chalcogenides, still holds when handling the more complex 
(non-directional or partially covalent) interactions of alkali-Si 
(or alkaline earth) oxides. From the simple view of Pauling, a 
covalent coordination number can be extracted from the elec-
tronegativities of the atoms. From molecular dynamics simula-
tions that are using empirical force fields, the complete atomic 
interactions are used in an effective way. The result is that bond 
distances are fixed (i.e., constraints are intact) for the number of 
atomic neighbors corresponding to the 8-N rule, whereas radial 
variability appears for the other neighbors. These have broken 
constraints and therefore do not contribute to the enumeration. 

Broken constraints
If the number of constraints can be only determined from 

an “8-N” rule coordination, one may wonder how the observed 
changing behavior in different alkali silicates can be handled 
from a connectivity viewpoint. Obviously, size effects should 
be taken into account in the bond-constraint approach.

We first focus on the case of vitreous silica, and more specifi-
cally on its Si-O-Si bond angle distribution. The latter has been 
extensively studied by various experimental techniques (Mozzi 
and Warren 1969; Nemilov 1982; Galeener 1985; Pettifer et 
al. 1988; Poulsen et al. 1995) and molecular simulations (for 
details, see Yuan and Cormack 2003) with a mean bond angle 
found between 142 and 147° and a full-width at half maximum 
of 17–38°. Note that in the case of molecular dynamics (MD) 
simulations, the value of the mean bond angle and the full-width 
at half maximum are very sensitive to the MD effective poten-
tial employed. Because of its broad angular distribution, O can 
display wide excursions around its equilibrium position, with a 
restoring force that is weak (Smith et al. 1995). On this basis, 
it has been proposed that bond-bending constraints of O should 
be broken in vitreous silica (Zhang and Boolchand 1994), which 
leads to an optimally constrained network for which the number 
of mechanical constraints matches exactly the number of degrees 
of freedom. It also explains indirectly the ease of glass formation 
of silica (see below).

With the addition of alkali cations, the Si-O-Si bond angle 
distribution becomes narrower, in parallel with a lengthening of 
the Si-O bond distance (Gibbs et al. 1972; Boisen et al. 1990). 
This result has been accurately demonstrated from an EXAFS 
study of Na silicates (Henderson 1995), and from an NMR study 
on silica and K silicates (Farnan et al. 1992), also reported long 
time ago (Brown et al. 1969). For the former experiment, the 
increase of Na leads to an increase of the Si-O distance but to a 
decrease of the Si-Si distance (i.e., implying a reduction of the 
Si-O-Si bond angle distribution). Concerning the latter, the full-
width at half maximum reduces from 26 to 21° between silica 
and the K2Si4O9 glass, whereas the mean bond angle remains the 
same. In MD studies, addition of Na to silica also narrows the 
bond angle distribution for certain classes of potentials (Yuan 
and Cormack 2003). The narrowing of the bond angle distribu-
tion indicates that the broken O bond-bending constraints of 
silica are restored. It is supported by the potential energy curve 
determined by an ab inito molecular orbital approach (Newton 
and Gibbs 1980), which shows that lower angles (i.e., lower than 
120°) lead to an increased interaction energy. 

The smaller size of the alkali cations implies higher field 

strengths F = Z/rM where Z is the cation valence and rM the ionic 
radius. The higher field strength requires also the coordination 
of NBO to screen their charges. In fact, in alkali silicates, the 
field strength goes from 1.11 Å for lithium to 0.86 and 0.6 Å 
for Na and Rb, respectively. In alkaline earth, the same quan-
tity ranges from 2.32 Å for Mg to 1.34 Å for Ba (Richet and 
Mysen 2005). The softening of the field strength means that a 
certain number of mechanical constraints should be considered 
as broken when the size of the cation (from Li to Cs, and from 
Mg to Ba) is increased. 

The bond-angle distribution around atoms with the weakest 
field strength is hardly accessible from experiments. However, 
as for the cation bond-stretching constraints discussed above, 
molecular simulations are able to provide some insights into the 
motion (and hence to the interaction) that is allowed around an 
equilibrium position. Figure 4 shows the BO-M-NBO simulated 
bond angle distribution of simulated alkali silicates (Du and Cor-
rales 2006). One sees from the figure that besides the sharp peak 
at low bond angle, the bond-angle distribution becomes broader 
with increasing alkali size. This broadening can be quantified 
from the full-width at half maximum (FWHM) that is an increas-
ing function of the ionic radius (or decreasing bond strength) 
(insert of Fig. 4). For K silicates, the distribution is even weakly 
bimodal with two contributions on average at 95 and 125°. In 
terms of bond-constraint counting, the present simulation sug-
gests that some additional constraints are broken when the size 
of the metal cation is increased. Figure 5 represents a schematic 
view of an Rb silicate for which BO bond-bending constraints are 
broken. The consideration of broken constraints will of course 
affect the elastic nature of the network, as discussed next. 
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Maxwell bond constraint theory

General ingredients
In random networks when only nearest-neighbor forces domi-

nate between atoms, small displacements from the equilibrium 
structure can be described by a harmonic Kirkwood-Keating 
potential (Kirkwood 1939; Keating 1966) that contains bond-
stretching and bond-bending terms without any further consid-
eration of more weaker forces such as dihedral or Van der Waals 
forces. Thorpe (1983) and co-workers (He and Thorpe 1985) 
have demonstrated that networks constrained only by these local 
forces can be analyzed from the eigenmodes of the dynamical 
matrix (of dimensionality 3N) that represent the zero-frequency 
modes. When these (floppy) modes are present, eigenmodes can 
diagonalize the matrix. The network is then flexible and can be 
deformed with a low cost in energy.

The total number of zero-frequency modes can be also com-
puted from Maxwell constraint counting, which requires only the 
coordination number of the atoms. For an r-coordinated atom, 
the enumeration of bond-stretching and bond-bending forces 
(presumed here intact for all atoms) gives, respectively, r/2 and 
(2r3) constraints. The latter is obtained by considering a twofold 
atom that has only a single angular constraint. Each additional 
bond onto this atom needs the definition of two additional an-
gular constraints. An Si atom has, therefore, seven constraints 
(see Table 1): two bond-stretching and five bond-bending con-
straints. A bonding O atom (BO) or an alkaline earth atom have 
two constraints, whereas the onefold alkali cation has only half 
of a stretching constraint because the corresponding stretching 
interaction is shared with a non-bridging O atom (NBO). By 
definition, onefold atoms cannot have bond-bending constraints 
(Boolchand and Thorpe 1994).

For a network made of atoms with concentration nr and coor-
dination r, the total number of constraints per atom is

n
n r r

nc

r
r

r
r

=
+ −[ ]

≥

≥

∑
∑
/ ( )2 2 3

2

2

	 (6)

and

r
N

rnr
r

=
≥
∑1

2

represents the total number of atoms of the network. The fraction 

f of floppy modes is given by 

f = 3 – nc 				    (7)

and can be simply rewritten as a function of the network mean 
coordination number N nr

r
=

≥
∑

2
:

f r= −2 5
6

			   (8)

One can easily see that f vanishes when r reaches a mean 
coordination number r = rc = 2.4. 

The vanishing of the number of floppy modes at r = rc = 
2.4 defines a single transition between a flexible and a stressed 
rigid phase. This transition happens when constraint counting 
is performed at a global (Maxwell) level with the number of 
constraints computed directly from the concentration of the in-
volved atoms. This first approach, although insightful, neglects 
any consideration of the presence of correlated fluctuations 
between either flexible or stressed subregions of the network 
that could delay the onset of rigidity when the connectivity is 
steadily increased. Similarly, the initial eigenmode analysis 
(Thorpe 1983) is realized on networks with bonds being removed 
at random. The vanishing of Equation 8 therefore defines a 
mean-field result where neither typical length-scales nor any 
spatial correlations of the emerging elastic phases (stress-free, 
stressed) are involved. 

Application to alkali and alkaline earth silicates
Having set the coordination numbers of Si, O, and the alkali 

cation respectively to four, two, and one, one is able to estimate 
at which concentration the number of floppy modes defined from 
Equation 7 vanishes. Note that for all these systems, the number 
of atoms per mole is 3 and that the onefold alkali cannot have 
bond-bending constraints.

The simplest case is the Li silicate system for which all 
constraints are considered intact due to the small size of the Li 
cation. Its ionic radius is on the same order as the O atom of the 
network and there is no size mismatch.

Table 1 gives the different ways to compute the number of 
constraints of the various silicate systems. For the Li case, the 
number of floppy modes is equal to

f xLi = − −3 1
3

11 8( ) 			   (9)

which vanishes at the critical concentration x = xc = 0.25. In 
a global Maxwell approach, Li silicate glasses can therefore 
be considered at low concentrations as stressed rigid (nc > 3), 
whereas they are flexible (nc < 3) at higher concentrations. The 
boundary between the two phases locates the rigidity transition 
at a Li2O concentration of 25%.

As mentioned above, with increasing metal-O bond distance 
(from 1.97 Å for Li to 2.36 Å for Na), the cation field strength 
should be weaker. This leads to additional local degrees of 
freedom or broken constraints from the weaker interactions 
(necessarily a NBO bond-bending). For the Na case, broken 
NBO bond-bending constraints shift the rigidity transition to 
x = xc = 0.20, which is intuitive. Indeed, because a certain 
number of constraints are missing, flexibility can now onset at 

Figure 5. A schematic view of the local structure of a Li silicate (left) 
and a Rb silicate (right). The size of the circles are scaled accordingly to 
the ionic radius of the atoms. The lower field strength (for Rb) should lead 
to the softening of the bending interaction of the closest BO atom.
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lower concentrations. Therefore, one expects that the increase 
of the cation size from Li to Cs will bring the rigidity transition 
to small modifier content.

Consideration of the K case shows that there are still some 
bond-bending constraints that can be broken. In fact, if one BO 
bond-bending constraint is broken between two Si tetrahedra, 
the rigidity percolation threshold will shift to a K concentration 
of xc = 0.167. An additional broken constraint (two BOs) brings 
the threshold to the concentration xc = 0.143. We identify the 
latter case with a Rb system since a rigidity transition has been 
observed close to this composition for the similar Rb germanate 
system (Boolchand, unpublished material).

The application of constraint counting algorithms is also pos-
sible on the alkaline earth silicate systems, as shown in Table 1. 
Note that in these systems, the number of atoms per mole is now 
3 – x, and that the twofold alkaline earth cations can have some 
intact bond-bending constraints when the ionic radius is small.

The simplest case that can be considered is again the one 
for which all constraints are intact, which corresponds to Mg 
or Ca silicates that have the highest field strength. In contrast, 
one assumes that due to the size of the cation, bond bending of 
the Ba cation and the two adjacent NBO are broken. In fact, the 
simulated O-Ba-O bond-angle distribution shows a full-width 
at half maximum of about 90° (Schlenz et al. 2002), close to 
the value obtained for K (insert of Fig. 4). It suggests that Ba 
displays wide angular excursions and should therefore have its 
bond-bending constraints broken. This leads, e.g., to several 
floppy modes from Maxwell counting:

f x
x

x
xMg,Ca = − −

−
= −

−
3 11 7

3
4 2
3

f x
x

x
xBa = − −

−
= −

−
3 11 10

3
7 2
3

			  (10)

for Mg or Ca, respectively, and Ba. The number of floppy modes 
then vanishes at the critical concentrations xc = 0.50 and xc = 
0.285 (see Table 1).

Discussion

There are several salient features for the onset of rigidity that 
have been observed in network glasses over the years and that 
can be transposed to the present silicates where similar observa-
tions have been reviewed. Compositional trends can indeed be 
quite useful in understanding physical and chemical properties 
of silicates (see also Richet et al. 2006) from the viewpoint of 
rigidity.

Glass-forming tendency
A network that is rigid but stress-free, and that satisfies nc 

= 3, lies at a mechanical critical point that influences the glass-
forming ability. In fact, the number of internal degrees of freedom 
(the number of floppy modes) has vanished, and decreases the 
corresponding relaxation in the potential energy landscape that 
would bring an additional increase to the heat of vitrification. 
On the other hand, the absence of excess constraints (excess of 
stress) prevents any phase separation. The glass formation at 
the rigidity transition composition should therefore be optimal 
with an approximate location at the center of the glass-forming 
domain. On the low modified silicate side (nc > 3), the increase 
of stress will ultimately favor phase separation. 

To check how optimally constrained networks form glasses 
easily, one can follow either the crystallization rate or the vitri-
fication enthalpy as composition changes. Another conventional 
way to study the ease of vitrification uses the so-called tem-
perature-time-transformation studies (Uhlmann 1972). In a (T,t) 
representation, these usually represent the temperature evolution 
with time that maintains a fixed crystal volume fraction (typically 
10–6) with cooling. In high-temperature liquids, the driving force 
for homogeneous crystal nucleation is weak but increases rapidly 
once the system becomes supercooled. At low temperatures, the 
crystal nucleation rate decreases because the diffusion slows 
down, which implies nucleation. Between these two ends, the 
crystallization rate exhibits a maximum that needs to be avoided, 
and from which a critical cooling rate can be determined that 
avoids the crystallization. Figure 6b shows the critical cooling 
rate for Na and K silicates for only a few compositions (Fang et 
al. 1983). Here one sees that a minimum in the critical cooling 
rate is obtained at a composition that is located in the interval 
where optimal glass formation is expected from Maxwell count-
ing (respectively x = 20 and 16.7%). It parallels findings on the 
GexSe1–x system (Fig. 6a) where slow cooling allows only glass 
formation at network connectivities that are somewhat lower 
than the critical coordination number r = rc = 2.4 of the rigidity 
transition. An increase of the cooling rate (from air quench to 
water quench) increases the glass-forming region up to r = 2.67 
where stress-induced phase separation occurs. 

The enthalpy of vitrification measured from calorimetry 
(Tatsumisago et al. 1990) should also display characteristic 
changes when the system changes from a flexible to a stressed 
rigid phase. A study of vitrification in MgO-SiO2 melts between 
the enstatite (50%) and forsterite (66% MgO) compositions has 
recently shown that the heat of vitrification increases (Tangeman 
et al. 2001), an increase that is accompanied by a large change 
in connectivity (Wilding et al. 2004b). The optimal glass com-
position in Mg silicates is x = xc = 0.50. This composition can 
be produced by conventional methods, whereas extensions of 
the glass-forming region toward glasses with high melting tem-
peratures (e.g., forsterite) needs high-temperature containerless 
synthesis (Kohara et al. 2004).

An indirect indication of glass-forming tendency comes also 
from the behavior of the viscosity with composition at a fixed 
temperature or at some characteristic temperature that determines 
the final glassy state. According to different authors (Cohen and 
Turnbull 1961; Richet 1984), the glass-forming tendency is in-
creased for systems that are able to increase their melt viscosity 

Table 1. Bond-stretching (BS) and bond-bending (BB) constraint 
counting in alkali silicate (1 – x)SiO2 – xM2O , and alkaline 
earth silicate glasses (1 – x)SiO2 – xMO, total number of 
constraints Nc, and the location of the optimally constrained 
network composition xc

		 Si		  BO		  NBO		  M		  Nc	 xc

		 SiBS	 SiBB	 BOBS	 BOBB	 NBOBS	 NBOBB	 MBS	 MBB	 	

Li	 2(1 – x)	 5(1 – x)	 2 – 3x	 2 – 3x	 2x	 2x	 x	 –	 11 – 8x	 0.250
Na	 2(1 – x)	 5(1 – x)	 2 – 3x	 2 – 3x	 2x	 –	 x	 –	 11 – 10x	 0.200
K	 2(1 – x)	 5(1 – x)	 2 – 3x	 2 – 5x	 2x	 –	 x	 –	 11 – 12x	 0.167
Rb	 2(1 – x)	 5(1 – x)	 2 – 3x	 2 – 7x	 2x	 –	 x	 –	 11 – 14x	 0.143
Cs	 2(1 – x)	 5(1 – x)	 2 – 3x	 2 – 9x	 2x	 –	 x	 –	 11 – 16x	 0.125
Mg,Ca	2(1 – x)	 5(1 – x)	 2 – 3x	 2 – 3x	 2x	 2x	 x	 x	 11 – 7x	 0.500
Sr 	 2(1 – x)	 5(1 – x)	 2 – 3x	 2 – 3x	 2x	 2x	 x	 –	 11 – 8x	 0.400
Ba	 2(1 – x)	 5(1 – x)	 2 – 3x	 2 – 3x	 2x	 –	 x	 –	 11 – 10x	 0.285
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down to lower temperatures. For this reason, glass forms more 
easily at eutectics because freezing-point depressions bring the 
system to lower temperatures and higher viscosities. In this re-
spect, a proper way to compare the various alkali systems (that 
display different glass-transition temperatures and different phase 
diagrams) is to follow the viscosity of the different silicates along 

the liquidus branches, as suggested and discussed by Richet and 
Mysen (2005) and Richet et al. (2006). Figure 6c shows the evo-
lution of the viscosity along the liquidus branches for Li, Na, and 
K silicates. One sees that the composition of the minimum of the 
critical cooling rate (Fig. 6b) at around 20% Na or K correlates 
well with the viscosity maximum (25, 25, and 20% for Li, Na, 
and K, respectively) observed in Figure 6c, as already noticed 
by Richet et al. (2006). One should, however, keep in mind that 
the chosen compositional intervals in the nucleation experiments 
(Fang et al. 1983) do not allow for a definite conclusion on the 
relationship between the minimum in the critical cooling rate, 
and the viscosity maximum along the liquidus branches.

Obviously, there is a link between the composition of the first 
eutectic of the phase diagrams, the viscosity, and the location of 
the rigidity transition (i.e., the optimal glass composition). This is 
not only true for the present silicates but also for alkali tellurates 
(Narayanan 2001). The connection between the maximum in vis-
cosity and the location of the stress-free rigid composition where 
nc = 3, is more clear. In fact, one sees that this maximum shifts 
to lower compositions with the cation size, as does the rigidity 
transition composition xc (Table 1). Moreover, one notices that 
the location of the deepest eutectic in alkali and alkaline earth 
silicates is related to the composition at which the network is 
optimally constrained (Fig. 7a). For lower modifier concentra-
tions, extra constraints leading to stress increase the liquidus 
temperature (Fig 7b). When the temperature of the system is 
decreased from the liquidus, phase separation can occur because 
of the increase of bonding (i.e., constraints) that parallels the 
increase of viscosity. This finding indicates that stressed rigidity 
(nc > 3), rigidity without stress (nc = 3) and flexibility (nc > 3) 
are major factors in the understanding the viscosity behavior in 
alkali systems and thus the ease of vitrification.

Structural signatures 
Since the discovery of the rigidity transitions, many authors 

have tried to detect a structural signature in glassy networks that 
could underscore the change in elastic behavior at the rigidity 
percolation threshold. Changes with composition in the total or 
partial structure factors have been investigated for various net-
work glasses (Salmon 2007; Bychkov et al. 2005). The results 
have been disappointing. 

Raman scattering has appeared to be a helpful and interest-
ing probe of local and intermediate-range structural changes of 
glassy networks with changing compositions. In some cases, 
these experiments have helped to establish the elastic phases in 
glasses. Optical elastic power laws can indeed be defined from 
experiments when a typical vibrational mode forms part of a 
network with some extended character. Specifically, one follows 
the quantity ν2-ν2

c that depends on the frequency shift ν of certain 
modes, with mean coordination number difference r-rc. Here rc 
and νc represent, respectively, the network mean coordination 
number and the frequency shift at the flexible to rigid threshold, 
and obviously ν2-ν2

c represents a measure of the network stiff-
ness. Changes in behavior of this quantity at the flexible to rigid 
transition have therefore been observed (Feng et al. 1997). This 
result furthermore allows a power-law variation to be obtained 
that is typical of the elasticity of stressed rigid amorphous net-
works (He and Thorpe 1985, see below), and the corresponding 
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fractional exponent of the power-law to be determined. 
In contrast with chalcogenide network glasses, silicate glasses 

display a much larger variety of possible Raman modes some 
of which still have controversial structural assignments. Most 
of the modes, however, can be clearly attributed (Frantz and 
Mysen 1995; Zotov 2001). In the context of flexible to rigid 
transitions, a Raman study of the xCaO – (1 – x)SiO2 system 
has shown (Micoulaut et al. 2005) that certain modes (e.g., the 
stressed Q4 rigid SiO4/2 corresponding to the A1 stretching mode) 
exhibit a change in regime of line frequency and linewidth Γ at a 
concentration somewhat lower (45%) than the predicted x = 50% 
(Table 1), consistently with chalcogenide analogs (Selvenathan et 
al. 2000). The evolution of the linewidth Γ with Ca concentration 
permits the local environment of the Q4-unit to be followed. For x 
< 0.50, Γ remains constant, related to the absence of a change in 
the coupling of this unit with the rest of the network. It is the cou-
pling that makes the presence of rigid regions possible (through 
stress-free Q4-Q3 and stressed rigid Q4-Q4 bondings), although 
the number of flexible Q2- and Q1-units steadily increases with 
Ca content. Above the critical concentration x = 0.5, the sharp 
drop of the linewidth clearly shows decoupling of the Q4-unit 
with respect to the network, signifying decoupling of stressed 
rigid regions and thus percolation of flexibility.

Similar results have been obtained for K (Chaimbault 2004; 

Chaimbault et al. unpublished material) and Ba silicate glasses 
(Bourgel et al. in review), which exhibit respective changes at x 
= 0.15 and x = 0.31 modifier concentrations.

Energetical features and elastic constants
In silicates, a strong piece of evidence for an elastic phase 

transition comes from a Brillouin scattering study of virgin and 
annealed Na and K silicates (Vaills et al. 2001, 2005; Chaim-
bault 2004). In fact, this technique shows that the elastic energy 
change upon annealing ∆Φ(x) between as-quenched (virgin) and 
annealed samples is almost zero in the stressed rigid phase and 
increases linearly for a modifier content that is larger than the 
threshold xc predicted by Maxwell constraint counting (Fig. 8). 
Changes in the elastic energy are indeed supposed to occur only 
in the flexible phase where floppy modes proliferate. The latter 
can be easily released under annealing. Moreover, the shift of the 
threshold from 20 to 15% due to cation size when changing from 
Na to K is also revealed, accordingly to the constraint counting. 
Since the elastic energy release under annealing is a measure of 
the number of floppy modes f(x) of the network, one can fit the 
measured elastic energies in Figure 8 indicated by the computed 
fraction of floppy modes of Table 1. 

∆ΦNa Na Na Na= = − −





E f E x xs
10
3

2
3

( ) 	 (11)

∆ΦK K K K= = − −





E f E x xs4 2
3

( ) 		  (12)

Note that, in Equations 11 and 12, the elastic energies are in 
meV. The fit gives the value of ENa = 0.12 meV (and xs = –1.23), 
EK = 0.11 meV (and xs = –4.25) for the floppy mode energies, 
which are one order-of-magnitude lower to the value of 4 meV 
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estimated in a covalent chalcogenide network glass from inelastic 
neutron scattering (Kamitakahara et al. 1991). The additional 
parameter xs provides only a measure of the discrepancy between 
vanishing of ∆Φ from the linear extrapolation in the flexible 
phase, and the estimate from Maxwell constraint counting as 
shown in Table 1.

Finally, the stressed-rigid nature of the glasses at x < xc is 
confirmed in Brillouin longitudinal C11(x) and shear C44(x) elastic 
constants that show (Vaills et al. 2005) a power-law variation 
for the Na silicate, with an exponent p respectively of 1.68 and 
1.69 in fair agreement with numerical simulations from Thorpe 
(1983). Compilation of various data shows that the agreement 
is not restricted to Na silicates. Potassium-based glasses display 
the same kind of power-law behavior with an exponent close to 
the Na system (Chaimbault 2004; Chaimbault et al. unpublished 
material).

Onset of ionic conduction in the flexible phase
Another signature of the loss of rigidity with increasing modi-

fier content is the behavior of the dc ionic conductivity σ at a 
given temperature. Figures 9 and 10 illustrate the behavior of 
σ for melts of alkali and alkaline-earth composition. The trend 
with composition obviously exhibits two distinct conduction 
regimes on two compositional intervals: a first one at low modi-
fier concentration where the conductivity is negligibly small and 
a second one where σ obviously displays an exponential growth 
or power-law behavior. For that reason, σ is sometimes plotted 
in log-scale. From Figures 9 and 10, it becomes clear that the 
onset of ionic conductivity in the second compositional interval 
is related with the breakdown of the stressed-rigid network at 
x > xc.

In both the alkali and alkaline-earth silicate systems, the 
onset of conduction shifts with the size of the modifier cation, 
and correlates with the anticipated shift in the rigidity transition 
(determined from Table 1). This shift links ionic conductivity 
to glass elasticity and structure. The major consequence is that, 
the carrier concentration does not dominate the conductivity, as 
usually reported. In fact, the interpretation of the dc conductiv-
ity with composition is as follows. When x = xc, the number of 
floppy modes f vanishes and the network undergoes a rigid-to-
flexible transition. As mentioned above, for x < xc, the system is 
stressed rigid, i.e., it contains more constraints than degrees of 
freedom per atom. This means that the mobility of the modifier 
cation is very weak. The latter has to then overcome a strong 
mechanical-deformation energy to create doorways to move 
from one anionic site to another. This deformation energy will 
vanish in an ideal flexible network only when bond-bending and 
bond-stretching forces are considered (Thorpe 1983) at x > xc. 
The same behavior is obtained for the related elastic constants 
C11 and C44. Therefore, percolation of flexibility produces the 
percolation of the cation mobility that results in a substantial 
increase of the mobility and thus of the conductivity. 

As highlighted above in Figure 8, the effect of thermal history 
(annealing) is large in flexible glasses compared to stressed-rigid 
glasses where the elastic energy under annealing is virtually zero. 
In K silicates, annealing appears to change the ionic conductivity 
as long as x > 0.15 (Angel et al. 1995). Also, it has been noticed 
that non-Arrhenius conduction takes only place in flexible K 

silicates (Malki et al. 2006). 
One has finally to make the connection with the popular 

conductivity channel picture (Greaves and Ngai 1995) that has 
also received some support from Molecular Dynamics simula-
tions (Sunyer et al. 2002) of Na silicates. In these glasses, the 
rigid to flexible transition occurs at the alkali concentration xc 
= 0.20, which is very close to the reported threshold concentra-
tion separating intrachannel cation hopping (involving a weak 
mechanical deformation of the network, since the motion occurs 
only in macroscopic holes of the network) from network hop-
ping (strong mechanical deformation only possible in a flexible 
network). 

The link between ionic conduction and onset of flexibility 
is a very general phenomenon and certainly not restricted to 

0 5 10 15 20 25 30 35 40
0

0.0005

0.001

0.0015

0.002

0.0025

σ 
[Ω

−1
. cm

-1
]

150oC
250oC
300oC
350OC

0 5 10 15 20 25 30 35 40
0

0.0005

0.001

0.0015

σ 
[Ω

−1
. cm

-1
]

150oC
250oC
300oC
350oC

0 5 10 15 20 25 30 35 40
M2O (mol%)

0

5e-05

0.0001

0.00015

0.0002

σ 
[Ω

−1
. cm

-1
]

150oC
250oC
300oC
350oC

SiO2-Li2O

SiO2-Na2O

SiO2-K2O

Figure 9. Dc conductivity in glassy alkali silicates as a function 
of modifier concentration [M = Li (black), Na (red), and K (blue)]. The 
vertical broken lines correspond to the Maxwell rigidity threshold. Li 
and Na: data from Otto and Milberg (1968) and Mazurin and Borisovskii 
(1957). K = data from Evstrop’ev and Pavlovskii (1967), Mazurin and 
Borisovskii (1957), Otto and Milberg (1968), and Chaimbault (2004, 
unpublished material). Note: color is online only. 



Micoulaut: Rigidity in silicates1742

the present silicates. Indeed, it has been shown recently that 
the mechanical thresholds detected from calorimetry and that 
define the elastic phases correspond exactly to the one observed 
in conduction (Novita et al. 2007). 

Beyond the Maxwell scheme: Adaptative 
networks

Experimental evidences
Recent observations on network glasses have opened new 

questions and perspectives in this field of rigidity transitions. 
Indeed, the underlying nature of the onset of rigidity in glasses 
has been reconsidered because two transitions at the mean co-
ordination numbers rc1 and rc2 have been found from complex 
calorimetric measurements at the glass transition. These measure-
ments have used a temperature modulated DSC, which allows the 
resultant heat flow to be separated into a part that tracks with the 
same frequency the applied temperature modulation (the revers-
ing part, Hrev in Fig. 11), and a residual, non-reversing heat flow 
(Hnr in Fig. 11), that contains the kinetic events and builds up 
with the onset of dynamical arrest. At high temperature, when 
the relaxation time is small compared to the modulation period, 
the latter contribution is negligible. With changing composition, 
it has been found (Feng et al. 1997; Selvenathan et al. 2000) that 
the non-reversing heat flow ∆Hnr (shaded area in Fig. 11, defin-
ing ∆Hnr) extracted from Hnr vanished over selected connectivity 
ranges rc1 < r < rc2, in which the usual mean coordination number 
was 2.4. The same kind of calorimetric behavior can be observed 
(Vaills et al. 2005) in Na silicates (Fig. 11, lower panel).

These findings are correlated with the detection of vibrational 
thresholds in Raman scattering. As shown in Figure 12, values of 
rc1 and rc2 define an intervening region [or Boolchand intermedi-

ate phase, (IP), or reversibility window] between the previously 
defined flexible and the stressed rigid phase of glasses. It is found 
that the window sharpens and deepens upon low-temperature 
thermal annealing because the network stress that was frozen 
upon quenching is released. In the IP, glasses display some re-
markable properties such as absence of aging (Chakravarthy et 
al. 2005) or internal stress (Wang et al. 2005), and selection of 
isostatically rigid local structures (Georgiev et al. 2000). Links 
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between the IP and high-temperature superconductors (Phillips 
2002), protein folding (Rader et al. 2002), or computational 
phase transitions (Monasson et al. 1999) have been stressed 
that go much beyond simple analogies. The phenomenology of 
the intermediate phase has been described in a recent review by 
Micoulaut and Phillips (2007).

From Equations 6–8, one realizes that the Maxwell descrip-
tion (dynamical matrix, constraint counting) cannot account for 
the observations such as those displayed in Figure 12. Since the 
completion of an optimally constrained rigid network now spans 
a range of compositions, the notion of flexible to rigid transition 
has to be reconsidered and the nature of the transitions observed 
at rc1 and rc2 has to be characterized. The structure of the initial 
theory also needs to be changed. Indeed, the latter relies only on a 
global approach and encodes the connectivity change in the single 
network mean coordination number, r, neglecting the possibil-

ity that either flexible, intermediate, or stressed rigid correlated 
domains exist over certain compositional intervals.

Statistical constructions 
From a statistical physics viewpoint, a natural way to gen-

erate the intermediate phase is to take into account possible 
fluctuations within the structure that have correlated domains 
with different mechanical character. Such frameworks have been 
proposed for network glasses. They rely on either size increas-
ing cluster approximations (SICA) combined with constraint 
counting (Micoulaut and Phillips 2003), or on adaptative random 
bond models (ARBM) (Barré et al. 2005; Chubinsky et al. 2006) 
and that enable the Intermediate Phase to be described and to go 
beyond mean-field rigidity. 

In ARBM, the starting point is a one-bond-level description 
between local species whose random bond distribution can be 
easily evaluated from the probabilities of the local species. In 
the intermediate phase, the network self-organizes to lower the 
increasing stress due to constraints by entropic adaptation. We 
next apply this method to alkali silicates.

Random bond model for silicates
The local structure of an alkali or alkaline-earth silicate glass 

is considered from the viewpoint of its Qn species distribution 
(n = 1.4) with probability pn and a total species number N. Each 
Qn has n BOs, i.e., an effective coordination number n. All pos-
sible bondings are considered between the Qn and this leads to 
the random bond distribution:

N N ijp p
ipij

ij i j

i
i

* ( )
=

+

∑2
1 δ

			   (13)

where pi and pj depend on the modifier concentration x and δij 
is Kronecker symbol (δij = 1 if i = j, otherwise zero). Here the 
asterisk denotes the fact that the distribution is random, i.e., 
only given by the statistical weights (the connectivity) of the 
involved species. 

For the study of rigidity transitions of alkali silicates, one 
can restrict the Qn distribution from n = 2 to n = 4 as Q1 and 
Q0 species are likely to appear only beyond the disilicate (x = 
0.33) or even metasilicate (x = 0.5) composition. For Na and 
K silicates, the species distribution can be limited to Q4 and Q3 
units in the composition range (Maekawa et al. 1991) where the 
onset of flexibility occurs. In this case, one has

p x
x4

1 3
1

= −
− 				    (14)

(p3 = 1 – p4) and a random bond distribution that derives from 
Equation 13, equal to

N N x
x x44

2

2
8 1 3

2 3 1
* ( )

( )( )
= −

− − 			   (15)

N N x x
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The random distribution in Equation 13 can be also expressed 

Figure 12. Evidence for the intermediate phase in the network 
glass GexSe1–x. Non-reversible heat flow ∆Hnr for different aging times 
(a), threshold pressure Pc in Raman-pressure experiments (b), and 
symmetric stretch mode frequency νCS of corner-sahring tetrahadra 
from Raman spectroscopy (c). Adapted from Boolchand et al. (2001a) 
and Wang et al. (2005).
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in terms of a bond probability y*ij by dividing the N*ij of Equations 
15–17 by the number of bonds Nb between Qn species, equal to

N N ipb i
i

= ∑2 .				    (18)

If Maxwell constraint counting is applied at the one-bond 
level distribution of Equations 15–17, one obtains for the number 
of floppy modes:

f
n
N

y
n n

N N
y

nc c c c= − −
+ 
+

−3 4

4
44

4 3

4 3
43

( ) * ( ) ( ) * (( ) *3

3
33N

y 	 (19)

where nc(4) = 11 and nc(3) are the number of constraints of a Q4 
and Q3 unit, respectively, and N4 = 3 and N3 = 4.5 are their cor-
responding number of atoms. Equation 19 yields for the Na [nc(3) 
= 11.5] and the K [nc(3) = 11] case:

f x x
xNa = − +

−
4 15 12 2

3 2 3

2

2
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and 

f
x x

xK = −
− +

−
40 252 321

15 2 3

2

2( )
			   (21)

which vanish respectively at x = 0.237 and x = 0.221. The ran-
dom model therefore provides thresholds that lie close to the 
estimate from Maxwell counting using the macroscopic modifier 
concentration x (Table 1).

As the system will try to lower the stress with decreasing 
modifier content (i.e., increasing the network connectivity), 
departure from the random distribution in Equations 15–17 is 
achieved by defining the network adaptation parameter:

α = N
N

44

44
* . 

This parameter is chosen to apply on the Q4-Q4 connection 
that leads to a stressed rigid cluster (Si2O4), i.e., having nc > 3. 

Rewriting the number of type Q3 or Q4 bonds leads to

2 4 4 1 3
144 43 4N N p N x

x
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( )
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2 3 6
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x
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which, combined with the definition for N44, allows the one-bond 
distribution governed by the parameter α to be given as
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In this case, the probabilities for the adapative case are
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A typical behavior of the one bond distribution is shown for 
two different values of the adaptation parameter α in Figure 
13. The organization of the network at a given composition 
x using this one-bond level approach is thus determined from 
the parameter α. Letting α = 1 leads to the random bond case, 
whereas α ≠ 1 corresponds to the network adaptation. Note that 
in the latter, the description fails (y33 becomes negative) for the 
very silica-rich side (typically x < 10%) where, obviously, one 
must have random bonding (see also Fig. 14).

Free energy and configurational entropy
As stress costs energy, one can assume that with decreasing 

modifier content, the network will adapt itself to avoid the pos-
sibility of having too much stressed rigid Q4-Q4 connections. One 
can therefore define a stress energy that is proportional to the 
number of excess constraints (i.e., nc – 3) in the network, and that 
vanish in the flexible phase. One obtains for the Na case:

U x n y y ycNa ( , )α = − = + + −3 11
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At fixed modifier concentration, the network is now able to 
move away from its random distribution N*ij by decreasing the 
adaptation parameter α. Indeed, decreasing α leads to a decrease 
of the stress energy U(x,α). From Equation 31, one gets also from 
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the vanishing of excess constraints [i.e., UNa(x,α)], a relationship 
between the adaptation parameter and the concentration (solid 
line in Fig. 14).

The present equation locates the network adaptation needed 
to cancel the stress energy at fixed modifier concentration x. 
One sees that the lower the value of α, the lower the rigidity 
threshold in modifier composition x, satisfying f = 0 or UNa(x,α) 
= 0, which is intuitive. With the increase in the number N44 of 
stressed rigid connections, the more modifier content will be 
needed to reduce the connectivity of the network, thus x increases 
with α. But in contrast to the RBM of network glasses (Barré et 
al. 2005), the adaptation parameter can here increase to values 
α > 1. In fact, the addition of the modifier content decreases the 
stress in the network because of depolymerization, and allows 
α to increase from its random bond value (α = 1). This can be 
realized only if the increase in stress needs little configurational 
(entropy) changes.

From the distribution Equations 27–29, the configurational 
entropy of the network can be evaluated:

Sc(x,α) = –y44lny44 – y43lny43 – y33lny33	 (32)

which depends at a given modifier concentration on the adapta-
tion parameter α. Now, one can minimize the free energy of the 
system with respect to α, U(x,α) – TSC(x,α) at a given tempera-
ture and modifier concentration. Figure 15 shows how the free 
energy behaves for three compositions: at low x (20%), the net-
work is unable to decrease its stress energy because of the number 
of cross-links is too large. Mathematically, one would need to 
require α  < 0 to vanish U(x,α), which is physically impossible 
because it leads to y44 < 0. The addition of the modifier reduces 

the number of constraints and allows for a certain threshold 
composition x1 to cancel of U(x,α) for α > 0. In the Na silicate 
network, this threshold composition is found at x1 = 22.22% 
(Fig. 14). One further observes that for x > x1, the location of 
U(x,α) will lie close to the maximum in configurational entropy 
(composition 23.5% in Fig. 14). This result means that avoiding 
stress will cost little entropic changes. This interplay between 
stress energy and entropy can only hold as long as U(x,α) can 
be cancelled, which is only possible up to certain compositional 
ranges x2 (in the sodium case, x = 25%, see Fig. 14). 

Note also that a large part of the (x,α) diagram is excluded to 
ensure that all probabilities fulfill 0 < yij < 1. Three characteristic 
compositions emerge from the diagram: a first one for x < x1 
where there are too many cross-links to allow for any energetic 
adaptation; a second one for x < x2, where adaptation is not needed 
anymore because there is no more stress in the network; and a 
third one for x1 < x < x2, where the free energy decrease with de-
creasing modifier content (i.e., increasing stress) can be achieved 
by configurational rearrangements (entropy change). This is the 
intermediate phase, and ∆x = x2 – x1 represents the maximum 
width. In practice, decreasing the modifier content below x = x2 
brings more and more constraints in to network because of the 
growing presence of Q4-Q4 connected bonding types that are 
stress rigid. The adaptation parameter α must therefore decrease 
continuously, but certainly not down to zero at x1.

Intermediate phases in silicate glasses

As mentioned above, the calorimetric probe (MDSC) registers 
enthalpic changes across the glass-transition region (Fig. 11). 
These changes arise from various contributions and come from 
molecular rearrangements taking place at all length scales. For 
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that reason, one expects to observe non-mean-field effects, i.e., 
not averaged over macroscopic length scales, associated with the 
rigidity transitions using the thermal probe. The existence of a 
thermally reversing window (Fig. 12) is an example of such an 
effect (Boolchand et al. 2001b), and provides an explicit signa-
ture for the intermediate phase where a minimum in heat flow 
is found between the flexible (weakly connected) and stressed 
rigid (highly connected) phase.

As seen in Figure 16, the window found in the K and Na 
binary silicate glasses (Vaills et al. 2005; Chaimbault 2004; 
Chaimbault et al. unpublished material) is reminiscent of similar 
results found in chalcogenide glasses (Georgiev et al. 2000; Sel-
venathan et al. 2000). The observation of a reversibility window 
in the present oxides leads naturally to the suggestion that Na 
glasses in the 18 < x < 23 and K glasses in the 14.5 < x < 16.5 
composition range are in the intermediate phase, i.e., they have 
self-organized or adapted themselves to decrease the stress due 
to the presence of the overconstrained Q4-Q4 bondings. From 
Si29 NMR, Maekawa et al. (1991) have shown that the concen-
tration of underconstrained Q3 (nc = 2.78 in Na, nc = 2.44 in K) 
and overconstrained Q4 (nc = 3.67) is equally balanced in Na 
silicates at 20% modifier content; thus, one has nc = 3 on average 
and the corresponding glass is stress-free. In the K silicates, the 
Q3 species population is larger (implying an earlier threshold 
in composition), but available experiments do not allow for a 
definite conclusion in the range of compositions where the K 
rigidity transition is supposed to take place.

Concluding remarks

In this article, it has been shown that silicate glasses and 
melts could be simply described from the viewpoint of bonding 
constraints arising from relevant interatomic interactions. The 

connectivity plays a key role in this model and defines, with ad-
dition of a modifier content, three elastic phases: a flexible phase 
at high modifier content, where the number of constraints per 
atom is lower than its number of degrees of freedom; a stressed 
rigid silica-rich phase, where it is exactly the opposite (nc > 3); 
and an intermediate phase that appears under network adaptation 
and which is mostly stress free (nc = 3). 

The location of the rigidity threshold between the flexible and 
the stressed rigid phase can be estimated reasonably well from 
Maxwell constraint counting and compared to experiments on 
alkali and alkaline earth silicates. Signatures for the two phases 
are found from vibrational and conductivity studies. The com-
position satisfying nc = 3 and which corresponds to an optimal 
glass composition, is clearly related to the viscosity maximum 
and the eutectic composition lying on the silica-rich part of the 
phase diagram of binary silicates.

Finally, the self-organized intermediate phase can be de-
termined from modulated differential scanning calorimetry. 
A certain number of peculiar properties of this phase are now 
clearly established in simple chalcogenide network glasses and 
should also be observed in silicate glasses. A prerequisite is the 
choice of very tiny compositional intervals. 
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