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ABOUT DL_POLY _2

DL_POLY_2 is a parallel molecular dynamics simulation package developed at Dares-
bury Laboratory by W. Smith and T.R. Forester under the auspices of the Engineering
and Physical Sciences Research Council (EPSRC) for the EPSRC’s Collaborative Com-
putational Project for the Computer Simulation of Condensed Phases (CCP5) and the
Computational Science and Engineering Department at Daresbury Laboratory. The pack-
age is the property of the Council for the Central Laboratory of the Research Councils of
the United Kingdom.

DL_POLY_2 is issued free under licence to academic institutions pursuing scientific
research of a non-commercial nature. Commercial organisations may be permitted a licence
to use the package after negotiation with the owners. Daresbury Laboratory is the sole
centre for distribution of the package. It should not be redistributed to third parties without
consent of the owners.

The purpose of the DL_POLY_2 package is to provide software for academic research
that is inexpensive, accessible and free of commercial considerations. Users have direct
access to source code for modification and inspection. In the spirit of the enterprise, con-
tributions in the form of working code are welcome, provided the code is compatible with
DL_POLY_2 in regard to its interfaces and programming style and it is adequately docu-
mented.



©CCLRC ii

DISCLAIMER

Neither the CCLRC, EPSRC, CCP5 nor any of the authors of the DL_POLY _2 package
or their derivatives guarantee that the packages are free from error. Neither do they accept
responsibility for any loss or damage that results from its use.
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Manual Notation

In the DL_POLY Manual and Reference Manual specific fonts are used to convey specific
meanings:

1.

2.

directories - itallic font indicate unix file directories

ROUTINES - small capitals indicate subroutines, functions and programs.
macros - sloped text indicates a macro (file of unix commands)
directive - bold text indicates directives or keywords

variables - typewrite text indicates named variables and parameters

FILE - large capitals indicate filenames.
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Scope of Chapter

This chapter describes the concept, design and directory structure of DL_POLY _2 and how
to obtain a copy of the source code.
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1.1 The DL _POLY Package

DL_POLY 2 [1] is a package of subroutines, programs and data files, designed to facilitate
molecular dynamics simulations of macromolecules, polymers, ionic systems, solutions and
other molecular systems on a distributed memory parallel computer. The package was
written to support the UK project CCP5 by Bill Smith and Tim Forester [2] under grants
from the Engineering and Physical Sciences Research Council and is the property of the
Council for the Central Laboratory of the Research Councils.

Two forms of DL_POLY exist. DL_POLY_2 is the earlier version and is based on a
replicated data parallelism. It is suitable for simulations of up to 30,000 atoms on up to 100
processors. DL_POLY_3 is a domain decomposition version, written by I.T. Todorov and W.
Smith, and is designed for systems beyond the range of DL_POLY _2 - up to 10,000,000 atoms
(and beyond) and 1000 processors. This document is entirely concerned with DL_POLY 2.

Though DL_POLY 2 is designed for distributed memory parallel machines, but we have
taken care to ensure that it can, with minimum modification, be run on the popular work-
stations. Scaling up a simulation from a small workstation to a massively parallel machine
is therefore a useful feature of the package.

Users are reminded that we are interested in hearing what other features could be use-
fully incorporated. We also request that our users respect the copyright of the DL_POLY _2
source and not alter any authorship or copyright notices within. We require that all users
of the package register with us, not least because we need to keep everyone abreast of new
developments and discovered bugs. We have developed a licence for this purpose, which we
hope will ward off litigation (from both sides), without denying access to genuine scientific
users.

Further information about the DL_POLY package can be obtained from our website :

hitp : / Jwww.cse.clrc.ac.uk/msi/software/ DL_POLY

1.2 Functionality

The following is a list of the features DL_POLY_2 . It is worth reminding users that
DL_POLY _2 represents a package rather than a single program, so users may consider
piecing together their own program with the desired functionality. We will however, supply
a consolidated program in the distributed source.
1.2.1 Mbolecular Systems
DL_POLY _2 will simulate the following molecular species:

1. Simple atomic systems and mixtures e.g. Ne, Ar, Kr, etc.

2. Simple unpolarisable point ions e.g. NaCl, KCI, etc.

3. Polarisable point ions and molecules e.g. MgO, HoO etc.D

4. Simple rigid molecules e.g. CCly, SFg, Benzene, etc.


http://www.cse.clrc.ac.uk/ccg/software/DL_POLY
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d.
6.
7.
8.
9.
10.
11.

12.

Rigid molecular ions with point charges e.g. KNO3, (NH4)2SO4, etc.
Polymers with rigid bonds e.g. C,Hap 42

Polymers with rigid bonds and point charges e.g. proteins
Macromolecules and biological systems

Molecules with flexible bonds

Silicate glasses and zeolites

Simple metals and alloyse.g. Al, Ni, Cu etc.

Covalent systems e.g. C, Si, Ge, SiC, SiGe etc.

1.2.2 The DL_POLY _2 Force Field
The DL_POLY 2 force field includes the following features:

1.
2.

3.

9.
10.

All common forms of non-bonded atom-atom potential;
Atom-atom (site-site) Coulombic potentials;

Valence angle potentials;

Dihedral angle potentials;

Inversion potentials;

Improper dihedral angle potentials;

3-body valence angle and hydrogen bond potentials;
4-body inversion potentials;

Sutton-Chen density dependent potentials (for metals) [3].

The Tersoff density dependent potential for covalent systems [4].

The parameters describing many of these these potentials may be obtained, for example,
from the GROMOS [5], Dreiding [6] or AMBER |[7] forcefield, which share functional forms.
It is relatively easy to adapt DL_POLY _2 to user specific force fields. Note that DL_POLY _2
does not have its own ‘official’ force field.
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1.2.3 Boundary Conditions
DL_POLY_2 will accommodate the following boundary conditions:

1. None e.g. isolated polymer in space.

2. Cubic periodic boundaries.

3. Orthorhombic periodic boundaries.

4. Parallelepiped periodic boundaries.

5. Truncated octahedral periodic boundaries.
6. Rhombic dodecahedral periodic boundaries.
7. Slab (x,y periodic, z nonperiodic).

8. Hexagonal prism periodic boundaries.

These are describe in detail in Appendix B.

1.2.4 The Java Graphical User Interface

DL_POLY 2 has a Graphical User Interface (GUI) written specifically for the package in the
Java programming language from Sun microsystems. The Java programming environment
is free and it is particularly suitable for building graphical user interfaces. An atractive
aspect of java is the portability of the compiled GUI, which may be run without recompiling
on any Java supported machine. The GUI is an integral component of the DL_POLY 2
package and is available on exactly the same terms. (See [8].)

1.2.5 Algorithms
1.2.5.1 Parallel Algorithms

DL_POLY 2 exclusively employs the Replicated Data parallelisation strategy [9, 10] (see
section 2.6.1).

1.2.5.2 Molecular Dynamics Algorithms

The DL_POLY_2 MD algorithms are optionally available in the form of the Verlet Leapfrog
or the Velocity Verlet integration algorithms [11].

In the leapfrog scheme a parallel version of the SHAKE algorithm [12, 10] is used for
bond constraints and a similar adaptation of the RATTLE algorithm [13] is implmented in
the velocity Verlet scheme.

Rigid body rotational motion is handled under the leapfrog scheme with Fincham’s
implicit quaternion algorithm (FIQA) [14]. For velocity Verlet integration of rigid bodies
DL_POLY 2 uses the ‘NOSQUISH’ algorithm of Miller et al [15].
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Rigid molecular species linked by rigid bonds are handled with an algorithm of our own
devising, called the QSHAKE algorithm [16] which has been adapted for both leapfrog and
velocity Verlet schemes.

NVE, NVT, NPT and NgT ensembles are available, with a selection of thermostats and
barostats. The velocity Verlet versions are based on the reversible integrators of Martyna
et al [17].

The NVT algorithms in DL_POLY _2 are those of Evans [18], Berendsen [19]; and Hoover
[20]. The NPT algorithms are those of Berendsen [19] and Hoover [20] and the NoT
algorithms are those of Berendsen [19] and Hoover [20].

The full range of MD algorithms available in DL_POLY_2 is described in Section 2.5.

1.3 Programming Style

The programming style of DL_POLY_2 is intended to be as uniform as possible. The
following stylistic rules apply throughout. Potential contributors of code are requested to
note the stylistic convention.

1.3.1 Programming Language

DL_POLY_2 is written exclusively in FORTRAN 90. Use is made of F90 Modules. Explicit
type declaration is used throughout.

1.3.2 Memory Management

In DL_POLY_2 | the major array dimensions are calculated at the start of execution and
the associated arrays created through the dynamic array allocation features of FORTRAN
90.

1.3.3 Target Computers

DL_POLY 2 is intended for distributed memory parallel computers. However, versions of
the program for serial computers are easily produced. To facilitate this all machine specific
calls are located in dedicated FORTRAN routines, to permit substitution by appropriate
alternatives.

DL_POLY _2 will run on a wide selection of computers. This includes most single proces-
sor workstations for which it requires a FORTRAN 90 compiler and (preferably) a UNIX
environment. It has also been compiled for a Windows PC using the G95 FORTRAN
compiler augmented by the CygWin UNIX shell. The Message Passing Interface (MPI)
software is essential for parallel execution.

1.3.4 Version Control System (CVS)

DL_POLY_2 was developed with the aid of the CVS version control system. We strongly
recommend that users of DL_POLY_2 adopt this system for local development of the
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DL_POLY _2 code, particularly where several users access the same source code. For infor-
mation on CVS please contact:

info — cvs — requestQgnu.org
or visit the website:

http : | Jwww.cse.clrec.ac.uk /msi/software/ DL_POLY

1.3.5 Required Program Libraries

DL_POLY 2 is, for the most part, self contained and does not require access to additional
program libraries. The exception is the MPI software library required for parallel execution.
Users requiring the Smoothed Particle Mesh Ewald (SPME) method may prefer to use
a proprietary 3D FFT other than the one (sc dlpfft3) supplied with the package for optimal
performance. There are comments in the source code which provide guidance for applica-
tions on Cray and IBM computers, which use the routines CCFFT3D and DCFT3 respectively.
Similarly users will find comments for the public domain FFT routine FFTWND_FFT.

1.3.6 Internal Documentation

All subroutines are supplied with a header block of FORTRAN COMMENT records giving:
1. The name of the author and/or modifying author

The version number or date of production

A brief description of the function of the subroutine

A copyright statement

AN

A CVS revision number and associated data.

Elsewhere FORTRAN COMMENT cards are used liberally.

1.3.7 Subroutine/Function Calling Sequences

The variables in the subroutine arguments are specified in the order:
1. logical and logical arrays
2. character and character arrays
3. integer
4. real and complex
D. integer arrays

6. real and complex arrays

This is admittedly arbitrary, but it really does help with error detection.


http://www.cse.clrc.ac.uk/ccg/software/DL_POLY
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1.3.8 FORTRAN Parameters

All global parameters defined by the FORTRAN parameter statements are specified in the
module: SETUP_MODULE. All parameters specified in SETUP_MODULE are described by one
or more comment cards.

1.3.9 Arithmetic Precision

All real variables and parameters are specified in 64-bit precision (i.e real*8).

1.3.10 Units

Internally all DL_POLY _2 subroutines and functions assume the use of the following defined
molecular units:

1. The unit of time (¢,) is 1 x 10712 seconds (i.e. picoseconds).

2. The unit of length (£,) is 1 x 10710 metres (i.e. Angstroms).

3. The unit of mass (m,) is 1.6605402 x 10727 kilograms (i.e. atomic mass units).

4. The unit of charge (q,) is 1.60217733 x 107! coulombs (i.e. unit of proton charge).
5. The unit of energy (E, = my(£y/t,)?) is 1.6605402 x 1072 Joules (10 J mol~1).

6. The unit of pressure (P, = E,l,?) is 1.6605402 x 107 Pascal (163.882576 atm).

7. Planck’s constant (h) which is 6.350780668 x E,t,.

In addition the following conversion factors are used:
The coulombic conversion factor (7,) is:

_ L% | _ 1380354835
Yo = E, |4me b, | '

such that:
UMKS = Eo’YoUlnternal

Where U represents the configuration energy.
The Boltzmann factor (kp) is 0.831451115 E,K !, such that:

T = Ekin/kp

represents the conversion from kinetic energy (in internal units) to temperature (in Kelvin).

Note: In the DL_.POLY_2 CONTROL and OUTPUT files, the pressure is given in
units of kilo-atmospheres (katm) at all times. The unit of energy is either DL_POLY 2
units specified above, or in other units specified by the user at run time. The default is
DL_POLY units.
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1.3.11 Error Messages

All errors detected by DL_POLY_2 during run time initiate a call to the subroutine ERROR,
which prints an error message in the standard output file and terminates the program. All
terminations of the program are global (i.e. every node of the parallel computer will be
informed of the termination condition and stop executing.)

In addition to terminal error messages, DL_POLY _2 will sometimes print warning mes-
sages. These indicate that the code has detected something that is unusual or inconsistent.
The detection is non-fatal, but the user should make sure that the warning does represent
a harmless condition.

1.4 The DL _POLY _2 Directory Structure

The entire DL_POLY_2 package is stored in a Unix directory structure. The topmost
directory is named dl_poly_2.nn, where nn is a generation number. Beneath this directory
are several sub-directories:

sub-directory contents

srcf90 primary subroutines for the DL_POLY _2 package

utility subroutines, programs and example data for all utilities
data example input and output files for DL_POLY 2

bench large test cases suitable for benchmarking

execute the DL_POLY _2 run-time directory

build makefiles to assemble and compile DL_POLY _2 programs
public directory of routines donated by DL_POLY _2 users

java directory of Java and FORTRAN routines for the Java GUI

A more detailed description of each sub-directory follows.

1.4.1 The srcf90 Sub-directory

In this sub-directory all the essential source code for DL_POLY_2 , excluding the utility
software. In keeping with the ‘package’ concept of DL_POLY_2 , it does not contain any
complete programs; these are assembled at compile time using an appropriate makefile.

1.4.2 The wutility Sub-directory

This sub-directory stores all the utility subroutines, functions and programs in DL_POLY _2
, together with examples of data. The various routines in this sub-directory are documented
in chapter 6 of this manual. Users who devise their own utilities are advised to store them
in the wtility sub-directory.
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1.4.3 The data Sub-directory

This sub-directory contains examples of input and output files for testing the released
version of DL_POLY_2 . The examples of input data are copied into the ezecute sub-
directory when a program is being tested. The test cases are documented in chapter 5.

1.4.4 The bench Sub-directory

This directory contains examples of input and output data for DL_POLY _2 that are suitable
for benchmarking DL_POLY _2 on large scale computers. These are described in chapter 5.

1.4.5 The execute Sub-directory

In the supplied version of DL_POLY_2 , this sub-directory contains only a few macros for
copying and storing data from and to the data sub-directory and for submitting programs
for execution. (These are decribed in section 6.1.1.) However when a DL_POLY _2 program
is assembled using its makefile, it will be placed in this sub-directory and will subsequently
be executed from here. The output from the job will also appear here, so users will find
it convenient to use this sub-directory if they wish to use DL_POLY_2 as intended. (The
experienced user is not absolutely required to use DL_POLY_2 this way however.)

1.4.6 The build Sub-directory

This sub-directory contains the standard makefiles for the creation (i.e. compilation and
linking) of the DL_POLY_2 simulation programs. The makefiles supplied select the ap-
propriate subroutines from the srcf90 sub-directory and deposit the executable program in
the execute directory. The user is advised to copy the appropriate makefile into the srcf90
directory, in case any modifications are required. The copy in the build sub-directory will
then serve as a backup.

1.4.7 The public Sub-directory

This sub-directory contains assorted routines donated by DL_POLY users. Potential users
should note that these routines are unsupported and come without any guarantee
or liability whatsoever. They should be regarded as potentially useful resources to be
hacked into shape as needed by the user. This directory is available from the CCP5 Program
Library by direct FTP(see below).

1.4.8 The java Sub-directory

The DL_POLY_2 Java Graphical User Interface (GUI) is based on the Java language de-
veloped by Sun. The Java source code for this GUI is to be found in this sub-directory,
along with a few FORTRAN sub-sub-directories which contain some additional capabilities
accessible from the GUI. These sources are complete and sufficient to create a working GUI,
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provided the user has installed the Java Development Kit, (1.4 or above) which is available
free from Sun at
hitp : //java.sun.com.

The GUI, once compiled, may be executed on any machine where Java is installed, though
note the FORTRAN components will need to be recompiled if the machine is changed. (See

[8]-)

1.5 Obtaining the Source Code
To obtain a copy of DL_POLY 2 it is first necessary to log on to the DL_POLY website:
http : | Jwww.cse.clrec.ac.uk /msi/software/ DL_POLY

. Follow the links to the registration page, where you will firstly be shown the DL_POLY
software licence, which details the terms and conditions under which the code will be
supplied. By proceeding further with the registration and download process you
are signalling your acceptance of the terms of this licence. Click the ‘Registration’
button to find the registration page, where you will be invited to enter your name, address
and e-mail address. The code is supplied free of charge to academic users, but commercial
users will be required to purchase a software licence.

Once the online registration has been completed, information on downloading the
DL_POLY_2 source code will be sent by e-mail, so it is therefore essential to sup-
ply a correct e-mail address.

The bench and public subdirectories of DL_POLY _2 are not issued in the standard pack-
age, but can be downloaded directly from the FTP site (in the ccp5/DL_POLY/DL_POLY 2
directory) as described above.

The DL_POLY -2 User Manual is freely available via the website .

1.6 Other Information
The DL_POLY website:
http : | Jwww.cse.clrec.ac.uk/msi/software/ DL_POLY

provides additional information in the form of

1. Access to all documentation (including licences);

2. Frequently asked questions;

3. Bug reports;

4. Access to the DL_POLY online forum.

Daresbury Laboratory also maintains two DL_POLY _2 associated electronic mailing lists:


http://www.cse.clrc.ac.uk/ccg/software/DL_POLY
http://www.cse.clrc.ac.uk/ccg/software/DL_POLY
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1. dl_poly_news - to which all registered DL_POLY _2 users are automatically subscribed.
It is via this list that error reports and announcements of new versions are made. If
you are a DL_POLY _2 user, but not on this list you may request to be added. Contact
w.smith@dl.ac.uk.

2. dl_poly_mail - is a group list which is available to DL_POLY _2 users by request. Its
purpose is to allow DL_POLY_2 users to broadcast information and queries to each
other. To subscribe to this list send a mail message to majordomo@dl.ac.uk with the
one-line message:

subscribe dl_poly_mail

Subsequent messages may be broadcast by e-mailing to the address: dl_poly_mail@dl.ac.uk.
Note that this is a vetted list, so electronic spam is not possible.

The DL_POLY Forum is a web based centre for all DL_POLY users to exchange comments
and queries. You may access the forum through the DL_POLY website. A registration (and
vetting) process is required before you can use the forum, but it is open, in principle, to
everyone.



Chapter 2

DL POLY 2 Force Fields and
Algorithms

13
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Scope of Chapter

This chapter describes the interaction potentials and simulation algorithms coded into
DL_POLY_2 .
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2.1 The DL _POLY _2 Force Field

The force field is the set of functions needed to define the interactions in a molecular system.
These may have a wide variety of analytical forms, with some basis in chemical physics,
which must be parameterised to give the correct energy and forces. A huge variety of
forms is possible and for this reason the DL_POLY _2 force field is designed to be adaptable.
While it is not supplied with its own force field parameters, many of the functions familiar
to GROMOS, [5] Dreiding [6], AMBER [7] and OPLS [21] users have been coded in the
package, as well as less familiar forms. In addition DL_POLY _2 retains the possibility of
the user defining additional potentials.

In DL_POLY 2 the total configuration energy of a molecular system may be written as:

Npond
U(f1;£2;-~-7ZN> = Z Ubond(ibondvfavfb)

thond=1
Nangle

+ Z Uangle(iangleafaaﬂbvfc)
tangle=1
Nainhed

+ Y Udinealidineds Tas T Tes Ta)
dihed=1
Niny

+ Z Uinv(iinvaﬂaaﬂbafcaﬂd)
Tinv=1
N—-1 N

+ Z ZUpair(iaja |£z' _fj‘)
i=1 j>i
N—-2N-1 N

+Z ZZUSbOdyZ])kv 7T )
=1 j>1 k>j
N—-1 N

+ Z ZUTersoff(iajarwrijN)
i=1 j>i

—2N-1 N

+ZZZZU4bOdyZJ7knrw Ty g, I n)

i=1 3>t k>j n>k
N
+Z UMetal(i7fi7EN)
i=1
N
+Z Ueztn(iyzwyi> (21)

where Ubondv Uan9167 Udih6d7 Uimn Upaih U3,bodyu UTersoff and U4,body are empirical in-
teraction functions representing chemical bonds, valence angles, dihedral angles, inversion
angles, pair-body, three-body, Tersoff (many-body covalent), and four-body forces respec-
tively. The first four are regarded by DL_POLY_2 as intra-molecular interactions and the
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next five as inter-molecular interactions. The term U,etq is a density dependent (and
therefore many-body) metal potential . The final term Ug,y, represents an external field
potential.

The position vectors r,, 1, 1. and r,; refer to the positions of the atoms specifically
involved in a given interaction. (Almost universally, it is the differences in position that
determine the interaction.) A special vector RY is used to indicate a many-body depen-
dence. The numbers Npond, Nangles Ndihea and Nip, refer to the total numbers of these
respective interactions present in the simulated system, and the indices ipond, tangie, %inv
and ig;peq uniquely specify an individual interaction of each type. It is important to note
that there is no global specification of the intramolecular interactions in DL_POLY_2 - all
bonds, valence angles and dihedrals must be individually cited.

The indices i, j (and k, n) appearing in the pair-body (and three or four-body) terms
indicate the atoms involved in the interaction. There is normally a very large number
of these and they are therefore specified according to atom types rather than indices. In
DL_POLY 2 it is assumed that the pair-body terms arise from van der Waals and/or elec-
trostatic (Coulombic) forces. The former are regarded as short ranged interactions and the
latter as long ranged. Long range forces require special techniques to evaluate accurately
(see section 2.4.) In DL_POLY_2 the three-body terms are restricted to valence angle and
H-bond forms. The nonbonded, three-body, four-body and Tersoff , interactions are glob-
ally specified according to the types of atoms involved. DL_POLY _2 also has the ability to
handle metals via density dependent functions (see below). Though essentially many-body
potentials their particular form means they are handled in a manner very similar to pair
potentials.

In DL_POLY _2 the intramolecular bonded terms are handled using bookkeeping arrays,
which specify the atoms involved in a particular interaction and point to the appropriate
arrays of parameters that define the potential. The calculation of bonded forces therefore
follows the simple scheme:

1. Every atom in the simulated system is assigned a unique index number from 1 to IV;

2. Every intramolecular bonded term Uy in the system has a unique index number
itype: from 1 to Nyype where type represents a bond, angle or dihedral.

3. A pointer array keyiype(Niype, itype) carries the indices of the specific atoms involved
in the potential term labelled #4,p.. The dimension 74y, will be 2, 3 or 4, if the term
represents a bond, valence angle, dihedral/inversion.

4. The array keyiype(niype, itype) is used to identify the atoms in a bonded term and the
appropriate form of interaction and thus to calculate the energy and forces.

DL_POLY_2 calculates the nonbonded pair interactions using a Verlet neighbour list
[11] which is reconstructed at intervals during the simulation. This list records the indices
of all ‘secondary’ atoms within a certain radius of each ‘primary’ atom; the radius being
the cut-off radius (rq,;) normally applied to the nonbonded potential function, plus an
additional increment (Ar.,:). The neighbour list removes the need to scan over all atoms
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in the simulation at every timestep. The larger radius (r¢y: + Areyt) means the same list
can be used for several timesteps without requiring an update. The frequency at which the
list must be updated depends on the thickness of the region Ar.,;. DL_POLY_2 has two
methods for constructing the neighbour list: the first is based on the Brode-Ahlrichs scheme
[22] and is used when r.,; is large in comparison with the simulation cell; the second uses
the link-cell algorithm [23] when r,; is relatively small. The potential energy and forces
arising from the nonbonded interactions are calculated using interpolation tables.

A complication in the construction of the Verlet neighbour list for macromolecules is
the concept of excluded atoms, which arises from the need to exclude certain atom pairs
from the overall list. Which atom pairs need to be excluded is dependent on the precise
nature of the force field model, but as a minimum atom pairs linked via extensible bonds
or constraints and atoms (grouped in pairs) linked via valence angles are probable candi-
dates. The assumption behind this requirement is that atoms that are formally bonded in
a chemical sense, should not participate in nonbonded interactions. (However this is not
a universal requirement of all force fields.) The same considerations are needed in dealing
with charged excluded atoms. DL_POLY _2 has several subroutines available for construct-
ing the Verlet neighbour list, while taking care of the excluded atoms (see chapter 3 for
further information.)

Three- and four-body nonbonded forces are assumed to be short ranged and therefore
calculated using the link-cell algorithm [23]. They ignore the possibility of there being any
excluded interactions involving the atoms concerned.

Throughout this section the description of the force field assumes the simulated system
is described as an assembly of atoms. This is for convenience only and readers should
understand that DL_POLY _2 does recognise molecular entities, defined either through con-
straint bonds or rigid bodies. In the case of rigid bodies, the atomic forces are resolved into
molecular forces and torques. These matters are discussed in greater detail later in sections
2.5.2.1 and 2.5.7).

2.2 The Intramolecular Potential Functions

In this section we catalogue and describe the forms of potential function available in
DL_POLY_2 The key words required to select potential forms are given in brackets ()
before each definition. The derivations of the atomic forces, virial and stress tensor are also
outlined.

2.2.1 Bond Potentials
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The interatomic bond vector.

The bond potentials describe explicit bonds between specified atoms. They are functions
of the interatomic distance only. The potential functions available are as follows.

1. Harmonic bond: (harm)
1
U(rij) = 5h(rij —10)*; (2.2)

2. Morse potential: (mors)

U(ris) = Bo[{1 — exp(=k(rij —10))}* — 1]; (2.3)

Ulry) = (:;) - (ﬁ) ; (2.4)

4. Restrained harmonic: (rhrm)

3. 12-6 potential bond: (12-6)

1

U(ry) = §k(rij —7)? |T3j — 10| <7 (2.5)
1

U(rij) = §kT3 + kre(|rij — rol — re) 135 — To| > T¢; (2.6)

5. Quartic potential: (quar)

k 9 k/ 3 k,// 4

U(’I“ij):*(ﬁ'j—’l“o) —i——(rij—ro) —|——(rij—7“o) . (27)
2 3 4
6. Buckingham potential: (buck)
Tij o
Ulri) = A exp (_a) _ 2.8
(ri) ) (28)
In these formulae r;; is the distance between atoms labelled 7 and j:

rij = |r; — i, (2.9)

where r, is the position vector of an atom labelled /. !
The force on the atom j arising from a bond potential is obtained using the general
formula:

0
ij

The force f, acting on atom ¢ is the negative of this.

Note: some DL_POLY 2 routines may use the convention that Tij =T; =T
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The contribution to be added to the atomic virial is given by

with only one such contribution from each bond.
The contribution to be added to the atomic stress tensor is given by

0% =3 f7, (2.12)

where a and ( indicate the z,y, z components. The atomic stress tensor derived in this
way is symmetric.
In DL_POLY _2 bond forces are handled by the routine BNDFRC.

2.2.2 Distance Restraints

In DL_POLY _2 distance restraints, in which the separation between two atoms, is main-
tained around some preset value rg is handled as a special case of bond potentials. As a
consequence distance restraints may be applied only between atoms in the same molecule.
Unlike with application of the “pure” bond potentials, the electrostatic and van der Waals
interactions between the pair of atoms are still evaluated when distance restraints are ap-
plied. All the potential forms of the previous section are avaliable as distance restraints,
although they have different key words:

1. Harmonic potential: (-hrm)
Morse potential: (-mrs)

12-6 potential bond: (-126)
Restrained harmonic: (-rhm)

Quartic potential: (-qur)

A

Buckingham potential: (-bck)

In DL_POLY_2 distance restraints are handled by the routine BNDFRC.

2.2.3 Valence Angle Potentials




©CCLRC 20

The valence angle and associated vectors

The valence angle potentials describe the bond bending terms between the specified
atoms. They should not be confused with the three body potentials described later, which
are defined by atom types rather than indices.

1. Harmonic: (harm)

k
U(05r) = 5 (0jir — 00)*; (2.13)
2. Quartic: (quar)
k 2, K 5 K 4
U(Bjix) = 5 Ojir — 60)" + g(ejik = 00)" + - (Gji — 00); (2.14)
3. Truncated harmonic: (thrm)
k
U(Ojix) = 5(93‘1%: — 600)* exp[—(r; + 751.)/p°); (2.15)
4. Screened harmonic: (shrm)
k
U(0;ir) = 5 (0jix — 00)* expl—(rij/ p1 + ik /p2)]; (2.16)

5. Screened Vessal[24]: (bvsl)
U(Oji) = 8(9],kk—7r)2 { {(90 - 7T)2 = (B — 7)2}2}
exp[—(ri/p1 + i/ p2)]; (2.17)

6. Truncated Vessal[25]: (bvs2 )

a .,
UOjik) = k0505 — 00)* Osik + b0 — 2m)* — 5!
(Bjik — 60)° (m — 60)°] exp[—(rS; + 7i%) /0% (2.18)
7. Harmonic cosine: (hcos)
k
UOjir) = §(cos(9ﬂk) — cos(p))? (2.19)
8. Cosine: (cos)
U(Gﬂk) = A[l + COS(mHjik — 5)] (2.20)

9. MMS3 stretch-bend potential (mmsb)

U(Ujir) = A(Ojik — 00)(rij — ri;)(rik — i) (2.21)
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In these formulae 0;;; is the angle between bond vectors r;; and r;;:

/"".4 . 7"'
0jik = cos™ {”Zk} (2.22)

TijTik

In DL_POLY_2 the most general form for the valence angle potentials can be written
as:

U(Ojik; rijs rie) = A(0jir)S (1) S (rir:) (2.23)

where A(#) is a purely angular function and S(r) is a screening or truncation function. All
the function arguments are scalars. With this reduction the force on an atom derived from
the valence angle potential is given by:

0
fi'= _@U(Hjikyrijﬂ'ik); (2.24)
with atomic label £ being one of 7, j, k and « indicating the x, y, z component. The derivative
is

0 0
— 5o UOjik, rijomie) = —S(ri)S(rik) 75 A0
(%?U(]k Tij, Tik) S(T])S(rk)ﬁr? (Oi)
rq a
—A(D.. . C— ) —L ——S(r;;
( ]zk)S(rzk)(éfj 5£Z)Tij Orijs(”)
rg. 0
—A(0;ik)S(rij) (ex — 5@i)ﬁar,k5(rik)v (2.25)

with 04 = 1 if @ = b and d4, = 0 if a # b. In the absence of screening terms S(r), this
formula reduces to:

0 0
— —U(Ojig,7ij,mix) = —=——=A(0;; 2.26
87,,? ( Vi k 'f'] T k?) 87“? ( J k‘) ( )
The derivative of the angular function is
0 1 0 0 | rij-ri
— —A(li) = AOjig) 5= § —2—= ¢, 2.27
87“? ( J k) {Sin(ejik)} 89jik ( J k)a’l”? { TijTik } ( )

with

«Q

0 |ry-r T 45
{ . k} = (0¢j — 605) —*— + (Sur, — 0pi) —2

ory | rigrie TijTik TijTik

i Tk
cos(Ojix) § (6¢j — dei) = + (6o — 5&)77 (2.28)

T3 ik

The atomic forces are then completely specified by the derivatives of the particular functions
A(#) and S(r).

The contribution to be added to the atomic virial is given by

W = —(L'j‘ij + i f)) (2.29)
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It is worth noting that in the absence of screening terms S(r), the virial is zero [26].
The contribution to be added to the atomic stress tensor is given by

5B — T%fjﬁ + Tﬁgf;f (2.30)

and the stress tensor is symmetric.
In DL_POLY_2 valence forces are handled by the routine ANGFRC.
2.2.4 Angular Restraints

In DL_POLY_2 angle restraints, in which the angle subtended by a triplet of atoms, is
maintained around some preset value 6y is handled as a special case of angle potentials. As
a consequence angle restraints may be applied only between atoms in the same molecule.
Unlike with application of the “pure” angle potentials, the electrostatic and van der Waals
interactions between the pair of atoms are still evaluated when distance restraints are
applied. All the potential forms of the previous section are avaliable as angular restraints,
although they have different key words:

1. Harmonic: (-hrm)

Quartic: (-qur)

Truncated harmonic: (-thm)
Screened harmonic: (-shm)
Screened Vessal[24]: (-bv1)
Truncated Vessal[25]: (-bv2)
Harmonic cosine: (-hcs)

Cosine : (-cos)

© »®» NS Gk w N

MMS3 stretch-bend: (-msb)

In DL_POLY_2 angular restraints are handled by the routine ANGFRC.

2.2.5 Dihedral Angle Potentials
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The dihedral angle and associated vectors

The dihedral angle potentials describe the interaction arising from torsional forces in
molecules. (They are sometimes referred to as torsion potentials.) They require the spec-
ification of four atomic positions. The potential functions available in DL_POLY _2 are as
follows.

1. Cosine potential: (cos)

U((szkn) =A [1 + Cos<m¢ijkn — (5)] (2.31)
2. Harmonic: (harm)
U(®ijkn) = %k(d)ijkn — ¢p)? (2.32)

3. Harmonic cosine: (hcos)
k 2
U(ijkn) = 5 (cos(ijkn) — cos(¢o)) (2.33)
4. Triple cosine: (cos3)

U(9) = 3 A1(1 +cos(0) + 3 As(1 — cos(26)) + L As(1L + cos(30)) (234

5. Ryckaert-Bellemans hydrocarbon potential: (ryck)
5 .
U(¢ijin) = Alaog + Z(aicosz(qb)) (2.35)

i=1

6. Ryckaert-Bellemans fluorinated potential: (rbf)

5
U(dijkn) = B(bo + Y _(bicos'(¢)) (2.36)
=1

7. OPLS angle potential

U(dijin) = ao + 0.5 % (a1 (1 + cos(¢)) + az(1 — cos(2¢)) + az(1 + cos(3¢))) (2.37)

In these formulae ¢;;x, is the dihedral angle defined by

Gijkn = €08~ {B(Tijs Tk Thon) } (2.38)
with
(2.39)

(rij X Tx) - (T X Thp) } '

B(r.. r. —
(fz;:fjkaflm) { ‘fij »; fjk”fjk X Tl
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With this definition, the sign of the dihedral angle is positive if the vector product (r;; x
Tik) X (Tji X Tjp) is in the same direction as the bond vector r;, and negative if in the
opposite direction.

The force on an atom arising from the dihedral potential is given by

0

&= _@U(gbijkn)a (2.40)

with ¢ being one of i, j, k,n and « one of z,y, z. This may be expanded into

0 1 0 0
- . = o V—— DB 1 . 2.41
87"? U(¢z]kn) { Sln(¢zjkn) } agszkn U(¢Z]kn) ar? (zl‘] ) z]k}’ fkn) ( )

The derivative of the function B(r;;, 1k, Ty,) is

1o} 1 0
@B(ﬂzjafjmfkn) =

o Whij < Ljk) L 2.42
|ﬂz‘j X iijfjk X Tl 87~?{(Lj X zJ/’c) (fjk X Trn) ( )

cos(Pijkn) 1 B , 1 P ;
- X T S A PR
2 rij X r55|* Org I > rjul” + 51 X T2 O 2k X Ten|” ¢
with
a (e
@{(fij X ij) . (ﬁjk X Kkn)} = Tij([fjkzjk]a((sék — 5871) + [ijzkn]a(éék _ 5@,)) +

537k (Oen — Oek) + (11T knla (0e; — 60i)) +

Ten (1357 k) a(Oek — 0g5) + [k jk)a(Se; — de5)) +

215147 kn)a (005 — Oek), (2.43)
0 2 «
TT?MU X Ik = 2Tij([fjkfj]g}a(6€j - 5&‘) + [ﬂz‘jﬂjk]a((séj - 5414:)) +
2r5([157i5)a (0o — dej) + [1457k]a (00 — de5)), (2.44)
9 2 a
wkﬂf X Lkn = 2rkn([£jk£jk}a(5€n — Ogr) + [Kjkﬁkn]a(ézj — ) +
¢
205 ([hnThn)a 6ok — 625) + [Lj3Tkn)a(Oek — Oen))- (2.45)

Where we have used the the following definition:

[a bo =Y (1~ dap)a’®. (2.46)
B
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Formally, the contribution to be added to the atomic virial is given by

W= — Zz -, (2.47)

However it is possible to show (by tedious algebra using the above formulae, or more
elegantly by thermodynamic arguments [26],) that the dihedral makes no contribution to
the atomic virial.

The contribution to be added to the atomic stress tensor is given by

R R (2.48)
cos(Pijkn)
—(2”" {roal + 15l + s +rinl}
with

P = (rfklrjerenla — rinlrieriela) /(i X rxllre X i) (2.49)
pn = (filririele — riilreriela) /(rs X Twllrje X Teal) (2.50)
p;?‘k = (r %[ ]kr,m] + 75, [L-jfjk]a - 27‘?14; [fijfkn]a)/(‘fij X Kjk”ijk X Inl)  (2.51)
gt = 20lrarila — rlririela) /ey X il (2.52)
g = 20rulrigrile — rilrgrie) /I < vl (2.53)
hg = 205k [rknlinla — Thnlrinrrnla) /1055 X Tknl? (2.54)
ha = 2(Tin[TenTinla — 15Tk k0] a) /175 X Tkn|? (2.55)

The sum of the diagonal elements of the stress tensor is zero (since the virial is zero) and
the matrix is symmetric.

Lastly, it should be noted that the above description does not take into account the
possible inclusion of distance-dependent 1-4 interactions, as permitted by some force fields.
Such interactions are permissible in DL_POLY _2 and are described in the section on pair
potentials below. DL_POLY _2 also permits scaling of the 1-4 interactions by a numerical
factor. 1-4 interactions do, of course, contribute to the atomic virial.

In DL_POLY 2 dihedral forces are handled by the routine DIHFRC.

2.2.6 Improper Dihedral Angle Potentials

Improper dihedrals are used to restrict the geometry of molecules and as such need not
have a simple relation to conventional chemical bonding. DL_POLY _2 makes no distinction
between dihedral angle functions and improper dihedrals (both are calculated by the same
subroutines) and all the comments made in the preceeding section apply.

An important example of the use of the improper dihedral is to conserve the structure
of chiral centres in molecules modelled by united-atom centres. For example a-amino acids
such as alanine (CH3CH(NH3)COOH), in which it is common to represent the CHz and
CH groups as single centres. Conservation of the chirality of the a carbon is achieved
by defining a harmonic improper dihedral angle potential with an equilibrium angle of
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35.264°. The angle is defined by vectors r;q, ro3 and rss, where the atoms 1,2,3 and 4 are
shown in the following figure. The figure defines the D and L enantiomers consistent with
the international (IUPAC) convention. When defining the dihedral, the atom indices are
entered in DL_POLY_2 in the order 1-2-3-4.

C N
© ©
N C
T 2 T 2
1 1
1 1
1 1
1 a 1 a
1
4O . /@
Ffmmmm P
" H l, H
@ ®@
B B
L D
L=a-N-C-p D=a-C-N-p
12 3 4 1 2 3 4
The L and D enantiomers and defining vectors

In DL_POLY _2 improper dihedral forces are handled by the routine DIHFRC.

2.2.7 Inversion Angle Potentials

The inversion angle and associated vectors

The inversion angle potentials describe the interaction arising from a particular ge-
ometry of three atoms around a central atom. The best known example of this is the
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arrangement of hydrogen atoms around nitrogen in ammonia to form a trigonal pyramid.
The hydrogens can ‘flip’ like an inverting umbrella to an alternative structure, which in
this case is identical, but in principle causes a change in chirality. The force restraining the
ammonia to one structure can be described as an inversion potential (though it is usually
augmented by valence angle potentials also). The inversion angle is defined in the figure
above - note that the inversion angle potential is a sum of the three possible in-
version angle terms. It resembles a dihedral potential in that it requires the specification
of four atomic positions.
The potential functions available in DL_POLY _2 are as follows.

1. Harmonic: (harm)

U(Gijkn) = %k(¢ijkn — ¢0)” (2.56)

2. Harmonic cosine: (hcos)
U (i) = 5 (cos(Bistn) — cos(60))? (2.57)

3. Planar potential: (plan)
U(ijin) = AL = cos(ijin)] (2.58)

In these formulae ¢;jky, is the inversion angle defined by

/r'. .. w
Gijkn = cos™ ! {”kn} , (2.59)
TijWkn
with
and the unit vectors
U = (Pig + Tin) /| Pik + Tinl
Opn = (i — Tin)/|Tir — Tinl- (2.61)

As usual, ri; =r; —r; etc. and the hat 7 indicates a unit vector in the direction of r. The
total inversion potential requires the calculation of three such angles, the formula being
derived from the above using the cyclic permutation of the indices j — k — n — j etc.

Equivalently, the angle ¢;;, may be written as

)2 LA 21172
Pijkn :cos_l{[(r” Gim) 4;‘(.7“” Zin) } (2.62)
ij

Formally, the force on an atom arising from the inversion potential is given by

0

fi' = —aT?U(%jkn), (2.63)
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with ¢ being one of i, j, k,n and « one of z,y, 2. This may be expanded into

0 1 0
- —=U ijkn = . U ijkn
0 (g - ) + (g )] ' (2.64)
87“? Tij
Following through the (extremely tedious!) differentiation gives the result:
1 0
a - U iikn) X 265

cos(Dijkn) o 1 v SN
{—(5&' — 04i) ng )7"1']' + o {(5@' - 5&‘){(&]’ gy, ) Uy, + (Kij * Dty ) Ui }
ij 1) n

T Uy R . R ré
+ (0o — 5@1)% {T’f} - (L‘j gy, ) Uy, — (L’j "Lk — (L'j ) (T ukn));k}

Tt O Y a R . s
+(6ex, — 5&')W {7’% — (135 Opn) Oy — (T4~ T — (T * Dpen) (T ‘Ukn))zgk}

[T @k . R N N TQ’
+(6en — 5&‘)7” , & 7‘% - (L'j A, ) Uy, — (L'j "Tin — (L‘j A ) (T 'Mzm))flg”
UknTin r

oD a
+(8en — b05) { — (23 D)0 = (i Tim = (23 D) (i mH }
VknTin
This general formula applies to all atoms ¢ = 4, j, k, n. It must be remembered however, that
these formulae apply to just one of the three contributing terms (i.e. one angle ¢) of the
full inversion potential: specifically the inversion angle pertaining to the out-of-plane vector
r;;- The contributions arising from the other vectors r;;, and r;,, are obtained by the cyclic
permutation of the indices in the manner described above. All these force contributions
must be added to the final atomic forces.
Formally, the contribution to be added to the atomic virial is given by

4
W=-=>r-/, (2.66)
i=1

However it is possible to show by thermodynamic arguments (cf [26],) or simply from
the fact that the sum of forces on atoms j,k and n is equal and opposite to the force on
atom i, that the inversion potential makes no contribution to the atomic virial.

If the force components f;* for atoms ¢ = i, j, k,n are calculated using the above formu-
lae, it is easily seen that the contribution to be added to the atomic stress tensor is given
by

0B — r%f]ﬁ + r%f}f + 7o P (2.67)

The sum of the diagonal elements of the stress tensor is zero (since the virial is zero) and
the matrix is symmetric.
In DL_POLY _2 inversion forces are handled by the routine INVFRC.
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2.2.8 Tethering Forces

DL_POLY 2 also allows atomic sites to be tethered to a fixed point in space, r, taken as their
position at the beginning of the simulation. This is also known as position restraining. The
specification, which comes as part of the molecular description, requires a tether potential
type and the associated interaction parameters.

Note, firstly, that application of tethering potentials means that momentum will no
longer be a conserved quantity of the simulation. Secondly, in constant pressure simulations,
where the MD cell changes size or shape, the reference position is scaled with the cell vectors.

The potential functions available in DL_POLY_2 are as follows, in each case r; is the
distance of the atom from its position at t = 0:

1. harmonic potential: (harm)

1
Ul(rio) = §k(7“z‘o)2; (2.68)
2. restrained harmonic :(rhrm)
1 2
Ulrio) = ik‘(n‘o) rio < Te; (2.69)
1
Ul(ryp) = ikrg + kre(rio — 1e) T30 > Te) (2.70)
3. Quartic potential: (quar)
]{7 k/ k//
U(rio) = 5 (ri0)* + 5 (rio)” + = (rio)". (2.71)

The force on the atom 7 arising from a tether potential is obtained using the general
formula:

1 0
L- = T [37“2‘0 U(Tio)] 750, (2.72)

The contribution to be added to the atomic virial is given by

W=ry- [, (2.73)
The contribution to be added to the atomic stress tensor is given by

o = —r%ff, (2.74)

where « and (§ indicate the z,y, 2z components. The atomic stress tensor derived in this
way is symmetric.
In DL_POLY 2 bond forces are handled by the routine TETHFRC.
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2.2.9 Frozen Atoms

DL_POLY 2 also allows atoms to be completely immobilised (i.e. “frozen” at a fixed point
in the MD cell). This is achieved by setting all forces and velocities associated with that
atom to zero during each MD timestep. Frozen atoms are signalled by assigning an atom a
non-zero value for the freeze parameter in the FIELD file. DL_POLY 2 does not calculate
contributions to the virial or the stress tensor arising from the constraints required to freeze
atomic positions. In DL_POLY_2 the frozen atom option cannot be used for sites in a rigid
body. As with the tethering potential, the reference position is scaled with the cell vectors
in constant pressure simulations.
In DL_POLY 2 the frozen atom option is handled by the subroutine FREEZE.

2.3 The Intermolecular Potential Functions

In this section we outline the pair-body, three-body and four-body potential functions
available in DL_POLY_2 . An important distinction between these and intramolecular
(bond) forces in DL_POLY_2 is that they are specified by atom types rather than atom
indices.

2.3.1 Short Ranged (van der Waals) Potentials
The short ranged pair forces available in DL_POLY_2 are as follows.

o 12 - 6
U(?“Z'j) =4e |:<7’z]> - <7azy> ] ; (2'76)

3. n - m potential [27]: (nm)

E, To " To " .
Ul(rij) = —m [m (ﬁg) -n (ﬁg) ] ; (2.77)

4. Buckingham potential: (buck)

1. 12 - 6 potential: (12-6)

2. Lennard-Jones: (lj)

Tij C
U(ri;) = A exp (—”) - — 2.78
(rs) ) (2.78)
5. Born-Huggins-Meyer potential: (bhm)
Cc D
U(T’Z’j) =A exp[B(a — Tij)] — 7"76 — Tfs; (2.79)

ij ij
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6. Hydrogen-bond (12 - 10) potential: (hbnd)
e - () - (2): o0
7. Shifted force n - m potential [27]: (snm)
e = g o {(5) -G () -GV
- 6))

with
v = r;“t (2.82)
o
1
,7m+1 _ 1 n—m
g = <,.)/n+1 1 (2:83)
o — (n—m) (2.84)

[npm (L + (m/y —=m = 1)/y™) =mp(1 + (n/y —n—1)/7")]

This peculiar form has the advantage over the standard shifted n-m potential in that
both E, and ro (well depth and location of minimum) retain their original values after
the shifting process.

8. Morse potential: (mors)
U(rij) = Bol[{1 — exp(=k(rij —10))}* = 1]; (2.85)
9. Tabulation: (tab). The potential is defined numerically only.

The parameters defining these potentials are supplied to DL_POLY_2 at run time (see
the description of the FIELD file in section 4.1.3). Each atom type in the system is specified
by a unique eight-character label defined by the user. The pair potential is then defined
internally by the combination of two atom labels.

As well as the numerical parameters defining the potentials, DL_.POLY_2 must also
be provided with a cutoff radius 7.4, which sets a range limit on the computation of the
interaction. Together with the parameters, the cutoff is used by the subroutine FORGEN
(or FORGEN_RSQ) to construct an interpolation array vvv for the potential function over
the range 0 to rqy,. A second array ggg is also calculated, which is related to the potential
via the formula:

0
G(rij) = _Tijiar”U(Tij)a (2.86)
ij

and is used in the calculation of the forces. Both arrays are tabulated in units of energy.
The use of interpolation arrays, rather than the explicit formulae, makes the routines for
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calculating the potential energy and atomic forces very general, and enables the use of
user defined pair potential functions. DL_POLY_2 also allows the user to read in the
interpolation arrays directly from a file (see the description of the TABLE file (section
4.1.5). This is particularly useful if the pair potential function has no simple analytical
description (e.g. spline potentials).

The force on an atom j derived from one of these potentials is formally calculated with
the standard formula:

1] 0
i] Tij [8Tij ( ZJ)] LY ( )
where Ty =Tj—I; The force on atom ¢ is the negative of this.
The contribution to be added to the atomic virial (for each pair interaction) is

The contribution to be added to the atomic stress tensor is given by

0P =g f7, (2.89)
where a and [ indicate the z,y, z components. The atomic stress tensor derived from the
pair forces is symmetric.

Since the calculation of pair potentials assumes a spherical cutoff (r.,) it is necessary to
apply a long range correction to the system potential energy and virial. Explicit formulae
are needed for each case and are derived as follows. For two atom types a and b, the
correction for the potential energy is calculated via the integral

NgNy [
U =or v b Gap (1) Uy ()72 dr (2.90)

Teut

where N,, Nj are the numbers of atoms of types a and b, V' is the system volume and gq(7)

and Ug (1) are the appropriate pair correlation function and pair potential respectively. It

is usual to assume gqp(r) = 1 for r > roy. DL POLY_2 sometimes makes the additional

assumption that the repulsive part of the short ranged potential is negligible beyond r¢y;.
The correction for the system virial is

wab ——27rNaNb -

corr V et

0
gab(’f’)gUab(T)T?)d’l", (291)

where the same approximations are applied. Note that these formulae are based on the
assumption that the system is reasonably isotropic beyond the cutoff.

In DL_POLY_2 the short ranged forces are calculated by one of the routines SRFRCE,
SRFRCE_RSQ, and SRFRCENEU. The long range corrections are calculated by routine LR-
CORRECT. The calculation makes use of the Verlet neighbour list described above.
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2.3.2 Three Body Potentials

The three-body potentials in DL_POLY_2 are mostly valence angle forms. (They are pri-
marily included to permit simulation of amorphous materials e.g. silicate glasses.) However,
these have been extended to include the Dreiding [6] hydrogen bond. The potential forms
available are as follows.

1. Truncated harmonic: (thrm)

U(birx) = g(%k — 00)% exp[—(r; + r5)/P°; (2.92)

2. Screened Harmonic: (shrm)

UOsi) = 5 O — 00)? el 1 + i )] (2.93)

3. Screened Vessal[24]: (bvsl)

U(0jix) S(Gﬂkk—w)? { [(90 - 7T)2 — (O — 77)2}2}
exp[—(ri5/p1 + Tir/ p2)]; (2.94)
4. Truncated Vessal[25]: (bvs2)
U(O) = k0% (05 — 00)2 (B + 0o — 21)? — %W“_l
(i — 00)*(m — 00)°] exp[—(rf; + 1) /p%). (2.95)
5. Dreiding hydrogen bond [6]: (hbnd
U(0ji) = Dupcos™ (05i) [5(Rup/7j1)"> — 6(Rpw /i) "] (2.96)

Note that for the hydrogen bond, the hydrogen atom must be the central atom. Several
of these functions are identical to those appearing in the intra-molecular valenceangle de-
scriptions above. There are significant differences in implementation however, arising from
the fact that the three-body potentials are regarded as inter-molecular. Firstly, the atoms
involved are defined by atom types, not specific indices. Secondly, there are no excluded
atoms arising from the three body terms. (The inclusion of pair potentials may in fact be
essential to maintain the structure of the system.)

The three body potentials are very short ranged, typically of order 3 A. This property,
plus the fact that three body potentials scale as N3, where N is the number of particles,
makes it essential that these terms are calculated by the link-cell method [28].

The calculation of the forces, virial and stress tensor as described in the section valence
angle potentials above.

DL_POLY_2 applies no long range corrections to the three body potentials. The three
body forces are calculated by the routine THBFRC.
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2.3.3 The Tersoff Covalent Potential

The Tersoff potential [4] is a special example of a density dependent potential, which has
been designed to reproduce the properties of covalent bonding in systems containing carbon,
silicon, germanium etc and alloys of these elements. A special feature of the potential is
that it allows bond breaking and associated changes in bond hybridisation. The potential
has 11 atomic and 2 bi-atomic parameters. The energy is modelled as a sum of pair-like
interactions where, however, the coefficient of the attractive term in the pairlike potential
(which plays the role of a bond order) depends on the local environment giving a many-body
potential.
The form of the Tersoff potential is: (ters)

Uij = fc(rij) [fr(rij) — vig fa(rig)], (2.97)
where
fr(rij) = Aij exp(—aij rij) , fal(rij) = Bij exp(—bij 1i5) (2.98)
1 Tij < Rij
fc(Tij) = % + %COS[T( (Tij — Rij)/(ri]’ — RU)] : Ri]’ <y < SZ']' (299)
0 Tij > S,’j

Yig = Xij (L+ B LIV L= 3" folra) wik 9(0:1)
ki,
9(bijr) =1+ C?/dz2 — c?/[clz2 + (h; — cos Qijk)Q] (2.100)

with further mixed parameters defined as

aij = (ai +a;)/2 ,  bij = (bi +b;)/2
Aij = (AiAj)'? | Bij= (BB (2.101)
Ry = (RiR)'? S =(SiS)'/* .

Here ¢, j and k label the atoms in the system, r;; is the length of the ij bond, and 6;;; is
the bond angle between bonds ij and ik. Single subscripted parameters (11), such as a;
and 7;, depend only on the type of atom.

The chemistry between different atom types is encapsulated in the two sets of bi-atomic
parameters x;; and w;;:

Xi = 1 5 Xij = Xji
Wi = 1 y wz-j = wj‘i s (2.102)

which define only one independent parameter for each pair of atom types. The x parameter
is used to strengthen or weaken the heteropolar bonds, relative to the value obtained by
simple interpolation. The w parameter is used to permit greater flexibility when dealing
with more drastically different types of atoms.
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The force on an atom ¢ derived from this potential is formally calculated with the

0 1 0
f& =2 aFrersots == Y _—7aUij (2.103)
org 24— Or]
i#]
with atomic label £ being one of 7, j, k and « indicating the x, 3, z component. The derivative
in the above formula expands into

formula:

oU;; 0 0 0
- 877] ==3, af (sz)fR(ng)Jr%ya af (Tij)fA(rij)+fC(7"ij)fA(Tij)87r?'7ij , (2.104)

with the contributions from the first two terms being:

- el falry) = {fcmj) 8? fR<nj>+fR<nj>afijfc<nj>} x
{ ]ef — } (2.105)
0
%ja af (TZJ)fA 7"@] = Yij {fC Tz] i (rij) +fA(Tij)%fC(Tij)} X

{(m - } , (2.106)

0
fc(?“z‘j)fA(Tz‘j)@%j = fo(rij)fa(rij) xij X

and from the third (angular) term:

1 N\l 1 0
(—2) (1+ﬁim [,7]) g Ll 1W£” , (2.107)

where
0

@53 8 5 > wik fo(rin) 9(0in) - (2.108)

" ki
The angular term can have three different contributions depending on the index of the
particle participating in the interaction:

. 0 0
=1 : 873 k;:]wm[ Oijk) a5 af (Wk)"‘fc(rik)wg(aijk)] (2.109)
(= i => fo(ri) =— 0 g(0ir) (2.110)
=J 8’!”]- ; Wik JC\Tik or a ijk .
#i,j

. 0 0 0
tF 4] o 5oLy =wie [g(Qijz)arafo( i) + Jelri) g o 9(92]4)1 : (2.111)
0 ¢ ¢
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The derivative of g(6;;) is worked out in the following manner:

0 0 GZ -1 0 i Ty
5,0 90ijk) = 9(0iie) . g ik (2.112)
g 00;51  sinbip Ory | rij Tk
where
. 2 2(h; — i iné;,
09(0ijk) _ cl2(h cos 0;ix) sin by (2.113)
60% [dZ + (hz — COS Gijk)2]2
0 | ri;-ri T ri;
— = (0p; — O0p;)—2 Ok — Op; J
ory { TijTik } (O = & )Tijrik + O~ 0 )Tijn'lc
cos(0jik) § (0ej — 60i) = + (6o — dei) =5 ¢ - (2.114)
&7/ Tik
The contribution to be added to the atomic virial can be derived as
8Etersoff 3V BUz]
W = 3V = 2.115
oV 2 ; 191% ( )

1 0 0
W = 3 ; [%fC(rij)fR(Tij) - %j%fc(nj)fA(nj)] Tij —

1 s A
<—2> fe(rij) fa(ri) xij (1 + B ﬁf;) UM LT (2.116)

> wie 9(Bi1) { 0

ki,

fC(Tik)] Tik -

87"1’]@
The contribution to be added to the atomic stress tensor is given by
o0 = el (2.117)

where a and 3 indicate the x,y, z components. The stress tensor is symmetric.

Interpolation arrays, vmbp and gmbp (set up in subroutine TERGEN) - similar to those
in van der Waals interactions 2.3.1 - are used in the calculation of the Tersoff forces, virial
and stress.

The Tersoff potentials are very short ranged, typically of order 3 A. This property, plus
the fact that Tersoff potentials (two- and three-body contributions) scale as N3, where N
is the number of particles, makes it essential that these terms are calculated by the link-cell
method [28].

DL_POLY_2 applies no long range corrections to the Tersoff potentials. In DL_POLY _2
Tersoff forces are handled by the routines TERSOFF, TERINT and TERSOFF3.

2.3.4 Four Body Potentials

The four-body potentials in DL_POLY_2 are entirely inversion angle forms, primarily in-
cluded to permit simulation of amorphous materials (particularly borate glasses). The
potential forms available in DL_POLY _2 are as follows.
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1. Harmonic: (harm)

U(Bistn) = 3H(ign — 0)? (2118)

2. Harmonic cosine: (hcos)
U(Biin) = 5 (cos(Bistn) — cos(60))? (2119)

3. Planar potential: (plan)
U(ijkn) = Al — cos(dijrn)] (2.120)

These functions are identical to those appearing in the intra-molecular inversion angle
descriptions above. There are significant differences in implementation however, arising
from the fact that the four-body potentials are regarded as inter-molecular. Firstly, the
atoms involved are defined by atom types, not specific indices. Secondly, there are no
excluded atoms arising from the four-body terms. (The inclusion of other potentials, for
example pair potentials, may in fact be essential to maintain the structure of the system.)

The four body potentials are very short ranged, typically of order 3 A. This property,
plus the fact that four body potentials scale as N*, where N is the number of particles,
makes it essential that these terms are calculated by the link-cell method [28].

The calculation of the forces, virial and stress tensor described in the section on inversion
angle potentials above.

DL_POLY_2 applies no long range corrections to the four body potentials. The four-
body forces are calculated by the routine FBPFRC.

2.3.5 Metal Potentials

The metal potentials in DL_POLY_2 follow two similar but distinct formalisms. The first
of these is the embedded atom model (EAM) [29, 30] and the second is the Finnis-Sinclair
model (FSM) [31]. Both are density dependent potentials derived from density functional
theory (DFT) and describe the bonding of a metal atom ultimately in terms of the local
electronic density. They are suitable for calculating the properties of metals and metal
alloys.

For single component metals the two approaches are the same. However they are
subtly different in the way they are extended to handle alloys (see below). It follows that
EAM and FSM potentials cannot be mixed in a single simulation. Furthermore, even
for FSM potentials possessing different analytical forms there is no agreed procedure for
mixing the parameters. The user is therefore strongly advised to be consistent in the choice
of potential when modelling alloys.

The general form of the EAM and FSM potentials is [32]

N

1 N N
Umetal = 5 ZZVYZ](TM) + ZF(pl) ) (2121)

i=1 j#i i=1
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where F'(p;) is a functional describing the energy of embedding an atom in the bulk density,
pi, which is defined as

N
Pi = Z pij(r'ij) . (2122)
=1
It should be noted that the density is determined by the coordination number of the atom
defined by pairs of atoms. This makes the metal potential dependent on the local density
(environmental). V;(r;) is a pair potential incorporating repulsive electrostatic and overlap
interactions. N is the number of interacting particles in the MD box.
The types of metal potentials available in DL_POLY 2 are as follows:

1. EAM potential: (eam) There are no explicit mathematical expressions for EAM
potentials, so this potential type is read exclusively in the form of interpolation arrays
from the TABEAM table file (as implemented in the METTAB routine - Section 4.1.6.)
The rules for combining the potentials from different metals to handle alloys are
different from the FSM class of potentials (see below).

2. Finnis-Sinclair potential [31]: (fnsc) The Finnis-Sinclair potential is explicitly ana-
lytical. It has the following form:

Vij(rij) = (Tz’j — 6)2(00 +cirig + 027“%)

(rij — d)°

y (2.123)

pij(riy) = (riy—c)*+p

Flp) = ~AVh
with parameters: cg, c1, co, ¢, A, d, 3, both ¢ and d are cutoffs. Since first being
proposed a number of alternative analysical forms have been proposed, some of which

are descibed below. The rules for combining different metal potentials to model alloys
are different from the EAM potentials (see below).

3. Sutton-Chen potential [3, 33, 34]: (stch) The Sutton Chen potential is an analytical
potential in the FSM class. It has the form:

a n
Vij(rij) = € (m)

pij(rij) = (:J) (2.124)
Flpi) = —cev/pi

with parameters: €, a, n, m, c.

4. Gupta potential [35]: (gupt) The Gupta potential is another analytical potential in
the FSM class. It has the form:

Ti; — T
Vij(rij) = AeXp(—p ’ 0)

To
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j—
pij(rij) = exp( 2ng - O) (2.125)
F(pi) = —Bypi ,
with parameters: A, ro, p, B, ¢;;.

All of these metal potentials can be decomposed into pair contributions and thus fit
within the general tabulation scheme of DL_POLY_2 , where they are treated as pair in-
teractions (though note that the metal cutoff, rpet has nothing to do with short ranged
cutoff, ryqw). DL_POLY_2 calculates this potential in two stages: the first calculates the
local density, p;, for each atom; and the second calculates the potential energy and forces.
Interpolation arrays, vmet, gmet and fmet (METGEN, METTAB) are used in both these stages
in the same spirit as in the van der Waals interaction calculations.

The total force ﬁ:t on an atom k derived from this potential is calculated in the standard
way:

[ = ~YiUnetar - (2.126)
We rewrite the EAM/FSM potential, (2.121), as

Unetat = U1+U2
U = fZZv” (rij) (2.127)
i=1 j#i
N
Uy = Y Flpi)
i=1

where 7;; = r; —r; . The force on atom k is the sum of the derivatives of U; and Uz with

respect to 1y, which is recognisable as a sum of pair forces:

1. EAM force
U _ _7228% rij) Orij % OVij(rrg) Thi
ory, = I#Z orij  Org =Tk ok Tkj
oU, OF 8Pz] Tz] 87'1]
- = = 2.128
arik zz; pZ 275: 8T1] aﬁk ( )

N OF Opik(rik) Ori al OF Opj(rij) Orwj

_ 5 <8F aF) Opij(Tj) Tki
i1k \Opk Opj ) Orkj T

In DL_POLY 2 the generation of the force arrays from tabulated data (implemented
in the METAL_DERIV routine) is done using a five point interpolation precedure.
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2. Finnis-Sinclair force

o _ g
87“k N L
- J=1,37#k
LoU, i A
aTk N =2
J=1,j#k
3. Sutton-Chen force
oU; N a
"o T ”(
-k =157k &
0y 5~ mee
8?% N T 2
—- J=1j#k
4. Gupta force
3U1 N Ap
o Z o P
& j=1j#k 0
8U2 _ % quj i—i—
Ore gm0 \me

Tk —T0
To
1
) exp (—quj
Pj

{Q(Tkj —c)(co+ c1rp; + C27°1%j) + (rij —

Tkj

0)2(01 + 2c27”kj)}

11 (rej —d)* | Thi
— 4= C_d ALV G4
(Pk " Pj) {2(% ) +36 d } Tkj

Tky — 70
To

Tkj

Tkj

40

Tkj

Tkj

(2.129)

(2.130)

(2.131)

With the metal forces thus defined the contribution to be added to the atomic virial

from each atom pair is then
W= —

which equates to:

vty

ou
v = 3V_—
8V
8‘/; Tz a'rz ap’
U = 4/22 a] J J BVZ ap gy = VitV
1=1 j#i " - '
an _ ov1/3 Sij _ EV_2/3S” _ Ty
av oV 3 Yo
IVij(riz)
\Ill = *ZZ 8]7’ ! Zj
i=1 j#i i
opi 0 & 5L pylr) Oy _ 1 o
v "oy 2 pol) = 2 T Gy Ty
j=1,j#i J=Lj#i “ =L
U, = 1 i(aF(pz)+8F(Pj)> 9pij(rij) "
2 55 Opi p; Orij

Opij(ri)

87“,‘1'

(2.132)

(2.133)

[
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1. EAM virial
The same as above.

2. Finnis-Sinclair virial

1
U, = 3 » {2(7*@-]- —¢)(co + errij + czrfj) + (rij — ¢)*(c1 + 2627@')} Tij
i=1 j£i
1 XX a1 1 (rij — d)?
i=1 j#£i v J

o ()

=1 j£i Tij
1 XX mee (0F(pi)  OF(p;) a\"
Uy = = 24 J — : 2.135
’ 2;; 2 < Opi Ip; Tij ( )

4. Gupta virial
_r
v = —ZZexp( 0)7“15
1= 1]767,
Bq;; 1 < Tz‘j—T()>
Uy, = = — exp | —2q;;——— | 14 - 2.136
2 ZZ (,)k pj> 0 e (2130)

i=1 j#i "o

The contribution to be added to the atomic stress tensor is given by
o = f] (2.137)

where o and ( indicate the x,y, 2 components. The atomic stress tensor is symmetric.
The long-ranged correction for the DL_POLY _2 metal potential is in two parts. Firstly,
by analogy with the short ranged potentials, the correction to the local density is

o
pi = Y. pijry)

=Ly
75 <Vmet Tij >Tmet
pi = > pilrg)+ Y pig(riy) = pf + dps (2.138)
J=1,j#i J=1j#i
(o.9]
op; = dmp | pij(r)dr (2.139)

Tmet

where p? is the uncorrected local density and p is the mean particle density. Evaluating the
integral part of the above equation yields:
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1. EAM density correction
No long-ranged corrections apply beyond rpet.

2. Finnis-Sinclair density correction
No long-ranged corrections apply beyond cutoffs ¢ and d.

3. Sutton-Chen density correction

A pa® < a >m—3
Spi = . 2.140
pi (m —3) \Tmet ( )

4. Gupta density correction

2
Trznet + 2Tmet (q ) + 2 (q ) ] exXp (_quj'rmetro_'ro> . (2141)
i i

The density correction is applied immediately after the local density is calculated. The pair
term correction is obtained by analogy with the short ranged potentials and is

Uy = 722%] ng

2mpro
qij

0p; =

i=1 j#i
N 7Tij<Tmet N Tij2>Tmet

U, = 72 > Viiri) + 5 Z > Vij(ryg) = U+ 6Uh
i=1 j;éz i=1 j#i

oUy = 2wNp Wj(r)Ter

Tmet

N
Vo = Y F(o+0pi) (2.142)
=1

N N
OF (p;
Uy = > F(pd)+> :a(z )0(5/)@') = U +6Us
i=1 i=1 g

3F
oUy = 4rm Z (pi)o / pij(r)ridr .
Tmet
Note: that dU2 is not required if p; has already been corrected. Evaluating the integral

part of the above equations yields:

1. EAM energy correction
No long-ranged corrections apply beyond 7pet.

2. Finnis-Sinclair energy correction
No long-ranged corrections apply beyond cutoffs ¢ and d.
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3. Sutton-Chen energy correction

= 3 n—3
sU, — 27N pea ( a )
et

(n—=3) \rm
ATh 3 n—3 N
SUy, = — ”pag ( “) <“> : (2.143)
(m_ ) T'met 2 P?
4. Gupta energy correction
2 NpAr 2
Uy = mlbA G r2net+27“met< >+2( ) X
p p p
( 7"rnetTO)
exp | —p———
o
9r5 2
Tor
§U; = —P002 fore [22) +2 X (2.144)
qij qu (h]

Tmet — 70 NB
exXp _2Qij ro 5 5
P

To estimate the virial correction we assume the corrected local densities are constants (i.e.
independent of distance - at least beyond the range 7). This allows the virial correction
to be computed by the methods used in the short ranged potentials:

N X Vij(rij)

\Ijl - *ZZ 8sz zj

i=1 j#i
N Tz;<""met aV ’I" N r1j>7’met 8V T
_ l] U . YVig\ig) l] .
no- ey P Wl
i=1 j#i =1 j#i gl
= 1+5\I’1
50U, = 27xNp ﬂr?’dr
Tmet Tij
OF (p; & 0pij(rij
U, = Z . p"Z pg(f”)rij (2.145)
=1 9P G 9T

N 7ij <T'met Tij2>Tmet

OF (pi " 0pij(rij) pi " Ipij(riz)
U — g\t ) J\" 1] ..
;= RS ), OM S ),

= Oni j#i i=1

i
= )+ 50,
F oo ..
00y = 4np Za (p) / 0051 3 4y
i=1 8[)1 Tmet a,r

Evaluating the integral part of the above equations yields:
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1. EAM virial correction
No long-ranged corrections apply beyond rpet.

2. Finnis-Sinclair virial correction
No long-ranged corrections apply beyond cutoffs ¢ and d.

3. Sutton-Chen virial correction

0wy

_nQﬁNﬁea?’ ( a >”_3
(n—3)

T'met
=~ 3 n—3
SV, = m“’)a( a > <N“> . (2.146)
(m —3) \Tmet 2\/;?

4. Gupta virial correction

p 2nNpArg | 5 5 <r0> (7"0)2 (7“0)3
vy = ———————|r2  +3r — ) 4+ 6rmet | — ) +6(— X
- p met met p et D »
( Tmet_ro)
expl|\—p——
To
27 pr, T T 2 T 3
on
0y = BIZEPT0 8 32 () 4 6rmer [ =) +6 (2 | x (2.147)
o i qij qij qij

ox (_2 “rmot—ro> NB
p qij o 2\/p70 .
1

In the energy and virial corrections we have used the approximation:

N
sz' /2 = 1 o (2.148)
i <p; >
where < p% s regarded as a constant of the system.

In DL_POLY_2 the metal forces are handled by the routine METFRC. The local density
is calculated by the routines METDENS, EAMDEN and FSDEN. The long-ranged corrections
are calculated by LRCMETAL. Reading and generation of EAM table data from TABEAM
is handled by METTAB and METAL_DERIV.

Notes on the Treatment of Alloys

The distinction to be made between EAM and FSM potentials with regard to alloys concerns
the mixing rules for unlike interactions. Starting with equations (2.121) and (2.122), it is
clear that we require mixing rules for terms V;;(r;;) and p;;(r;;) when atoms 4 and j are of
different kinds. Thus two different metals A and B we can distinguish 4 possible variants
of each:

Vit (rig), Vig P rig), VigP(rig), Vig A (rig)
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and
AA BB AB BA
Pij (Tij)> Pij (Tij)a Pij (Tz'j)a Pij (Tij)-
These forms recognise that the contribution of a type A atom to the potential of a type B

atom may be different from the contribution of a type B atom to the potential of a type A
atom. In both EAM [36] and FSM [33] cases it turns out that

Vig i) = Vig (i) (2.149)

though the mixing rules are different in each case (beware!).
With regard to density, in the EAM case it is required that [36]:

A
pis” (rig) = P (rij)
i (rig) = i (rig) (2.150)

which means that an atom of type A contributes the same density to the environment of
an atom of type B as it does to an atom of type A, and vice versa.
For the FSM case [33] a different rule applies:

pis” (rig) = (piy (rig) o} (rig)) /2 (2.151)

so that atoms of type A and B contribute the same densities to each other, but not to
atoms of the same type.

Thus when specifying these potentials in the DL_POLY_2 FIELD file for an alloy com-
posed of n different metal atom types both EAM and FSM require the specification of
n(n + 1)/2 pair functions ‘Q;‘B (rij). However, the EAM requires only n density functions
pg‘}A(rij), whereas the FSM class requires all the cross functions piAjB (rij) or n(n+1)/2 in
total. In addition to the n(n+1)/2 pair functions and n density functions the EAM requires
further specification of n functional forms of the density dependence (i.e. the embedding
function F(p;) in (2.121)).

For EAM potentials all the functions are supplied in tabular form via the table file
TABEAM (see section 4.1.6) to which DL_POLY 2 is redirected by the FIELD file data.
The FSM potentials are defined via the necessary parameters in the FIELD file.

2.3.6 External Fields

In addition to the molecular force field, DL_POLY_2 allows the use of an external force
field. Examples of field available include:

1. Electric field: (elec)
F=F+q¢H (2.152)

2. Oscillating shear: (oshm)
F, = Acos(2nm.z/L,) (2.153)
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3. Continuous shear: (shrx)

v, = ;A|z| )z > 2o (2.154)
4. Gravitational field: (grav)
bFi=F +m;H (2.155)
5. Magnetic field: (magn)
Fy=F +q.(vi NH) (2.156)
6. Containing sphere: (sphr)
F=ARy—r)™" i1 > Reyt (2.157)
7. Repulsive wall: (zbnd)
F=A(z,— 2) 12> 2, (2.158)

It is recommended that the use of an external field should be accompanied by a thermostat
(this does not apply to examples 6 and 7, since these are conservative fields). The user is
advised to be careful with units!

In DL_POLY_2 external field forces are handled by the routine EXTNFLD.

2.4 Long Ranged Electrostatic (Coulombic) Potentials

DL_POLY 2 incorporates several techniques for dealing with long ranged electrostatic po-
tentials. 2 These are as follows.

1. Atomistic and charge group implementation.

2. Direct Coulomb sum;

3. Truncated and shifted Coulomb sum;

4. Coulomb sum with distance dependent dielectric;

5. Ewald sum;

6. Smoothed Particle Mesh Ewald (SPME);

7. Hautman Klein Ewald for systems with 2D periodicity;
8. Reaction field;

9. Dynamical shell model;

2Unlike the other elements of the force field, the electrostatic forces are NOT specified in the input
FIELD file, but by setting appropriate directives in the CONTROL file. See section 4.1.1.
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10. Relaxed shell model.

Some of these techniques can be combined. For example 1, 3 and 4 can be used in conjunc-
tion with 9. The Ewald sum, SPME and Hautman Klein Ewald are restricted to periodic (or
pseudo-periodic) systems only, though DL_POLY _2 can handle a broad selection of periodic
boundary conditions, including cubic, orthorhombic, parallelepiped, truncated octahedral,
hexagonal prism and rhombic dodecahedral. The Ewald sum is the method of choice for
periodic systems. The other techniques can be used with either periodic or non-periodic
systems, though in the case of the direct Coulomb sum, there are likely to be problems
with convergence.

DL_POLY _2 will correctly handle the electrostatics of both molecular and atomic species.
However it is assumed that the system is electrically neutral. A warning message is printed
if the system is found to be charged, but otherwise the simulation proceeds as normal. No
correction for non-neutrality is applied.

2.4.1 Atomistic and Charge Group Implementation

The Ewald sum is an accurate method for summing long-ranged Coulomb potentials in
periodic systems. This can be a very cpu intensive calculation and the use of more efficient,
but less accurate methods, is common. Invariably this involves truncation of the potential at
some finite distance r.y;. If an atomistic scheme is used for the truncation criterion there is
no guarantee that the interaction sphere will be neutral and spurious “charging” effects will
almost certainly be seen in a simulation. This arises because the potential being truncated
is long-ranged (1/r for charge-charge interactions). However if the cutoff scheme is based
on neutral groups of atoms, then at worst, at long distance the interaction will be a dipole-
dipole interaction and vary as 1/r3. The truncation effects at the cutoff are therefore much
less severe than if an atomistic scheme is used. In DL_POLY _2 the interaction is evaluated
between all atoms of both groups if any site of the first group is within the cutoff distance
of any site of the second group. The groups are known interchangeably as “charge groups”
or “neutral groups” in the documentation - which serves as a reminder that the advantages
of using such a scheme are lost if the groups carry an overall charge. There is no formal
requirement in DL_POLY_2 that the groups actually be electrically neutral.

The charge group scheme is more cpu intensive than a simple atomistic cutoff scheme as
more computation is required to determine whether or not to include a set of interactions.
However the size of the Verlet neighbourhood list (easily the largest array in DL_POLY _2
) is considerably smaller with a charge group scheme than an atomistic scheme as only a
list of interacting groups need be stored as opposed to a list of interacting atoms.

2.4.2 Direct Coulomb Sum

Use of the direct Coulomb sum is sometimes necessary for accurate simulation of isolated
(nonperiodic) systems. It is not recommended for periodic systems.
The interaction potential for two charged ions is
_ 1 4qg
47T60 Tij

U(rij)

(2.159)
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with g, the charge on an atom labelled ¢, and r;; the magnitude of the separation vector
Y, =r,—r.
The force on an atom j derived from this force is

1 g

= T 2.160
=1 Ameg Tg’j - ( )
with the force on atom 7 the negative of this.
The contribution to the atomic virial is
1 R
W= 249 (2.161)
47T60 Tij
which is simply the negative of the potential term.
The contribution to be added to the atomic stress tensor is
o =g f7, (2.162)

where «, 3 are x,y, z components. The atomic stress tensor is symmetric.
In DL_POLY _2 these forces are handled by the routines COULO and COULONEU.

2.4.3 Truncated and Shifted Coulomb Sum

This form of the Coulomb sum has the advantage that it drastically reduces the range of
electrostatic interactions, without giving rise to a violent step in the potential energy at the
cutoff. Its main use is for preliminary preparation of systems and it is not recommended
for realistic models.

The form of the potential function is

U(ryj) = 14 {1 - } (2.163)

47 €0 Tij Teut

with gy the charge on an atom labelled ¢, 7., the cutoff radius and r;; the magnitude of
the separation vector Tij =Tj —Tj.
The force on an atom j derived from this potential, within the radius r.y, is

L qigj
.= T 2.164
=7 Admeg rf’j Lij ( )

with the force on atom ¢ the negative of this.
The contribution to the atomic virial is

which is not the negative of the potential term in this case.
The contribution to be added to the atomic stress tensor is given by

o =g f7, (2.166)
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where «, 3 are x,y, z components. The atomic stress tensor is symmetric.

In DL_POLY _2 these forces are handled by the routine couL1.

A further refinement of this approach is to truncate the 1/r potential at r.,; and add
a linear term to the potential in order to make both the energy and the force zero at the
cutoff. The potential is thus

i |1 | Ty 2
Ul(ri;) = — - 2.167
(rig) 4meg lrij * 20 rcut] ( )
with the force on atom j given by
g |1 1
o |y 2.168
iy 4req [7‘22] rgut] Lij ( )

with the force on atom ¢ the negative of this.

This removes the heating effects that arise from the discontinuity in the forces at the
cutoff in the simple truncated and shifted potential. The physics of this potential however
are little better. It is only recommended for very crude structure optimizations.

The contribution to the atomic virial is

which is not the negative of the potential term.
The contribution to be added to the atomic stress tensor is given by
0P =g f7, (2.170)

where «, 3 are x,y, z components. The atomic stress tensor is symmetric.
In DL_POLY_2 these forces are handled by the routine couL4.

2.4.4 Coulomb Sum with Distance Dependent Dielectric

This potential attempts to address the difficulties of applying the direct Coulomb sum,
without the brutal truncation of the previous case. It hinges on the assumption that the
electrostatic forces are effectively ‘screened’ in real systems - an effect which is approximated
by introducing a dielectic term that increases with distance.

The interatomic potential for two charged ions is

1 qiqj
47['6()6(7’1']') Tij

U(rij) = (2.171)
with g, the charge on an atom labelled ¢, and r;; the magnitude of the separation vector
r;; = r;—1;. €(r) is the distance dependent dielectric function. In DL_POLY 2 it is assumed
that this function has the form

e(r)=er (2.172)

where € is a constant. Inclusion of this term effectively accelerates the rate of convergence
of the Coulomb sum.
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The force on an atom j derived from this potential is

1 qigj
.= y 2.173
=i 2mege Tt Lij ( )

ij
with the force on atom 7 the negative of this.
The contribution to the atomic virial is

W=—r-f, (2.174)

which is —2 times the potential term.
The contribution to be added to the atomic stress tensor is given by

0% =3 f7, (2.175)

where o, 3 are x, ¥y, z components. The atomic stress tensor is symmetric.
In DL_POLY _2 these forces are handled by the routines COUL2 and COUL2NEU.

2.4.5 Ewald Sum

The Ewald sum [11] is the best technique for calculating electrostatic interactions in a
periodic (or pseudo-periodic) system.

The basic model for a neutral periodic system is a system of charged point ions mutually
interacting via the Coulomb potential. The Ewald method makes two amendments to this
simple model. Firstly each ion is effectively neutralised (at long range) by the superposition
of a spherical gaussian cloud of opposite charge centred on the ion. The combined assembly
of point ions and gaussian charges becomes the Real Space part of the Ewald sum, which
is now short ranged and treatable by the methods described above (section 2.1). 3 The
second modification is to superimpose a second set of gaussian charges, this time with the
same charges as the original point ions and again centred on the point ions (so nullifying
the effect of the first set of gaussians). The potential due to these gaussians is obtained
from Poisson’s equation and is solved as a Fourier series in Reciprocal Space. The complete
Ewald sum requires an additional correction, known as the self energy correction, which
arises from a gaussian acting on its own site, and is constant. Ewald’s method therefore
replaces a potentially infinite sum in real space by two finite sums: one in real space and
one in reciprocal space; and the self energy correction.

For molecular systems, as opposed to systems comprised simply of point ions, additional
modifications are necessary to correct for the excluded (intra-molecular) Coulombic inter-
actions. In the real space sum these are simply omitted. In reciprocal space however, the
effects of individual gaussian charges cannot easily be extracted, and the correction is made
in real space. It amounts to removing terms corresponding to the potential energy of an ion
¢ due to the gaussian charge on a neighbouring charge m (or vice versa). This correction

3Strictly speaking, the real space sum ranges over all periodic images of the simulation cell, but in the
DL_POLY_2 implementation, the parameters are chosen to restrict the sum to the simulation cell and its
nearest neighbours i.e. the minimum images of the cell contents.
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appears as the final term in the full Ewald formula below. The distinction between the
error function er f and the more usual complementary error function er fc found in the real
space sum, should be noted.

The total electrostatic energy is given by the following formula.

1 = exp( k2/4a . 9 1 & qi4n
U. = 5V Z ]Zq] exp(—ik - ;)| o er fe(arp;)
0€0 k20 TED n<j T'nj
1 erf(ary
arrliD S Z 9em {5em v 7"01(_%"1) } (2.176)
€0 molecules £<m Tom

where N is the number of ions in the system and N* the same number discounting any
excluded (intramolecular) interactions. M™* represents the number of excluded atoms in a
given molecule and includes the atomic self correction. V, is the simulation cell volume and
k is a reciprocal lattice vector defined by

k= {lu+mv+nw (2.177)

where ¢, m,n are integers and u,v,w are the reciprocal space basis vectors. Both V,, and
u,v,w are derived from the vectors (a, b, ¢) defining the simulation cell. Thus

=la-bxc| (2.178)
and
u = 27 bxe
a-bxc
cXa
= 9r—=_"= 2.179
“ Fg-bxg ( )
w = 27 axb
a-bxc

With these definitions, the Ewald formula above is applicable to general periodic systems.
(A small additional modification is necessary for rhombic dodecahedral and truncated oc-
tahedral simulation cells [37].)

In practice the convergence of the Ewald sum is controlled by three variables: the
real space cutoff r.,:; the convergence parameter o and the largest reciprocal space vector
ke used in the reciprocal space sum. These are discussed more fully in section 3.3.5.
DL_POLY 2 can provide estimates if requested (see CONTROL file description 4.1.1.

The force on an atom j is obtained by differentiation and is

(0.9} 2 2y N
_ q; . exp(—k*/4a”) )
ij = ——Voeo gﬁ:ozkexp(k ) Ej)—kQ zn:qn exp(—ik - 1,)

N
j 2ary,
q; Z q; {erfc(cwn]) + \/7:_” exp(—a2rij)}rnj (2.180)

M
qj qe 2ary;
L3 ferftany) - 28 exp(—atrd) | o

N4
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The electrostatic contribution to the system virial can be obtained as the negative of the
Coulombic energy. However in DL_POLY _2 this formal equality can be used as a check on
the convergence of the Ewald sum. The actual electrostatic virial is obtained during the
calculation of the diagonal of the stress tensor.

The electrostatic contribution to the stress tensor is given by

1 & 1 1 exp(—k?/4a?)
2= e > {1—2<4a2+k2>K}p(,€/\ § gj exp(—ik - ;)|
“T k0
E 3 {erfc(oz'rnj) + L exp(—a rnj)} Rn; (2.181)
dmeg = Tnj Niis —

2amp;
Z diae {erf(arg]) b exp(—a%%)} Ry,

47’[’60 = TZJ N4

where matrices K and Ryj are defined as follows.

K = kP (2.182)
Ry = vy, (2.183)

In DL_POLY _2 the full Ewald sum is handled by several routines: EWALD1 and EWALD1A
handle the reciprocal space terms; EWALD2, EWALD2_2PT, EWALD2_RSQ and EWALD4,
EWALD4 _2PT handle the real space terms (with the same Verlet neighbour list routines
that are used to calculate the short range forces); and EWALD3 calculates the self interac-
tion corrections. It should be noted that the Ewald potential and force interpolation arrays
in DL_POLY _2 are erc and fer respectively.

2.4.6 Smoothed Particle Mesh Ewald

As its name implies the Smoothed Particle Mesh Ewald (SPME) method is a modification
of the standard Ewald method. DL_POLY_2 implements the SPME method of Essmann
et al. [38]. Formally this method is capable of treating van der Waals forces also, but
in DL_POLY_2 it is confined to electrostatic forces only. The main difference from the
standard Ewald method is in its treatment of the the reciprocal space terms. By means
of an interpolation procedure involving (complex) B-splines, the sum in reciprocal space is
represented on a three dimensional rectangular grid. In this form the Fast Fourier Trans-
form (FFT) may be used to perform the primary mathematical operation, which is a 3D
convolution. The efficiency of these procedures greatly reduces the cost of the reciprocal
space sum when the range of k vectors is large. The method (briefly) is as follows (for full
details see [38]):

1. Interpolation of the exp(—ik - r;) terms (given here for one dimension):

exp(2miuk/L) ~ b(k Z M ( Oexp(2mikl/K) (2.184)

K——oo
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in which k is the integer index of the k vector in a principal direction, K is the total
number of grid points in the same direction and u; is the fractional coordinate of ion
J scaled by a factor K (i.e. u; = Ksj). Note that the definition of the B-splines
implies a dependence on the integer K, which limits the formally infinite sum over
¢. The coefficients M, (u) are B-splines of order n and the factor b(k) is a constant
computable from the formula:

n—2 -1
b(k) = exp(2mi(n — 1)k/K) Z M, (¢ + 1)exp(2mikl/K) (2.185)
=0

2. Approximation of the structure factor S(k):
S(k) = by (k)b (ka)bs(k3)QT (ky, ka2, k3) (2.186)

where QT (k1, kg, k3) is the discrete Fourier transform of the charge array Q(f1, lo, l3)
defined as

fl,fg,gg Zq] Z M ulj El—nlLl) (UQ]—€2 nng)Mn(u;:,j—Eg—nng)

ni,n2,n3

(2.187)
(in which the sums over nj 23 etc are required to capture contributions from all
relevant periodic cell images, which in practice means the nearest images.)

3. Approximating the reciprocal space energy Uy ecip:

G (ky, ko, k3)Q(ky, ko, ks) (2.188)

in which GT is the discrete Fourier transform of the function

exp(—k? /4a?)

G(k1, ko, k3) = 2

B(k1, k2, k3)(QT (K1, ko, k3))* (2.189)
and where
B(ky, k2, k3) = [b1 (kn)[?[ba(k2)[*[bs (k3)|? (2.190)

and (QT (k1 ka2, k3))* is the complex conjgate of QT (k1, k2, k3). The function G (k1, ks, k3)
is thus a relatively simple product of the gaussian screening term appearing in the
conventional Ewald sum, the function B(kq, ko, k3) and the discrete Fourier transform

of Q(ki, ka2, k3)

4. Calculating the atomic forces, which are given formally by:

aQ(kb k27 k3)

ka,k3 J

8Uvrecip . 1

(2.191)
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Fortunately, due to the recursive properties of the B-splines, these formulae are easily
evaluated.

The virial and the stress tensor are calculated in the same manner as for the conventional
Ewald sum.

The DL_POLY _2 subroutines required to calculate the SPME contributions are:
BSPGEN, which calculates the B-splines; BSPCOE, which calculates B-spline coeflicients;
SPL_CEXP, which calculates the FFT and B-spline complex exponentials; EWALD_SPME,
which calculates the reciprocal space contributions; SPME_FOR, which calculates the recip-
rocal space forces; and DLPFFT3, which calculates the 3D complex fast Fourier transform
(default code only, Cray, SGI, IBM SP machines have their own FFT routines, selected at
compile time and the FETW public FFT is also an option). These subroutines calculate
the reciprocal space components of the Ewald sum only, the real-space calculations are per-
formed by EWALD2, EWALD3 and EWALD 4, as for the normal Ewald sum. In addition there
are a few minor utility routines : CPY_RTC copies a real array to a complex array; ELE_PRD
is an element-for-element product of two arrays; SCL_CSUM is a scalar sum of elements of a
complex array; and SET_BLOCK initialises an array to a preset value (usually zero).

2.4.7 Hautman Klein Ewald (HKE)

The method of Hautman and Klein is an adaptation of the Ewald method for systems which
are periodic in two dimensions only [39]. (DL_POLY_2 assumes this periodicity is in the
XY plane.)

The HKE method gives the following formula for the electrostatic energy of a system
of N (nonbonded) ions that is overall charge neutral*:

1 Nmax o .
Uc = Z aanZQJ lj Z fn g, 2” 16.’Ep(2g’ SU) +
4€0A —
= 9#0
Nmaxzx SiiL: a)
n i7,Ls
87“ Zqzqu (T - Z an) $2n+1> +
i#] L\l L

ho(L; c))

N
_ : Q
Z Z L - 607‘(’3/2 qu (2192)

In this formula A is the system area (in the XY plane), L is a 2D lattice vector representing
the 2D periodicity of the system, s;; is the in-plane (XY) component of the interparticle
distance 7;; and g is a reciprocal lattice vector. Thus

L = lya + lob, (2.193)

87reo

where {1,y are integers and vectors a and b are the lattice basis vectors. The reciprocal
lattice vectors are:
g = nu+ngv (2.194)

4The reader is warned that for the purpose of compatibility with other DL_POLY_2 Ewald routines we
have defined o = 0.5/an K, where apk is the o parameter defined by Hautman and Klein in [39].
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where nj,ng are integers u, v are reciprocal space vectors (defined in terms of the vectors a

and b):
= 2m(by, _bx)T/(%by — aybe)
v = 2m(—ay,a;)/(azby — ayby). (2.195)

1=

The functions h,(s; ) and f,(s; ) are the HKE convergence functions, in real and recipro-
cal space respectively. (C.f. the complementary error and gaussian functions of the original
Ewald method.) However they occur to higher orders here, as indicated by the sum over
subscript n, which corresponds to terms in a Taylor expansion of r~! in s, the in-plane
distance [39]. Usually this sum is truncated at ny,., = 1, but in DL_.POLY_2 can go as
high as Nyqz = 3. In the HKE method the convergence functions are defined as follows:

hon (85 a)/szn+1 = an(Zn)!VM(ho(s;a)/s) (2.196)
with
ho(s;a) = erf(as) (2.197)
and .
fnlgia) = mfo(g;a) (2.198)
with
folgia) = erfe(g/2a). (2.199)

In DL_POLY 2 the h,,(s; a)/s?*"! functions are derived by a recursion algorithm, while the
fn(g; @) functions are obtained by direct evaluation. The coefficients a,, are given by

an = (—1)™(2n)!/(22"(n!)?). (2.200)

As pointed out by Hautman and Klein, the equation (2.192) allows separation of the zizjn
components via the binomial expansion, which greatly simplifies the double sum over atoms
in reciprocal space. Thus the reciprocal space part of equation (2.192) becomes

Nmax

Urecip = > an Y falgia)g® ! Z DPC2Z,(9) Z—p(9) (2.201)
46 4egA "0 g0

with Cg” a binomial coefficient and

N

Zp(g) = Y _ qjzjexp(ig - s;) (2.202)
j=1

The force on an ion is obtained by the usual differentiation, however in this case the z
components have different expressions from the x and y.

o, Mmas . e 0Z3,_p(9) .. 0Zy(g)
_ = nJn\9, " " Y Z n- N
Ou,j 4eg A gé%) nz% anfn(g; @ Z " | Zp(9) u, + Zon—p(9) Ou

e o (sij. 1
2 3) 5 yra (H) (2209

47TEO n=0 L ij ij,L
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where u; is one of x;,y;, z; and (noting for brevity that  and y derivatives are similar)

0Z.

»(9) = igyq;2texp(ig - s;)

8a;j J < J
9Zy(9) 1

apzjf = pg;2; exp(ig - s)) (2.204)

and

9 <2n hn(sz‘xu@)) . A0 (hn(sz‘j,L;Oé)>
o\ %50t ] T S — | —=5—

) 2n+1 i, Lo } 2n+1
Ox; ) Sij,1 0% i
0 L2n hn(sijrio) ) opz2n—1 hn(sij,L; @) (2.205)
Oz 15, L g2n+1 - ij,L g2nt1 : :
J ij,L ij,L

In DL_POLY_2 the partial derivatives of hy(s;j,r; )/ s?j’:‘gl are calculated by a recursion
algorithm. Note that when n = 0 there is no derivative w.r.t. z.

The virial and stress tensor terms in real space may be calculated directly from the pair
forces and interatomic distances in the usual way, and need not be discussed further. The
calculation of the reciprocal space contributions (the terms involving the f,(g; o) functions)
are more difficult. Firstly however we note that the reciprocal space contributions to o, 0y
and 0., may be obtained directly from the force calculations thus:

= Vs
i

o = > ! (2.206)
i

= Yk
i

which renders the calculation of these components trivial. The remaining components are
calculated from

. 1 Nmax 9271—2
O_zf}czp = Urecip(guv + @ Z Gn Z gugvm
n=0 '
9#0

<(2” - I;f olgia) _ axl/ﬂ_exp(—g2/4a2)) (2.207)
2n

> (~1)FCY Zy(9) Z3n—p(9)
p=0

where u, v are one or both of the components x, y. Note that, although it is possible to define
these contributions to the stress tensor, it is not possible to calculate a pressure from them
unless a finite, arbitrary boundary is imposed on the z direction (which is an assumption
applied in DL_POLY_2 , but without implications of periodicity in the z-direction). The
x,y components define the surface tension however.
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For bonded molecules, as with the standard 3D Ewald sum, it is necessary to extract
contributions associated with the excluded atom pairs. In the DL_POLY_2 HKE imple-
mentation this amounts to an a posteriori subtraction of the corresponding coulomb terms.

In DL_POLY_2 the HKE method is handled by several subroutines: HKGEN constructs
the hy,(s; ) convergence functions and their derivatives; HKEWALD1 calculates the recipro-
cal space terms; HKEWALD2 and HKEWALD3J calculate the real space terms and the bonded
atom corrections respectively. HKEWALD4 calculates the primary interactions in the multi-
ple timestep implementation.

2.4.8 Reaction Field

In the reaction field method it is assumed that any given molecule is surrounded by a
spherical cavity of finite radius within which the electrostatic interactions are calculated
explicitly. Outside the cavity the system is treated as a dielectric continuum. The occurence
of any net dipole within the cavity induces a polarisation in the dielectric, which in turn
interacts with the given molecule. The model allows the replacement of the infinite Coulomb
sum by a finite sum plus the reaction field.

The reaction field model coded into DL_POLY_2 is the implementation of Neumann
based on charge-charge interactions [40]. In this model, the total Coulombic potential is
given by

1 1 Bor2.
U, = qn | — + J 2.208
° dre Z;L 9jdn Tnj 2R3 ( )

where the second term on the right is the reaction field correction to the explicit sum, with
R, the radius of the cavity. The constant By is defined as

2(61 — 1)

A —
07 (2¢; + 1)

(2.209)

with €; the dielectric constant outside the cavity. The effective pair potential is therefore

1 1 Borl,
Ulr, ) = ) g 2.210
(Tns) 4meg 4an [rnj 2R3 ( )

This expression unfortunately leads to large fluctuations in the system Coulombic energy,
due to the large ‘step’ in the function at the cavity boundary. In DL_POLY_2 this is
countered by subtracting the value of the potential at the cavity boundary from each pair
contribution. The term subtracted is

1 Qan[ Bo}

14 20
dmen R, +

5 (2.211)

The effective pair force on an atom j arising from another atom n within the cavity is
given by

j 1 B

= 4rme ra; R
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The contribution of each effective pair interaction to the atomic virial is
W=—ry,; -ij (2.213)
and the contribution to the atomic stress tensor is
0% =rg; f7. (2.214)

In DL_POLY_2 the reaction field is handled by the routines cOUL3 and COUL3NEU.

2.4.9 Dynamical Shell Model

An atom or ion is polarisable if it develops a dipole moment when placed in an electric
field. It is commonly expressed by the equation

w=ak, (2.215)

where p is the induced dipole and E is the electric field. The constant « is the polarisability.

The dynamical shell model is a method of incorporating polarisability into a molecular
dynamics simulation. The method used in DL_POLY_2 is that devised by Fincham et al
[41] and is known as the adiabatic shell model.

In the static shell model a polarisable atom is represented by a massive core and massless
shell, connected by a harmonic spring, hereafter called the core-shell unit. The core and
shell carry different electric charges, the sum of which equals the charge on the original
atom. There is no electrostatic interaction (i.e. self interaction) between the core and shell
of the same atom. Non-Coulombic interactions arise from the shell alone. The effect of
an electric field is to separate the core and shell, giving rise to a polarisation dipole. The
condition of static equilibrium gives the polarisability as:

a=q/k (2.216)

where g5 is the shell charge and k is the force constant of the harmonic spring.

In the adiabatic method, a fraction of the atomic mass is assigned to the shell to permit
a dynamical description. The fraction of mass is chosen to ensure that the natural frequency
of vibration v of the harmonic spring (i.e.

: [x(k} " (2.217)

v=—
2 z(1 —x)m

with m the atomic mass,) is well above the frequency of vibration of the whole atom in the
bulk system. Dynamically the core-shell unit resembles a diatomic molecule with a harmonic
bond, however the high vibrational frequency of the bond prevents effective exchange of
kinetic energy between the core-shell unit and the remaining system. Therefore, from an
initial condition in which the core-shell units have negligible internal vibrational energy,
the units will remain close to this condition throughout the simulation. This is essential if
the core shell unit is to maintain a net polarisation. (In practice there is a slow leakage of
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kinetic energy into the core-shell units, but this should should not amount to more than a
few percent of the total kinetic energy.)

The calculation of the virial and stress tensor in this model is based on that for a
diatomic molecule with charged atoms. The electrostatic and short ranged forces are cal-
culated as described above. The forces of the harmonic springs are calculated as described
for intramolecular harmonic bonds. The relationship between the kinetic energy and the
temperature is different however, as the core-shell unit is permitted only three translational
degrees of freedom, and the degrees of freedom corresponding to rotation and vibration of
the unit are discounted (the kinetic energy of these is regarded as zero).

In DL_POLY_2 the shell forces are handled by the routine SHLFRC. The kinetic en-
ergy is calculated by CORSHL and the routine SHQNCH performs the temperature scaling.
The dynamical shell model is used in conjunction with the methods for long range forces
described above.

2.4.10 Relaxed Shell Model

The relaxed shell model is based on the same electrostatic principles as the dynamical shell
model but in this case the shell is assigned a zero mass. This means the shell cannot be
driven dynamically and instead the procedure is first to relax the shell to a condition of
zero (or at least negligible) force at the start of the integration of the atomic motion and
then integrate the motion of the finite mass core by conventional molecular dynamics. The
relaxation of the shells in DL_POLY_2 is accomplished using conjugate gradients. Since
each timestep of the algorithm entails a minimisation operation the cost per timestep for
this algorithm is considerably more than the adiabatic shell model, however the integration
timestep permitted is much larger (as much as a factor 10) so evolution through phase
space is not necessarily very different in cost. A description of the method is presented in
[42].

2.5 Integration algorithms

2.5.1 The Verlet Algorithms

DL_POLY integration algorithms are based on the Verlet scheme, which is both time re-
versible and simple [11]. It generates trajectories in the microcanonical (NVE) ensemble in
which the total energy (kinetic plus potential energy) is conserved. If this property drifts
or fluctuates excessively in the course of a simulation it indicates that the timestep is too
large or the potential cutoffs too small (relative r.m.s. fluctuations in the total energy of
1075 are typical with this algorithm).

DL_POLY_2 contains two versions of the Verlet algorithm. The first is the Verlet
leapfrog (LF) algorithm and the second is the velocity Verlet (VV).

2.5.1.1 Verlet Leapfrog

The LF algorithm requires values of position (r) and force (f) at time ¢ while the velocities

(v) are half a timestep behind. The first step is to advance the velocities to ¢ + (1/2)At by
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integration of the force:

o(t + %At) ot — %At) + At "f?:) (2.218)

where m is the mass of a site and At is the timestep.
The positions are then advanced using the new velocities:

r(t+ At) —r(t) + At v(t + %At) (2.219)

Molecular dynamics simulations normally require properties that depend on position
and velocity at the same time (such as the sum of potential and kinetic energy). In the
LF algorithm the velocity at time t is obtained from the average of the velocities half a

timestep either side of time t:
1 1
t = — t —_ —
ut) =5 |ult -5

The full selection of LF integration algorithms within DL_POLY 2 is as follows:

Af) + ot + A1) (2.220)

NVE_1 Verlet leaprog with SHAKE
NVEQ_1 Rigid units with FIQA and SHAKE
NVEQ-2 Linked rigid units with QSHAKE
NvT_Bl  Constant T (Berendsen [19]) with SHAKE

NVT_El  Constant T (Evans [18]) with SHAKE

NvT_H1 Constant T (Hoover [20]) with SHAKE

NvTQ-B1 Constant T (Berendsen [19]) with FIQA and SHAKE
NvTQ_B2 Constant T (Berendsen [19]) with QSHAKE

NvTQ-H1 Constant T (Hoover [20]) with FIQA and SHAKE
NvTQ_H2 Constant T (Hoover [20]) with QSHAKE

NpT_B1  Constant T,P (Berendsen [19]) with FIQA and SHAKE
NpT_H1 Constant T,P+ (Hoover [20]) with SHAKE

NPTQ_B1 Constant T,P (Berendsen [19]) with FIQA and SHAKE
NpPTQ-B2 Constant T,P (Berendsen [19]) with QSHAKE
NpTQ_H1 Constant T,P (Hoover [20]) with FIQA and SHAKE
NpPTQ-H2 Constant T,P (Hoover [20]) with QSHAKE

NsT_B1  Constant T,o (Berendsen [19]) with SHAKE

NsT_H1  Constant T,o (Hoover [20]) with SHAKE

NsTQ_B1 Constant T,o (Berendsen [19]) with FIQA and SHAKE
NsTQ-B2 Constant T,o (Berendsen [19]) with QSHAKE
NSTQ-H1 Constant T,o (Hoover [20]) with FIQA and SHAKE
NsTQ-H2 Constant T,o (Hoover [20]) with QSHAKE

In the above table the FIQA algorithm is Fincham’s Implicit Quaternion Algorithm [14]
and QSHAKE is the DL_POLY_2 algorithm combining rigid bonds and rigid bodies in the
same molecule [16].
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2.5.1.2 Velocity Verlet

61

The VV algorithm assumes that positions, velocities and forces are known at each full
timestep. The algorithm proceeds in two stages as follows.
In the first stage a half step velocity is calculated:

— y(t) + %At @

1
“A
v(t + 5 t) -

and then the full timestep position is obtained:

P(t+ At) — r(f) + At ot + %At)

(2.221)

(2.222)

In the second stage, using the new positions, the next update of the forces f(t + At) is
obtained, from which the full step velocity is calculated using:

t+ At
w(t + AL — uft + %At) + %At )

(2.223)

Thus at the end of the two stages full synchronisation of the positions, forces and velocities

is obtained.

The full selection of VV integration algorithms within DL_POLY _2 is as follows:

NVEVV_1
NVEQVV_1
NVEQVV_2
NVTVV_B1
NVTVV_EL
NVTVV_H1
NVTQVV_B1
NVTQVV_B2
NVTQVV_H1
NVTQVV_H2
NPTVV_B1
NPTVV_H1
NPTQVV_B1
NPTQVV_B2
NPTQVV_H1
NPTQVV_H2
NSTVV_B1
NSTVV_H1
NSTQVV_B1
NSTQVV_B2
NSTQVV_H1
NSTQVV_H2

Velocity Verlet with RATTLE
Rigid units with NOSQUISH and RATTLE
Linked rigid units with QSHAKE
Constant T (Berendsen [19]) with RATTLE
Constant T (Evans [18]) with RATTLE
Constant T (Hoover [20]) with RATTLE
Constant T (Berendsen [19]) with NOSQUISH and RATTLE
Constant T (Berendsen [19]) with QSHAKE
Constant T (Hoover [20]) with NOSQUISH and RATTLE
Constant T (Hoover [20]) with QSHAKE
Constant T,P (Berendsen [19]) with NOSQUISH and RATTLE
Constant T,P+ (Hoover [20]) with RATTLE
Constant T,P (Berendsen [19]) with NOSQUISH and RATTLE
Constant T,P (Berendsen [19]) with QSHAKE
Constant T,P (Hoover [20]) with NOSQUISH and RATTLE
Constant T,P (Hoover [20]) with QSHAKE
Constant T,g (Berendsen [19]) with RATTLE
Constant T,g (Hoover [20]) with RATTLE
Constant T,g (Berendsen [19]) with NOSQUISH and RATTLE
Constant T,o (Berendsen [19]) with QSHAKE

o ( with NOSQUISH and RATTLE

( with QSHAKE

Constant T,a (Hoover [20])
Constant T,g (Hoover [20])
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In the above table the NOSQUISH algorithm is the rotational algorithm of Miller et al
[15] and QSHAKE is the DL_POLY _2 algorithm combining rigid bonds and rigid bodies in
the same molecule [16].

2.5.1.3 Temperature and Energy Conservation

For both VV and LF the instantaneous temperature can be obtained from the atomic
velocities assuming the system has no net momentum:

T_ SN mavd (t) (2.224)

where ¢ labels particles (which can be atoms or rigid molecules), N the number of particles
in the system, kp Boltzmanns constant and f the number of degrees of freedom in the
system (3N — 3 if the system is periodic and without constraints).

The total energy of the system is a conserved quantity

Hxve =U + KE (2.225)

where U is the potential energy of the system and K F the kinetic energy at time ¢.

2.5.2 Bond Constraints
2.5.2.1 SHAKE

The SHAKE algorithm for bond constraints was devised by Ryckaert et al. [12] and is
based on the Verlet leapfrog integration scheme [11]. It is a two stage scheme. In the first
stage the leapfrog algorithm calculates the motion of the atoms in the system assuming a
complete absence of the rigid bond forces. The positions of the atoms at the end of this
stage do not conserve the distance constraint required by the rigid bond and a correction
is necessary. In the second stage the deviation in the length of a given rigid bond is used
retrospectively to compute the constraint force needed to conserve the bondlength. It is
relatively simple to show that the constraint force has the form

- Mij(dz?j - dé?) o
Qij ~ md” (2.226)

where: p1;5 is the reduced mass of the two atoms connected by the bond; df; and d;; are the
original and intermediate bond vectors; d;; is the constrained bondlength; and At is the
Verlet integration timestep. It should be noted that this formula is an approximation only.
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1 g% ,%g L

The SHAKE algorithm calculates the constraint force G, = —G4; that conserves the
bondlength djs between atoms 1 and 2, following the initial movement to positions 1’ and
2" under the unconstrained forces F; and F,.

For a system of simple diatomic molecules, computation of the constraint force will, in
principle, allow the correct atomic positions to be calculated in one pass. However in the
general polyatomic case this correction is merely an interim adjustment, not only because
the above formula is approximate, but the successive correction of other bonds in a molecule
has the effect of perturbing previously corrected bonds. The SHAKE algorithm is therfore
iterative, with the correction cycle being repeated for all bonds until each has converged to
the correct length, within a given tolerance. The tolerance may be of the order 10~* A to
10~® A depending on the precision desired.

The procedure may be summarised as follows:

1. All atoms in the system are moved using the Verlet algorithm, assuming an absence
of rigid bonds (constraint forces). (This is stage 1 of the SHAKE algorithm.)

2. The deviation in each bondlength is used to calculate the corresponding constraint
force (2.226) that (retrospectively) ‘corrects’ the bond length.

3. After the correction (2.226) has been applied to all bonds, every bondlength is checked.
If the largest deviation found exceeds the desired tolerance, the correction calculation
is repeated.

4. Steps 2 and 3 are repeated until all bondlengths satisfy the convergence criterion
(This iteration constitutes stage 2 of the SHAKE algorithm).
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DL_POLY_2 implements a parallel version of this algorithm [10] (see section 2.6.9).
The subroutine NVE_1 implements the Verlet leapfrog algorithm with bond constraints for
the NVE ensemble. The routine RDSHAKE_1 is called to apply the SHAKE corrections to
position.

It should be noted that the fully converged constraint forces G;; make a contribution
to the system virial and the stress tensor.

The contribution to be added to the atomic virial (for each constrained bond) is

The contribution to be added to the atomic stress tensor is given by
0% = d3Gy, (2.228)

where a and ( indicate the z,y, z components. The atomic stress tensor derived from the
pair forces is symmetric.

2.5.2.2 RATTLE

RATTLE [13] is the VV version of SHAKE. It has two parts: the first constrains the
bondlength and the second adds an additional constaint to the velocities of the atoms in
the constrained bond. The first of these constraints leads to an expression for the constriant
force similar to that for SHAKE:

pig(dy —di)

o 0. 2.229
~Zij A2 dij . d;j =) ( )

Note that this formula differs from equation (2.226) by a factor of 2. This constraint
force is applied during the first stage of the velocity Verlet algorithm.

The second constraint condition attempts to maintain the relative velocities of the atoms
sharing a bond to a direction perpendicular to the bond vector. This provides another
constraint force:

g~ 2445 dij - (vj —v;) -
=13 At d?j =]

(2.230)

This constraint force is applied during the second stage of the velocity Verlet algorithm.
Both constraint force calculations are iterative and are brought to convergence before pro-
ceeding to the next stage of the velocity Verlet scheme.

DL_POLY_2 implements a parallel version of RATTLE that is based on the same ap-
proach as SHAKE [10] (see section 2.6.9). The subroutine NVEVV_1 implements the velocity
Verlet algorithm with bond constraints in the NVE ensemble. The subroutine RDRATTLE_R
is called to apply the corrections to atom positions and the subroutine RDRATTLE_V is called
to correct the atom velocities.
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2.5.3 Potential of Mean Force (PMF) Constraints and the Evaluation of
Free Energy

A generalization of bond constraints can be made to constrain a system to some point along
a reaction coordinate. A simple example of such a reaction coordinate would be the distance
between two ions in solution. If a number of simulations are conducted with the system
constrained to different points along the reaction coordinate then the mean constraint force
may be plotted as a function of reaction coordinate and the function integrated to obtain the
free energy for the overall process [43]. The PMF constraint force, virial and contributions
to the stress tensor are obtained in a manner analagous to that for a bond constraint
(see previous section). The only difference is that the constraint is now applied between
the centres of two groups which need not be atoms alone. DL_POLY_2 reports the PMF
constraint virial, W, for each simulation. Users can convert this to the PMF constraint
force from
Gpmr = —Wpmr/dpumr

where dpyir is the constraint distance between the two groups used to define the reaction
coordinate.

DL_POLY_2 can calculate the PMF using either LF or VV algorithms. Subroutines
PMFLF and PMF_SHAKE are used in the LF scheme and subroutines PMFVV, PMF_RATTLE_R
and PMF_RATTLE_V are used in the VV scheme.

2.5.4 Thermostats

The system may be coupled to a heat bath to ensure that the average system temperature
is maintained close to the requested temperature, Text. When this is done the equations
of motion are modified and the system no longer samples the microcanonical ensemble.
Instead trajectories in the canonical (NVT) ensemble, or something close to it are generated.
DL_POLY 2 comes with three different thermostats: Nosé -Hoover [20], Berendsen [19], and
Gaussian constraints [18]. Of these only the Nosé-Hoover algorithm generates trajectories
in the canonical (NVT) ensemble. The other methods will produce properties that typically
differ from canonical averages by O(1/N) [11]

2.5.4.1 Nosé - Hoover Thermostat

In the Nosé-Hoover algorithm [20] Newton’s equations of motion are modified to read:

dr(t) _

o = U

U RN (2.231)
(2.232)

The friction coefficient, y, is controlled by the first order differential equation

dx(t) _ Nykg
dt 0

(7(t) = Text) (2.233)
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where Q = N kaTeXtT% is the effective ‘mass’ of the thermoststat, 7 is a specified time
constant (normally in the range [0.5, 2] ps) and Ny is the number of degrees of freedom in
the system. 7 (t) is the instantaneous temperature of the system at time t.

In the LF version of DL_POLY_2 x is stored at half timesteps as it has dimensions of
(1/time). The integration takes place as:

x(t+ %At) — x(t— %At) + AtNgB (T(t) — Text)
) — % [X(t - %At) ol ;At)]
f(t)

v(t + %At) — o(t— %At) + At

s X(t)v(t)]

o(t) % [U(t _ %At) +ot+ ;At)}
P+ Af) o r(t) + At o(t + %At) (2.234)

Since wv(t) is required to calculate 7 () and itself, the algorithm requires several iterations
to obtain self consistency. In DL_POLY_2 the number of iterations is set to 3 (4 if the
system has bond constraints). The iteration procedure is started with the standard Verlet
leapfrog prediction of v(¢) and 7 (t). The conserved quantity is derived from the extended
Hamiltonian for the system which, to within a constant, is the Helmholtz free energy:

1 t
Hxyvr =U + KE + 5Qx(t)2 - g/ x(s)ds (2.235)
T o

If bond constraints are present an extra iteration is required due to the call to the
SHAKE routine. The algorithm is implemented in the DL_POLY routine NvT_H1, for
systems with bond constraints.

In the VV version of DL_POLY _2 the Hoover algorithm is split into stages in accordance
with the principles of Martyna et al [17] for designing reversible integrators. The scheme
applied here is:

X+ 380 X+ ST - T
) o ul) - S+ A
u(t+ %At) — V(t)+ f‘c(;)

1
r(t+At) «— z(t)+Aty(t+§At)

call rattle(R)

1 At ?(t+At)
! A *A -
v(t+At) — w(t+ 5 t) + 5



©CCLRC 67

call rattle(V)
AtNtkp
2Q

ot A (AL — %X(t + A (E+ At) (2.236)

E+ A X(t—i—%At)—i— (T(t+ At) — Towr)

Routines rattle(R) and rattle(V') apply the bondlength and velocity constraint formulae
(2.229) and (2.230) respectively. The equations have the same conserved variable (HxvyT)
as the LF scheme. The integration is performed by the subroutine NvTvv_H1 which calls
subroutines RATTLE_R, RATTLE_V and NVTSCALE.

2.5.4.2 Berendsen Thermostat

In the Berendsen algorithm the instantaneous temperature is pushed towards the desired
temperature by scaling the velocities at each step:

x(t) «— {1 + th (T(’;t) — 1)} v (2.237)

The DL_POLY _2 LF routines implement this thermostat as follows.

v(t)

o(t + At — l (t— fAt )+ Atf;(rf)] X(t)
% (t - fAt) +olt+ At)}
r(t+ At) «— r(t)+ Atv(t+ §At) (2.238)

As with the Nosé-Hoover thermostat iteration is required to obtain self consistency of x (),
v(t) and 7 (t), although it should be noted x has different roles in the two thermostats.
The Berendsen algorithm conserves total momentum but not energy. Here again the pres-
ence of constraint bonds requires an additional iteration with one application of SHAKE
corrections. The algorithm is implemented in the DL_POLY routine NvT_B1, for systems
including bond constraints.

The VV implementation of Berendsen’s algorithm proceeds as folows:

AL

1
1
r(t+At) — rt)+Atu(t+ 5At)

call rattle(R)

V(t+ At — (t+;At)+Atf( +AY

2 m
call rattle(V')
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)
X 14+ — -1
T \ Text

v(t+At) —  xU(t+ At (2.239)

Routines rattle(R) and rattle(V') apply the bondlength and velocity constraint formulae
(2.229) and (2.230) respectively. The integration is performed by the subroutine NvTVV_B1
which calls subroutines RATTLE_R and RATTLE_V.

2.5.5 Gaussian Constraints

Kinetic temperature can be made a constant of the equations of motion by imposing an
additional constraint on the system. If one writes the equations of motions as :

dr(t)

=~ = ()

dz:l(tt) _ s)—x(t)v(t) (2.240)
(2.241)

with the temperature constraint

% x % (Z(mivi)2> x megz(t) f,t)=0 (2.242)

i
then choosing
S ma(0).,(0)

i miv(t)

X (2.243)

minimizes the “least squares” differences between the Newtonian and constrained trajecto-
ries.

Following Brown and Clarke [44] the algorithm is implemented in the LF scheme by
calculating n = 1/(1 4+ xAt/2)

Text
-
K T
t
u(t + %At) — (2n-1o(t - %At) + nAt&
m
r(t+At) — r(t)+Atou(t+ %At) (2.244)

where 7 is obtained from standard Verlet leapfrog integration. Only one iteration is needed
(two if the system has bond constraints) to constrain the instantaneous temperature to ex-
actly Tuxt however energy is not conserved by this algorithm. The algorithm is implemented
in the DL_POLY routine NVT_E1 for systems with bond constraints.

The VV implementation of Evan’s thermostat is as follows
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X(t) = Doma(t).£,(0)/ 3 mivi ()

V() — y(t)—%x(t)y(t)

1 1y o At L)
u(t+ 541« u(t)+ TR
rt+At) — rt)+Ato(t+ %At)

call rattle(R)

V(t+ At)  — (t+;At)+Atf(t+At)

call rattle(V)
X(t+At)  — Zml (t+ AL).f,(t+ A/ > mPv(t+ At)

A
W+ A W(t+ Al — ;x(t +AOY(E+ At) (2.245)

m

Routines rattle(R) and rattle(V') apply the bondlength and velocity constraint formulae
(2.229) and (2.230) respectively. The integration is performed by the subroutine NvTVV_E1
which calls subroutines RATTLE_R and RATTLE_V.

2.5.6 Barostats

The size and shape of the simulation cell may be dynamically adjusted by coupling the sys-
tem to a barostat in order to obtain a desired average pressure (Pext) and/or isotropic stress
tensor (g). DL_POLY_2 has two such algorithms: a Hoover barostat and the Berendsen

barostat. Only the former has a well defined conserved quantity.

2.5.6.1 The Hoover Barostat

DL _POLY 2 uses the Melchionna modification of the Hoover algorithm [45] in which the
equations of motion couple a Nosé - Hoover thermostat and a barostat.

Cell size variation

For isotropic fluctuations the equations of motion are:

dr(t)

0 o) o) - By)
2l Ly mn)a

dfszt) _ Ng“B(T(t)—Text)+22<Wn(t)2 kpText)
dn(t) 3

7 = WV(t)(P(t) - Pext) - X(t)n(t)
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WO ayvi (2.246)
dt
where Q = N fk‘BTeXtT% is the effective ‘mass’ of the thermostat and W = N kaTextT%
is the effective ‘mass’ of the barostat. Ny is the number of degrees of freedom, 7 is the
barostat friction coefficient, Ry the system centre of mass, 7 and 7p are specified time
constants for temperature and pressure fluctuations respectively, P(t) is the instantaneous
pressure and V the system volume.
The conserved quantity is, to within a constant, the Gibbs free energy of the system:

1 1 ¢
Hypr =U + KB+ Peq V() + 5Qx(8)* + SWn(t)* + / (%x(s) t+ kpText)ds  (2.247)
o T

The algorithm is readily implemented in the LF scheme as:

Y(t+ %At) — x(t- %At) + AIUZkaB(T(t) — Text) + %;(Wn(t)Q — kpText)
) — % (= %At) (it + ;At)]

n(t + %At) — nt— %At) + At {?";V@)(P(t) — Pext) — x(t)n(t)}
n(t) « % n(t— %At) +n(t+ ;At)}

2O ety + (o) v<t>]

1 1
y(t+§At) — y(t—iAt)JrAt -

—_

o) — L [v(t ~ 580 +u(t + ;At)}

[\)

r(t+At) «— r(t)+ At (U(t + %At) +n(t+ %At) [r(t + %At) - ROD

—_

r(t + %At) o Sl + (e + A1) (2.248)
Like the LF Nosé-Hoover thermostat, several iterations are required to obtain self consis-
tency. DL_POLY_2 uses 4 iterations (5 if bond constraints are present) with the standard
Verlet leapfrog predictions for the initial estimates of 7'(t), P(t), v(t) and r(t + 3 At). Note
also that the change in box size requires the SHAKE algorithm to be called each iteration
with the new cell vectors and volume obtained from:

1
V(t+At) «— V(t)exp {3At n(t + 2At)}
1
H(t+Al) — exp [At 0t + 2At)} H(1) (2.249)
where H is the cell matrix whose columns are the three cell vectors a, b, c.

The - isotropic changes to cell volume are implemented in the DL_POLY LF routine
NPT_H1 which allows for systems containing bond constraints.
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The implementation in the VV algorithm follows the scheme:

Wt 380 X0+ ST - Tua) + 35 Va0 ~ haT)
V) ) - S AN

w580 = a0+ 5 {2 P - o)~ x0}
VW) () - S AN

y(t—i—%At) — u”(t)+A2fT(n)

P+ A1) e rt)+ At + SAY)
call rattle(R)
1
V(it+At) «— V(t)exp {3At n(t + 2At)}

H(i+Af) —  exp [At n(t+1At)} H(1)

ViE+ AL —  wlt+ ;At) - At 7t + Af)

2 m
call rattle(V)

1 At {V(t + At)

nt+ A — nt+An+ (Pt + 80) = Pog) = x(t + An(t + A1)}

2 2 W
VIt + A — (4 At) — %n(t + At)' (t + At)
1 AtN sk At
X(E+AY) = x(t+ S8 + = LE (Tt + At) = Toxt) + 55 (Wt + Ab)? — kpText)
2 2Q 2Q
v(t+ At) — (t+ A+ %X(t + At)" (t + At) (2.250)

Routines rattle(R) and rattle(V') apply the bondlength and velocity constraint formulae
(2.229) and (2.230) respectively. The equations have the same conserved variable (Hxpr)
as the LF scheme. The integration is performed by the subroutine NvTvv_H1 which calls
subroutines RATTLE_R, RATTLE_V, NPTSCALE_T and NPTSCALE_P.

Cell size and shape variation

The isotropic algorithms may be extended to allowing the cell shape to vary by defining
71 as a tensor, 7).
The LF equations of motion are implemented as:

Athk‘B

0 (T(t) = Text) +

X+ 380 < (-0 + o WTr(n(t)* — 9hiTex)
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) — ;_X(t—At)—i—x(H—;At)}

nt+ san < - 2o+ 200 (g0) - Pd) - x@Tre)
n(t) 3 [t~ 2a0) —I—;At)]

(t+ =Al) (t——At)JrAt fy {X(t)l—f—n(t)]v(t)]

13

P+ A — r(t) + At <v(t + A0 F(t + SA) {r(t N ROD

£(t+%At) — %[z(t)+z(t+At)] (2.251)

where 1 is the identity matrix and g the pressure tensor. The new cell vectors are calculated
from

H(i+Al) — oxp {Atn(H;At)} H(1) (2.252)

DL_POLY _2 uses a power series expansion truncated at the quadratic term to approximate
the exponential of the tensorial term. The new volume is found from

V(t+ At) — V() exp |At Tr(y)] (2.253)
The conserved quantity is

1 1
HNST = U+KE+PeXtV(t)+§QX(t)2—|—QWT’I”(L +/ 2X )+9k37—ext)d8 (2 254)

This algorithm is implemented in the routine NST_H1, with bond constraints.
The VV version of this algorithm is implemented as:

AtNykp At

X(t+%At) — X))+ 20 (T(t) - Text)"’E(WTT(Q(t))Q_ngTeXt)
V) e u) - S+ AD()

w580 = a0+ 5 {00 - Pad) - x(OTr (0o}
V) e (1)~ St A ()

AL

1
= "
y(t+2At) — () + 5 m

r(t+At) — r(t)+Atv(t+ %At)
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call rattle(R)
1
VE+A) — V() exp {3& n(t + 2At)}

H(t+Al) — exp [At n(t+;At)} H(1)

V(t+A) — u(t+ %At) + A;f(t ;At)
call rattle(V)
WA A+ 5 {V(t;{/At)(n(t T AL — Pagl) — x(t+ AOTr(n(t + At))}
V(t+ AL — (4 AL - %Q(t + At)V' (t + At)
X(t+At) — x(t+ %At) + Até\glﬂg(ﬂt + At) — Toxt) + 2AQt(WTr(n(t + A1) — 9kpTeyt)
v(t+ At) — (t+ A+ %X(t + At)" (t + At) (2.255)

Routines rattle(R) and rattle(V') apply the bondlength and velocity constraint formulae
(2.229) and (2.230) respectively. The equations have the same conserved variable (Hnsr)
as the LF scheme. The integration is performed by the subroutine NvTvVv_H1 which calls
subroutines RATTLE_R, RATTLE_V, NSTSCALE_T and NSTSCALE_P.

2.5.6.2 Berendsen Barostat

With the Berendsen barostat the system is made to obey the equation of motion

dpP

= (P = P)/7p (2.256)

Cell size variations

In the isotropic implementation, at each step the MD cell volume is scaled by by a

factor n and the coordinates, and cell vectors, by n'/3 where
At
n= 1- ﬁ (Pext - 73) (2257)
TP

and [ is the isothermal compressibility of the system. The Berendesen thermostat is applied
at the same time. In practice § is a specified constant which DL_POLY_2 takes to be the
isothermal compressibility of liquid water. The exact value is not critical to the algorithm
as it relies on the ratio 7p/(3. 7p is specified by the user.

The LF version of this algorithm is implemented in NPT_B1 with 4 or 5 iterations used
to obtain self consistency in the v(¢). It calls RDSHAKE_1 to handle constraints. The
VYV version is implemented in subroutine NvTVvV_B1, which calls constraint subroutines
RATTLE_R and RATTLE_V.
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Cell size and shape variations

The extension of the isotropic algorithm to anisotropic cell variations is straightforward.
The tensor 7 is defined by

At
n= 1- L(Pextl - Q) (2258)
and the new cell vectors given by
H(t + At) «— nH(t) (2.259)

As in the isotropic case the Berendsen thermostat is applied simultaneously and 4 or 5
iterations are used to obtain convergence. The LF version of the algorithm is implemented
in subroutine NST_B1 and the VV version in NSTVV_B1. The former calls RDSHAKE_1 to
handle constraints and the latter calls subroutines RATTLE_R and RATTLE_V.

2.5.7 Rigid Bodies and Rotational Integration Algorithms
2.5.7.1 Description of Rigid Body Units

A rigid body unit is a collection of point atoms whose local geometry is time invariant.
One way to enforce this in a simulation is to impose a sufficient number of bond constraints
between the atoms in the unit. However, in many cases this is may be either problematic
or impossible. Examples in which it is impossible to specify sufficient bond constraints are

1. linear molecules with more than 2 atoms (e.g. CO2)
2. planar molecules with more than three atoms (e.g. benzene).

Even when the structure can be defined by bond constraints the network of bonds produced
may be problematic. Normally, they make the iterative SHAKE procedure slow, particu-
larly if a ring of constraints is involved (as occurs when one defines water as a constrained
triangle). It is also possible, inadvertently, to over constrain a molecule (e.g. by defining a
methane tetrahedron to have 10 rather than 9 bond constraints) in which case the SHAKE
procedure will become unstable. In addition, massless sites (e.g. charge sites) cannot be
included in a simple constraint approach making modelling with potentials such as TIP4P
water impossible.

All these problems may be circumvented by defining rigid body units, the dynamics
of which may be described in terms of the translational motion of the center of mass
(COM) and rotation about the COM. To do this we need to define the appropriate variables
describing the position, orientation and inertia of a rigid body, and the rigid body equations
of motion. °

5An alternative approach is to define “basic” and “secondary” particles. The basic particles are the
minimun number needed to define a local body axis system. The remaining particle positions are expressed
in terms of the COM and the basic particles. Ordinary bond constraints can then be applied to the basic
particles provided the forces and torques arising from the secondary particles are transferred to the basic
particles in a physically meaningful way.
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The mass of a rigid unit M is the sum of the atomic masses in that unit:

Nsites
M= Y m; (2.260)
j=1

where m; is the mass of an atom and the sum includes all sites (Ngjtes) in the body. The
position of the rigid unit is defined as the location of its centre of mass R:

1 Nsite.s
R= 7 > myry, (2.261)
j=1

where r; is the position vector of atom j. The rigid body translational velocity V is defined
by:

1 Nsites
V= 7 > myu,, (2.262)
j=1

where v, is the velocity of atom j. The net translational force acting on the rigid body unit
is the vector sum of the forces acting on the atoms of the body:

Nsites

F= > /s (2.263)
j=1

where ij is the force on a rigid unit site
A rigid body also has associated with it a rotational inertia matrix I, whose components

are given by
Nsites

Ig =Y my(d25as — d577) (2.264)
J
where d; is the displacement vector of the atom j from the COM, and is given by:

It is common practice in the treatment of rigid body motion to define the position R
of the body in a universal frame of reference (the so called laboratory or inertial frame),
but to describe the moment of inertia tensor in a frame of reference that is localised in
the rigid body and changes as the rigid body rotates. Thus the local body frame is taken
to be that in which the rotational inertia tensor I is diagonal and the components satisfy
Iw > Iy, > I,,. In this local frame (the so called Principal Frame) the inertia tensor is
therefore constant.

The orientation of the local body frame with respect to the space fixed frame is described
via a four dimensional unit vector, the quaternion

q= [QO7Q1,Q27613]T7 (2266)



©CCLRC 76

and the rotational matrix R to transform from the local body frame to the space fixed
frame is the unitary matrix

22 +qas) @-G+6 -3 2(e2a — on) (2.267)

@+a -6 -4 2ag — q43) 2(q143 + q0q2)
R —
2(q193 — qoq2) 2(q2q3 + qoq1) @ — 4t — B+ G

so that if dj is the position of an atom in the local body frame (with respect to its COM),
its position in the universal frame (w.r.t. its COM) is given by

d; =R d, (2.268)

=J

With these variables defined we can now consider the equations of motion for the rigid body
unit.

2.5.7.2 Integration of the Rigid Body Equations of Motion

The equations of translational motion of a rigid body are the same as those describing the
motion of a single atom, except that the force is the total force acting on the rigid body
i.e. F in equation (2.263) and the mass is the total mass of the rigid body unit i.e. M
in equation (2.260). These equations can be integrated by the standard Verlet LF or VV
algorithms described in the previous sections. Thus we need only consider the rotational
motion here.

The rotational equation of motion for a rigid body is

d d
=—J=— (I 2.269
T=ws " (L) (2:269)
in which J is the angular momentum of the rigid body defined by the expression
Nsites

j=1
and w is the angular velocity.
The vector T is the torque acting on the body in the universal frame and is given by

=3 d;ix[. (2.271)

The rotational equations of motion, written in the local frame of the rigid body, are
given by Euler’s equations

: T, . S

Wy = fx + (Lyy — L2y,
rr

X Ty - 2 A

Wy = L4 (L — Lp) @0, (2.272)
Ly

X T 2 SN

Wy = =+ (Lo — Ly )py
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The vector w is the angular velocity transformed to the local body frame. Integration of w
is complicated by the fact that as the rigid body rotates , so does the local reference frame.
So is is necessary to integrate equations (2.272) simultaneously with an integration of the
quaternions describing the orientiation of the rigid body. The equation describing this is:

do 9o —q@ —q2 —q3 0
a|_1 e w -4 @ Wy (2.273)
qo 2l a3 g —¢ Wy
q3 B3 —@ @ 9 Wy

Rotational motion in DL_POLY_2 is handled by two different methods. For LF im-
plementation, the Fincham Implicit Quaternion Algorithm (FIQA) is used [14]. The VV
implementation uses the NOSQUISH algorithm of Miller et al. [15].

The LF implementation begins by integrating the angular velocity equation in the local
frame.

Bt + %) = ot — %) +ALT Rt (2.274)

The new quaternions are found using the FIQA algorithm. In this algorithm the new
quaternions are found by solving the implicit equation

alt+ A0 = g(t) + 50 (QUn)ib(r) + Qlat + AnJat + A)  (2.275)

~

where @ = [0,0]T and Qlq] is

1©

g —q1 —q2 —g3
I q0 —q3 —Qq2
= 2.276
2 2| a2 g3 Q —q1 ( )
g3 —Qq2 q1 q0

The above equation is solved iteratively with

q(t + At) = g(t) + At Q[q(t)]i(t) (2.277)

as the first guess. Typically no more than 3 or 4 iterations are needed for convergence. At

each step the constraint
lg(t+ AD)[| =1 (2.278)

is imposed.

The NVE LF algorithm is implemented in NVEQ_1 which allows for a system containing
a mixture of rigid bodies and atomistic species, provided the rigid bodies are not linked to
other species by constraint bonds.

The VV implementation is based on the NOSQUISH algorithm of Miller et al. [15]. In
addition to the quaternions it requires quaternion momenta defined by

Po o0 -0 —¢ —ag 0

_ LG
Pl _o| @ 4 3 G2 aze (2.279)
P2 42 g3 g —q Lyywy

D3 3 —¢ @ qo I..0,
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and quaternion torques defined by

Yo o —@1 —q —q3 0
T B .
1 -9 q1 q0 qs q2 7:1‘ (2280)
To @2 g Qo —q Ty
T3 3 —¢ @ qQ T

(It should be noted that vectors p and X are 4-component vectors.) The quaternion mo-
menta are first updated a half-step using the formula
At At

P+ 50) = p(t) + SL() (2.281)

Next a sequence of operations is applied to the quaternions and the quaternion momenta

in the order
e’iﬁg((st/Q) eiﬁg(ét/?)eiﬁl ((5t) eiﬁg(ét/Z)eiﬁg ((5t/2) (2282)

which preserves the symplecticness of the operations (see reference [17]). Note that &t
is some submultiple of At. (In DL_POLY_2 the default is At = 106t.) The operators
themselves are of the following kind:

ew(‘mg = cos(Ckot)q + sin((x0t) Prq
ew(‘;t)g = cos(Cxot)p + sin((r0t) Pyp (2.283)
where Py is a permutation operator with k =0, ...,3 with the following properties
Poq {q0, a1, 92, g3}
Pg = {-q1,90,0,—¢}
Pg = {~@ —a¢,90 a}
PSQ = {_Q37 92, —q1, QO} (2284)
and the angular velocity (. is defined as
L 7
= —7yp P.q. 2.285
C AR ( )

Equations (2.282) to (2.284) represent the heart of the NOSQUISH algorithm and are
repeatedly applied (10 times in DL_POLY 2 ). The final result is the quaternion updated
to the full timestep value i.e. g(t + At). These equations form part of the first stage of the
VV algorithm. B
In the second stage of the VV algorithm, new torques are used to update the quaternion
momenta to a full timestep.
At

p(t + At) — p(t + 7) + %I(t + At) (2.286)

The NVE implementation of this algorithm is in the subroutine NVEQvVV_1 which calls
the NOSQUISH subroutine to perform the rotation operation. The subroutine also calls
RATTLE_R and RATTLE_V to handle any rigid bonds which may be present.



©CCLRC 79

Thermostats and Barostats

It is straightforward to couple the rigid body equations of motion to a thermostat
and/or barostat. The thermostat is coupled to both the translational and rotational degrees
of freedom and so both the translational and rotational velocities are propagated in an
analogous manner to the thermostated atomic velocities. The barostat, however, is coupled
only to the translational degrees of freedom and not to the rotation.DL_POLY 2 supports
both Hoover and Berendsen thermostats and barostats for systems containing rigid bodies.

For LF integration the Hoover thermostat is implemented in NVvTQ_H1, the Hoover
isotropic barostat (plus thermostat) in NPTQ_H1 and the anisotropic barostat in NSTQ_H1.
The analogous routines for the Berendsen algorithms are NvTQ_B1, NPTQ_B1 and NSTQ_B1.
These subroutines also call RDSHAKE_1 to handle any rigid bonds which may be present.

For VV integration the Hoover thermostat is implemented in NvTQVV_H1 (NVTQSCL) ,
the Hoover isotropic barostat (plus thermostat) in NPTQVV_H1 (NPTQSCL_T, NPTQSCL_P)
and the anisotropic barostat in NSTQVV_H1 (NSTQSCL_T, NSTQSCL_P). The analogous
routines for the Berendsen algorithms are NvTQvv_B1, NPTQVV_B1 and NSTQVV_B1. (The
subroutines in brackets represent supporting subroutines.) These subroutines also call
RATTLE_R and RATTLE_V to handle any rigid bonds which may be present.

2.5.7.3 Linked Rigid Bodies

The above integration algorithms can be used for rigid bodies in systems containing “atomic”
species (whose equations of motion are integrated with the standard leapfrog algorithm).
These rigid bodies may even be linked to other species (including other rigid bodies) by
extensible bonds. However if a rigid body is linked to an atom or another rigid body by a
bond constraint the above algorithms are not adequate. The reason is that the constraint
will introduce an additional force and torque on the body that can only be found after the
integration of the unconstrained unit. DL_POLY_2 has a suite of integration algorithms
to cope with this situation in which both the constraint conditions and the quaternion
equations are solved similtaneously using an extension of the SHAKE algorithm called
“QSHAKE” [16]. It has been cast in both LF and VV forms. We will describe here how it
works for VV, the LF version is decribed in [16].

Firstly we assume a rigid body (A) is connected to another (B) at timestep t, = nAt
via bonds between atoms at positions ', and r, given by

iy, = Ri+dj,
rh, = Rp+dp, (2.287)

where R represents the rigid body COM and d the displacement of the atom from the
relevant COM. The subscript p indicates that these are the atoms providing the links.

In the first stage of the VV QSHAKE algorithm, the rigid bodies are allowed to move
unrestricted. Our task is then to find the the constraint force G"iz which would preserve
the constraint bondlength i.e. djjp, = dg‘g;. Assuming we know this force we can write:

~n+1 AtQ n

R =R, + —— 2.288
Ry Ry oL, CAB ( )
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in which the tilde & indicates the corresponding variable computed in the absence of the
constraint force. (For brevity, in this and subsequent equations we leave out corresponding
equations for body B.)

We can also write the true torque at timestep ¢, (i.e. ") as

" =1"+di, x G- (2.289)

It may be easily shown from this and equation (2.269) that

-n in n -1 mn n
wyg =wy+ (; ) (dAp X QAB) (2.290)
from which it follows that
n n+1 At2
dit =dy, + —94pU% x dj, (2.291)
where we have defined .
Us = (1) (di, x dli,) (2.292)

and we have used the identity
Gip = QﬁBdﬁpr
where ¢'i 5 is a scalar quantity. Now, the true position (at timestep ¢,41) of the link atom
on rigid body A is
it = R 4+ di (2.293)

and inserting (2.288) and (2.291) leads to

n ~n+41 n+1 At 2
+1 RA dAp +gAB B GA (2294)
where o
0, = ( MAP + U’ x d%) : (2.295)

Since d’}&; = 7’7}‘;1 7’%;;1 we can easily obtain

n n+1 AtQ
iy = dapy + 9ip— (4 — Op) (2.296)

Squaring both sides and neglecting terms of order higher than O(At?) gives after rearrange-

ment:
(d,)” — (ds,)
A, (04— O5)
From which the constraint force may be calculated. Iteration is necessary as in SHAKE.
In the second stage of QSHAKE we need to calculate another constaint force H'y "+1 to
preserve the orthogonality of the constraint bond vector and the relative velocity of the two
atoms in the bond. Once again the contraint force implies corrections to the translational

(2.297)
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and rotational equations of motion, which, following the methods used above, we write
directly as:

- At
Vit = VT g H
At
Wittt = +—h”+1U”+1 (2.298)

where BT " B is a scalar related to the constraint force via

n+1 _ pn+1l m+1
HAB - h dABp

Now, the velocity of the linked atom on molecule A is:
it = VI W x ! (2.299)

which on substitution of the above equations gives:

UTA;l ~7’L+1 + ghnﬁ’lgﬂ‘i’l (2300)
where
A,
Qi = (MP +Ujg+1) : (2.301)
A
The constraint condition requires that
i, (W' — ) =0 (2:302)

+

and substitution of the equation for vj" (and the equivalent for v”“)

leads directly to

n+1 n+1 ~n+1
n+1l __ dABp : ( Ap UBp )

AB At (94 - Qp)

(2.303)

which provides the correction for second constraint. This again requires iteration.

The VV QSHAKE algorithm is implemented in DL_POLY_2 in subroutine NVEQVV_2
with the QSHAKE constraint forces calculated in QRATTLE_R and QRATTLE_V. Again it
is straightforward to couple these systems to a Hoover or Berendsen thermostat and/or
barostat. The Hoover and Berendsen thermostated versions are found in NVTQVV_H2 and
NVTQVV_B2 respectively. The isotropic constant pressure implementations are found in
NPTQVV_H2 and NPTQVV_B2, while the anisotropic constant pressure routines are found in
NSTQVV_H2 and NSTQVV_B2. The Hoover versions make use of the thermostat and barostat
routines NVTQSCL, NPTQSCL_T, NPTQSCL_P, NSTQSCL_T and NSTQSCL_P according to the
ensemble.

The LF QSHAKE algorithm is implemented in NVEQ_2 with the QSHAKE constraint
forces applied in QSHAKE. This also has different ensemble versions: Hoover or Berendsen
thermostat and/or barostat. The Hoover and Berendsen thermostated versions are found
in NVTQ_H2 and NVTQ_B2 respectively. The isotropic constant pressure implementations
are found in NPTQ_H2 and NPTQ_B2, while the anisotropic constant pressure routines are
found in NSTQ_H2 and NSTQ_B2.

An outline of the parallel version of QSHAKE is given in section 2.6.9.
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2.5.8 The DL_POLY _2 Multiple Timestep Algorithm

For simulations employing a large spherical cutoff 7., in the calculation of the interactions
DL_POLY_2 offers the possibility of using a multiple timestep algorithm to improve the
efficiency. The method is based on that described by Streett et al [46, 47] with extension
to Coulombic systems by Forester et al [48].

In the multiple timestep algorithm there are two cutoffs for the pair interactions: a
relatively large cutoff (r.,;) which is used to define the standard Verlet neighbour list;
and a smaller cutoff rp,;, which is used to define a primary list within the larger cutoff
sphere (see figure). Forces derived from atoms in the primary list are generally much
larger than those derived from remaining (so-called secondary) atoms in the neighbour list.
Good energy conservation is therefore possible if the forces derived from the primary atoms
are calculated every timstep, while those from the secondary atoms are calculated much
less frequently, and are merely extrapolated over the interval. DL_POLY_2 handles this
procedure as follows.

DL_POLY_2 updates the Verlet neighbour list at irregular intervals, determined by the
movement of atoms in the neighbour list (see section 2.1). The interval between updates
is usually of the order of ~20 timesteps. Partitioning the Verlet list into primary and
secondary atoms always occurs when the Verlet list is updated, and thereafter at intervals
of multt timesteps (i.e. the multi-step interval specified by the user - see section 4.1.1).
Immediately after the partitioning, the force contributions from both the primary and
secondary atoms are calculated. The forces are again calculated in total in the subsequent
timestep. Thereafter, for multt-2 timesteps, the forces derived from the primary atoms
are calculated explicitly, while those derived from the secondary atoms are calculated by
linear extrapolation of the exact forces obtained in the first two timesteps of the multi-step
interval. It is readily apparent how this scheme can lead to a significant saving in execution
time.

Extension of this basic idea to simulations using the Ewald sum requires the following:

1. the reciprocal space terms are calculated only for the first two timesteps of the multi-
step,

2. the contribution to the reciprocal space terms arising from primary interactions are
immediately subtracted, leaving only the long-range components. (This is done in
real space, by subtracting erf terms.);

3. the real space Coulombic forces arising from the secondary atoms are calculated in
the first two timesteps of the multi-step using the normal Ewald expressions (i.e. the
erfc terms).

4. the Coulombic forces arising from primary atoms are calculated at every timestep in
real space assuming the full Coulombic force;

In this way the Coulombic forces can be handled by the same multiple timestep scheme as
the van der Waals forces. The algorithm is described in detail in [48].
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Note that the accuracy of the algorithm is a function of the multi-step interval multt,
and decreases as multt increases. Also, the algorithm is not time reversible and is therefore
susceptible to energy drift. Its use with a thermostat is therefore advised.

L
®
The multiple timestep algorithm

The atoms surrounding the central atom (open circle) are classified as primary if they
occur within a radius rp,.;m, and secondary if outside this radius but within 7.,;. Interactions
arising from primary atoms are evaluated every timestep. Interactions from secondary
atoms are calculated exactly for the first two steps of a multi-step and by extrapolation
afterwards.

2.6 DL _POLY Parallelisation

DL_POLY 2 is a distributed parallel molecular dynamics package based on the Replicated
Data parallelisation strategy [49, 50]. In this section we briefly outline the basic method-
ology. Users wishing to add new features DL_POLY_2 will need to be familiar with the
underlying techniques as they are described (in greater detail) in references [37, 50]).

2.6.1 The Replicated Data Strategy

The Replicated Data (RD) strategy [49] is one of several ways to achieve parallelisation
in MD. Its name derives from the replication of the configuration data on each node of a
parallel computer (i.e. the arrays defining the atomic coordinates r;, velocities v; and forces
f,» for all N atoms {i:1=1,...,N} in the simulated system, are reproduced on every
processing node). In this strategy most of the forces computation and integration of the
equations of motion can be shared easily and equally between nodes and to a large extent
be processed independently on each node. The method is relatively simple to program and
is reasonably efficient. Moreover, it can be “collapsed” to run on a single processor very



©CCLRC 84

easily. However the strategy can be expensive in memory and have high communication
overheads, but overall it has proven to be successful over a wide range of applications.
These issues are explored in more detail in [49, 50].

Systems containing complex molecules present several difficulties. They often contain
ionic species, which usually require Ewald summation methods [11, 51], and intra-molecular
interactions in addition to inter-molecular forces. These are handled easily in the RD
strategy, though the SHAKE algorithm [12] requires significant modification [37].

The RD strategy is applied to complex molecular systems as follows:

1. Using the known atomic coordinates r;, each node calculates a subset of the forces
acting between the atoms. These are usually comprised of:

(a) atom-atom pair forces (e.g. Lennard Jones, Coulombic etc.);
(b) non-rigid atom-atom bonds;
(c) valence angle forces;
(d)
)

(e) improper dihedral angle forces.

dihedral angle forces;

2. The computed forces are accumulated in (incomplete) atomic force arrays S, inde-
pendently on each node;

3. The atomic force arrays are summed globally over all nodes;

4. The complete force arrays are used to update the atomic velocities and positions.

It is important to note that load balancing (i.e. equal and concurrent use of all processors)
is an essential requirement of the overall algorithm. In DL_POLY_2 this is accomplished
for the pair forces with an adaptation of the Brode-Ahlrichs scheme [22].

2.6.2 Distributing the Intramolecular Bonded Terms

DL_POLY_2 handles the intramolecular in which the atoms involved in any given bond
term are explicitly listed. Distribution of the forces calculations is accomplished by the
following scheme:

1. Every atom in the simulated system is assigned a unique index number from 1 to N;

2. Every intramolecular bonded term Uy in the system has a unique index number
itype: from 1 to Nyype where type represents a bond, angle or dihedral.

3. A pointer array keyiype(Niype, ttype) carries the indices of the specific atoms involved
in the potential term labelled #4yp.. The dimension 74y, will be 2, 3 or 4, if the term
represents a bond, angle or dihedral.

4. The array keyiype(Niype, itype) is used to identify the atoms in a bonded term and
the appropriate form of interaction and thus to calculate the energy and forces. Each
processor is assigned the independent task of evaluating a block of (Int(Nyotar/Nnodes))
interactions.
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The same scheme works for all types of bonded interactions. The global summation of
the force arrays does not occur until all the force contributions, including nonbonded forces
has been completed.

2.6.3 Distributing the Nonbonded Terms

In DL_POLY_2 the nonbonded interactions are handled with a Verlet neighbour list [11]
which is reconstructed at intervals during the simulation. This list records the indices of all
‘secondary’ atoms within a certain radius of each ‘primary’ atom; the radius being the cut-
off radius (rqu) normally applied to the nonbonded potential function, plus an additional
increment (Arc,). The larger radius (rey + Areye) permits the same list to be used for
several timesteps without requiring an update. The frequency at which the list must be
updated clearly depends on the thickness of the region Ar.,. In RD, the neighbour list is
constructed simultaneously on each node and in such a way as to share the total burden of
the work equally between nodes. Each node is responsible for a unique set of nonbonded
interactions and the neighbour list is therefore different on each node. DL_POLY_2 uses
a method based on the Brode-Ahlrichs scheme [22] (see figure below) to construct the
neighbour list.

Additional modifications are necessary to handle the excluded atoms [50]. A distributed
excluded atoms list is constructed by DL_POLY_2 at the start of the simulation. The list
is constructed so that the excluded atoms are referenced in the same order as they would
appear in the Verlet neighbour list if the bonded interactions were ignored, allowing for the
distributed structure of the neighbour list.
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Brode Ahlrichs Algorithm

12 Atoms, 4 processors
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1,2 1,3 1,4 1,5 1,6 1,7
2,3 2,4 2,5 2,6 2,7 2,8
34 35 3,6 3,7 3,8 3,9 Processor O I
4,5 4,6 4,7 4.8 4.9 4,10
5,6 5,7 5,8 59 5,10 5,11
6,7 6,8 6,9 6,10 6,11 6,12
7,8 7,9 7,10 7,11 7,12

8,9 8,10 8,11 8,12 8,1

9,10 9,11 9,12 9,1 9,2

10,11 10,12 10,1 10,2 10,3

11,12 11,1 11,2 11,3 11,4

12,1 12,2 12,3 12,4 12,5

Schematic diagram of the parallel implementation of the Brode-Ahlrichs algorithm.

The diagram illustrates the reordering of the upper triangular matrix of n(n-1)/2 pair
interactions so that the rows of the matrix are of approximately equally length. Each entry
in the table consists of a primary atom index (constant within a row) and a “neighbouring”
atom index. Rows are assigned sequentially to nodes. In the diagram node 0 deals with
rows 1, 5 and 9, node 1 to rows 2, 6, and 10 etc.

When a charge group scheme (as opposed to an atomistic scheme) is used for the
non-bonded terms, the group-group interactions are distributed using the Brode-Ahlrichs
approach. This makes the Verlet list considerably smaller, thus saving memory, but also
results in a more “coarse grain” parallelism. The consequence of which is that performance
with a large number of processors will degrade more quickly than with the atomistic scheme.

Once the neighbour list has been constructed, each node of the parallel computer may
proceed independently to calculate the pair force contributions to the atomic forces.

2.6.4 Modifications for the Ewald Sum

For systems with periodic boundary conditions DL_POLY_2 employs the Ewald Sum to
calculate the Coulombic interactions (see section 2.4.5).
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Calculation of the real space component in DL_POLY_2 employs the algorithm for the
calculation of the nonbonded interactions outlined above. The reciprocal space component
is calculated using the schemes described in [51], in which the calculation can be paral-
lelised by distribution of either k vectors or atomic sites. Distribution over atomic sites
requires the use of a global summation of the ¢; exp(—ik - gj) terms, but is more efficient in
memory usage. Both strategies are computationally straightforward. Subroutine EWALD1
distributes over atomic sites and is often the more efficient of the two approaches. Subrou-
tine EWALD1A distributes over the k£ vectors and may be more efficient on machines with
large communication latencies.

Other routines required to calculate the ewald sum include EWALD2, EWALD3 and
EWALD4. The first of these calculates the real space contribution, the second the self
interaction corrections, and the third is required for the multiple timestep option.

2.6.5 Modifications for SPME

The SPME method requires relatively little modification for parallel computing. The real
space terms are calculated exactly as they are for the normal Ewald sum, as described
above. The reciprocal space sum requires a 3D Fast Fourier Transform (FFT), which
in principle should be distributed over the processors, but in DL_POLY_2 the decision
was made to implement a complete 3D FFT on every processor. This is expensive in
memory, and potentially expensive in computer time. However a multi-processor FFT
requires communication between processors and this has significant impact on the famed
efficiency of the FFT. It transpires that a single processor FFT is so efficient that the
adopted strategy is still effective. The charge array that is central to the SPME method
(see section 2.4.6) is however built in a distributed manner and then globally summed prior
to the FF'T operation.

2.6.6 Three and Four Body Forces

DL_POLY 2 can calculate three/four body interactions of the valence angle type [52]. These
are not dealt with in the same way as the normal nonbonded interactions. They are
generally very short ranged and are most effectively calculated using a link-cell scheme [23].
No reference is made to the Verlet neighbour list nor the excluded atoms list. It follows
that atoms involved in the same three/four-body term can interact via nonbonded (pair)
forces and ionic forces also. The calculation of the three/four-body terms is distributed over
processors on the basis of the identity of the central atom in the bond. A global summation
is required to specify the atomic forces fully.

2.6.7 Metal Potentials

The simulation of metals by DL_POLY _2 makes use of density dependent potentials of the
Sutton-Chen type [3]. The dependence on the atomic density presents no difficulty however,
as this class of potentials can be resolved into pair contributions. This permits the use of
the distributed Verlet neighbour list outlined above.
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2.6.8 Summing the Atomic Forces

The final stage in the RD strategy, is the global summation of the atomic force arrays. This
must be done After all the contributions to the atomic forces have been calculated. To do
this DL_POLY_2 employs a global summation algorithm [49], which is generally a system
specific utility.

Similarly, the total configuration energy and virial must be obtained as a global sum of
the contributing terms calculated on all nodes.

2.6.9 The SHAKE, RATTLE and Parallel QSHAKE Algorithms

The SHAKE and RATTLE algorithms are methods for constraining rigid bonds. Parallel
adaptations of both are couched in the Replicated Data strategy. The essentials of the
methods are as follows.

1. The bond constraints acting in the simulated system are shared equally between the
processing nodes.

2. Each node makes a list recording which atoms are bonded by constraints it is to
process. Entries are zero if the atom is not bonded.

3. A copy of the array is passed to each other node in turn. The receiving node compares
the incoming list with its own and keeps a record of the shared atoms and the nodes
which share them.

4. In the first stage of the SHAKE algorithm, the atoms are updated through the usual
Verlet algorithm, without regard to the bond constraints.

5. In the second (iterative) stage of SHAKE, each node calculates the incremental cor-
rection vectors for the bonded atoms in its own list of bond constraints. It then sends
specific correction vectors to all neighbours that share the same atoms, using the
information compiled in step 3.

6. When all necessary correction vectors have been received and added the positions of
the constrained atoms are corrected.

7. Steps 5 and 6 are repeated until the bond constraints are converged.

8. After convergence the coordinate arrays on each node are passed to all the other
nodes. The coordinates of atoms that are not in the constraint list of a given node
are taken from the incoming arrays (an operation we term splicing).

9. Finally, the change in the atom positions is used to calculate the atomic velocities.

The above scheme is complete for a implementation based on the leapfrog integration
algorithm. However a velocity Verlet (VV) scheme requires additional steps.

1. Step 9 above does not apply for VV. The velocity is integrated under the normal VV
scheme.



©CCLRC 89

2. When the velocity is updated, iteration of the constraint force takes place. The incre-
mental changes to the velocity are communicated between nodes sharing constrained
atoms as for the bondlength constraints.

3. Iteration is repeated until the bond constraints are converged.

4. After convergence the velocity arrays on each node are passed to all the other nodes
by splicing.

This scheme contains a number of non-trivial operations, which are described in detail
in [37]. However some general comments are worth making.

The compilation of the list of constrained atoms on each node, and the circulation
of the list (items 1 - 3 above) need only be done once in any given simulation. It also
transpires that in sharing bond contraints between nodes, there is an advantage to keeping
as many of the constraints pertaining to a particular molecule together on one node as is
possible within the requirement for load balancing. This reduces the data that need to
be transferred between nodes during the iteration cycle. It is also advantageous, if the
molecules are small, to adjust the load balancing between processors to prevent shared
atoms. The loss of balance is compensated by the elimination of communications during
the SHAKE cycle. These techniques are exploited by DL_POLY_2 .

The QSHAKE algorithm is an extension of the SHAKE algorithm for constraint bonds
between rigid bodies. The parallel strategy is very similar to that of SHAKE. The only
significant difference is that increments to the atomic forces, not the atomic positions, are
passed between processors at the end of each iteration.
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Scope of Chapter

This chapter describes how to compile a working version of DL_POLY _2 and how to run it.



©CCLRC 92

3.1 Constructing DL_POLY 2 : an Overview

3.1.1 Constructing the Standard Version

DL_POLY_2 was designed as a package of useful subroutines rather than a single program,
which means that users are to be able to construct a working simulation program of their
own design from the subroutines available, which is capable of performing a specific simu-
lation. However we recognise that many, perhaps most, users will be content with creating
a standard version that covers all of the possible applications and for this reason we have
provided the necessary tools to assemble such a version. The method of creating the stan-
dard version is described in detail in this chapter, however a brief step-by-step description
follows.

1. DL_POLY_2 is supplied as a UNIX compressed tar file. This must uncompressed and
un-tared to create the DL_POLY_2 directory (section 1.4).

2. In the build subdirectory you will find the required DL_POLY 2 makefile (see section
3.2.1 and Appendix A, where a sample Makefile is listed). This must be copied into
the subdirectory containing the relevant source code. In most cases this will be the
sref90 subdirectory.

3. The makefile is executed with the appropriate keywords (section 3.2.1) which select for
specific computers and if a parallel machine is used, the appropriate communication
software.

4. The makefile produces the executable version of the code, which as a default will be
named DLPOLY.X and located in the ezrecute subdirectory.

5. DL_POLY also has a Java GUI. The files for this are stored in the subdirectory java.
Compilation of this is simple and requires running the javac compiler and the jar
utility. Details for these procedures are provided in the GUI manual [8].

6. To run the executable for the first time you require the files CONTROL, FIELD and
CONFIG (and possibly TABLE if you have tabulated potentials). These must be
present in the directory from which the program is executed. (See section 4.1 for the
description of the input files.)

7. Executing the program will produce the files OUTPUT, REVCON and REVIVE (and
optionally STATIS, HISTORY, RDFDAT and ZDNDAT) in the executing directory.
(See section 4.2 for the description of the output files.)

This simple procedure is enough to create a standard version to run most DL_POLY _2
applications. However it sometimes happens that additional modifications may be neces-
sary.

On starting, DL_POLY _2 scans the input data and makes an estimate of the sizes of the
arrays it requires to do the simulation. Sometimes the estimates are not good enough. The
most common occurrences of this are NPT and NST simulations, or simulations where the
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local density on the MD cell may significantly exceed the mean density of the cell (systems
with a vaccum gap for example). Under these circmstances arrays initally allocated may
be insufficent. In which case DL_POLY_2 may report a memory problem and request that
you recompile the code with hand-adjusted array dimensions. This topic is dealt with more
fully in Appendix C.

3.1.2 Constructing Nonstandard Versions

In constructing a nonstandard DL_POLY _2 simulation program, the first requirement is for
the user to write a program to function as the root segment. The srcf90 directory contains
an example of such a root program: DLPOLY. This root program calls the major routines
required to perform the simulation and also controls the normal “molecular dynamics cy-
cle” which consists of forces calculation followed by integration of the equation of motion.
DLPOLY also monitors the cpu usage and brings about a controlled termination of the pro-
gram if the usage approaches the allotted job time within a pre-set closure time. Lastly,
DLPOLY is the routine that first opens the OUTPUT file (section 4.2.2), which provides
the summary of the job. Users are recommended to study the DLPOLY root as a model for
other implementations of the package they may wish to construct.

If additional functionality is added to DL_POLY _2 by the user, the PARSET.F subroutine
(and its support subroutines) will need modifying to allow specification of the dimensions
of any new arrays.

Any molecular dynamics simulation performs five different kinds of operation: initial-
isation; forces calculation; integration of the equations of motion; calculation of system
properties; and job termination. It is worth considering these operations in turn and to in-
dicate which DL_POLY _2 routines are available to perform them. We do not give a detailed
description, but provide only a guide. The following outline assumes a system containing
flexible molecules held together by rigid bonds, but without rigid bodies.

Initialisation requires firstly that the program determine what kind of parallel machine
it is running on. The routine MACHINE determines how many processing nodes are being
used and also returns the node identity to each process. Next the job control information is
required; this is obtained by the routine SIMDEF, which reads the CONTROL file (section
4.1.1). The description of the system to be simulated: the types of atoms and molecules
present and the intermolecular forces; are obtained by the SYSDEF routine, which reads the
FIELD file (section 4.1.3). Lastly, the atomic positions and velocities must be provided.
These are obtained by the SYSGEN routine, which reads the CONFIG file (section 4.1.2)
and also generates the initial velocities if required to do so. If the system contains con-
straint bonds, the routine PASSCON is required to process molecular connectivity data and
establish the communication procedure between nodes, and the QUENCH routine is required
to set the starting velocities correctly. Also needed in the initialisation, is the routine FOR-
GEN, which constructs the interpolation arrays for the short-range forces calculations, and
the routine EXCLUDE which identifies atoms that are explictly chemically bonded through
bonds, constraints or valence angles. The resulting list is known as the excluded atoms list.

The calculation of the pair forces represents the bulk of any simulation. A Verlet
neighbour list is used by DL_POLY _2 in calculating the atomic forces. The routine that
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constructs this this is called PARLST. This routine builds the neighbour list taking into
account the occurrence of atoms in the excluded atoms list. The routine SRFRCE calculates
the short-range (van der Waals) forces, making use of the IMAGES routine to handle any
periodic boundary conditions. Coulombic forces are handled by a varity of routines: cOULO,
couL1 and coUL2 handle Coulombic forces without periodic boundaries; EWALD1, EWALD2
and EWALD3 are used for systems with periodic boundaries (an additional routine: EWALD4
is necessary for the multiple timestep algorithm). Intramolecular forces require the routines
ANGFRC, BNDFRC and DIHFRC. If the multiple timestep algorithm is required, the routine
MULTIPLE must be used to call the various forces routines. It also calls the PRIMLST routine
to split the interaction list into primary and secondary neighbours. The decision to update
the neighbour list is handled by the routine VERTEST. The routine EXTNFLD is required
if the simulated system has an external force field (e.g. electrostatic field) operating. To
help with equilibration simulations, the routine FCAP is sometimes required to reduce the
magnitude of badly equilibrated forces. Since DL_POLY_2 is based on the replicated data
strategy, a global sum routine (GDSUM) is required to sum the atomic forces on all nodes.

Integration of the equations of motion is handled by one of the routines listed and
described in section 2.5. For example routines NVE_O, NVT_EO, NVT_HO, NVT_B0 etc. are
used if no constraint forces are present. These routines treat the NVE, Evans-NVT, Hoover-
Nosé-NVT and NVT-Berendsen ensembles respectively. The corresponding versions of these
routines which handle constraint forces are NVE_1, NVT_E1l, NVT_H1 or NVT_B1l. These
versions call the routine RDSHAKE_1 to handle the constraints. RDSHAKE_1 itself calls
a number of additional routines: MERGE, SHMOVE and SPLICE. For ad hoc temperature
scaling, the routine VSCALEG is required.

As mentioned elsewhere, DL_POLY_2 does not contain many routines for computing
system properties during a simulation. Radial distributions may be calculated however,
using the routines RDFO and RDF1. Similarly DIFFSNO and DIFFSN1 calculate approximate
mean square displacements. Ordinary thermodynamic quantities are calculated by the
routine STATIC, which also writes the STATIS file (section 4.2.7). Routine TRAJECT writes
the HISTORY (section 4.2.1) file for later analysis.

Job termination is handled by the routine RESULT which writes the final summaries in
the OUTPUT file and dumps the restart files REVIVE and REVCON (sections 4.2.4 and
4.2.3 respectively).

An idea of the construction of a DL_POLY _2 program can be obtained from the following
flowchart. The example represents a DL_POLY _2 program which uses the multiple timestep
algorithm, with bond constraints and the Nosé-Hoover thermostat.
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3.2 Compiling and Running DL _ POLY 2

3.2.1 Compiling the Source Code

When you have obtained DL_POLY_2 from Daresbury Laboratory and unpacked it, your
next task will be to compile it. To aid compilation a set of makefiles has been provided in
the sub-directory build (see example in Appendix A of this document). The versions go by
the names of:

e MakePAR - to build a parallel MPI version on a unix platform;
e MakeSEQ - to build a sequential (one processor) unix version;
e MakeWIN - to build a Windows (one processor, XP) version.

Select the one you need and copy it into the srcf90 directory. (In what follows we as-
sume the makefile in the srcf90 directory is called ‘Makefile’.) The Makefile will build an
executable with a wide range of functionality - sufficient for the test cases and for most
users’ requirements. Other makefiles may be found in the build sub-directory for variants
of DL_.POLY_2 .

Users will need to modify the Makefile if they are to add additional functionality to the
code, or if it requires adaptation for a non specified computer. Modifications may also be
needed for the Smoothed Particle Mesh Ewald method if a system specific 3D FFT routine
is desired (see below: “Modifying the makefile”).

Note the following system requirements for a successful build of DL_POLY_2 .

1. a FORTRAN 90 compiler;
2. the Java SDK from Sun Microsystems (if the GUI is required).
3. a UNIX operating system (or Windows XP with CygWin, if a PC version is required).

Run the Makefile you copied from the build sub-directory in the srcf90 sub-directory. It
will create the executable in the execute sub-directory. The compilation of the program is
initiated by typing the command:

make target

where target is the specification of the required machine (e.g. hpcx). For many computer
systems this is all that is required to compile a working version of DL_POLY 2 . (To
determine which targets are already defined in the makefile, typing the command make
without a nominated target will produce a list of known targets.)

The full specification of the make command is as follows

make <TARGET= ... > < EX=... > < BINROOT=... >
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where some (or all) of the keywords may be omitted. The keywords and their uses are
described below. Note that keywords may also be set in the unix environment (e.g. with
the “setenv” command in a C-shell).

For PCs running Windows, the makefile assumes the user has installed the Cygwin Unix
API available from http://sources.redhat.com/cygwin. The recommended FORTRAN 90
compiler is G95 (see: http://ftp.g95.org/). Both of these are copyrighted products.

3.2.1.1 Keywords for the Makefile
1. TARGET

The TARGET keyword indicates which kind of computer the code is to be com-
piled for. This must be specifed - there is no default value. Valid targets can be
listed by the makefile if the command make is typed, without arguments. The list
frequently changes as more targets are added and redundant ones removed. Users are
encouraged to extend the Makefile for themselves, using existing targets as examples.

2. EX

The EX keyword specifies the executable name. The default name for the executable
is “DLPOLY.X”.

3. BINROOT

The BINROOT keyword specifies the directory in which the executable is to be stored.
The default setting is “../execute”.

3.2.1.2 Modifying the Makefile
1. Changing the TARGET

If you do not intend to run DL_POLY_2 on one of the specified machines, you must
add appropriate lines to the makefile to suit your circumstances. The safest way
to do this is to modify an existing TARGET option for your purposes. The makefile
supplied with DL_POLY_2 contains examples for serial and MPI environments as well
as for different parallel machines, so you should find one close to your requirements.
You must of course be familiar with the appropriate invocation of the FORTRAN
compiler for your local machine and also any alternatives to MPI your local machine
may be running. If you wish to compile for MPI systems remember to ensure the
appropriate library directories are accessible to you. If you require a serial version of
the code, you must remove references to the MPI libraries from the Makefile and add
the file serial.f to your compilation - this will insert replacement (dummy) routiens
for the MPI calls.

2. Enabling the Smoothed Particle Mesh Ewald
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The standard compilation of DL_POLY _2 will incorporate a basic 3D Fast Fourier
Transform (FFT) routine to enable the SPME functionality. Users may wish to try
alternative FF'T routines, which may offer faster performance. Some ‘hooks’ for these
appear in the code as comment lines in the FORTRAN source. The user should search
for the following keys in the code:

CCRAY - for the Cray FFT routines;

CFFTW - for the FF'TW public domain FFT routines;
CESSL - for the IBM scientific library FFT routines;
CSGIC - for the Silicon Graphics FFT routines.

The appropriate lines should be uncommented and the references to the DLPFFT3
subroutine should be commented out before compiling.

3. Problems with optimization ?

Some subroutines may not compile correctly when using optimization on some com-
pilers. This is not the fault of the DL_POLY _2 code, but of the compiler concerned.
This is circumvented by compiling the offending subroutines unoptimised. See the
entries for various machines in the makefile to see how this is done if you experience
problems with other subroutines.

4. Adding new functionality

To include a new subroutine in the code simply add subroutine.o to the list of object
names in the makefile. The simplest way is to add names to the “OBJ_ALL” list.

3.2.1.3 Note on Interpolation

In DL_POLY_2 the short-range (Van der Waals) contributions to energy and force are
evaluated by interpolation of tables constructed at the beginning of execution. DL_POLY 2
employs a 3-point interpolation scheme.

A guide to the minimum number of grid points (mxgrid) required for interpolation in
r to give good energy conservation in a simulation is:

mxgrid > 100(rcut/rmin)

where rmin is the smallest position minimum of the non-bonded potentials in the sys-
tem. The parameter mxgrid is defined in the DL_PARAMS.INC file, and must be set before
compilation.

A utility program TABCHK is provided in the DL_POLY utility sub-directory to help
users choose a sufficiently accurate interpolation scheme (including array sizes) for their
needs.
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3.2.2 Running DL_POLY _2

To run the DL_POLY 2 executable (DLPOLY.X) you will initially require three, possibly
four, input data files, which you must create in the ezecute sub-directory, (or whichever
sub-directory you keep the executable program.) The first of these is the CONTROL file
(section 4.1.1), which indicates to DL_POLY_2 what kind of simulation you want to run,
how much data you want to gather and for how long you want the job to run. The second
file you need is the CONFIG file (section 4.1.2). This contains the atom positions and,
depending on how the file was created (e.g. whether this is a configuration created from
‘scratch’ or the end point of another run), the velocities also. The third file required is the
FIELD file (section 4.1.3), which specifies the nature of the intermolecular interactions, the
molecular topology and the atomic properties, such as charge and mass. Sometimes you
will require a fourth file: TABLE (section 4.1.5), which contains the potential and force
arrays for functional forms not available within DL_POLY_2 (usually because they are too
complex e.g. spline potentials).

Examples of input files are found in the data sub-directory, which can be copied into
the execute subdirectory using the select macro found in the execute sub-directory.

A successful run of DL_.POLY_2 will generate several data files, which appear in the
execute sub-directory. The most obvious one is the file OUTPUT (section 4.2.2), which
provides an effective summary of the job run: the input information; starting configura-
tion; instantaneous and rolling-averaged thermodynamic data; final configurations; radial
distribution functions (RDFs); and job timing data. The OUTPUT file is human readable.
Also present will be the restart files REVIVE (section 4.2.4) and REVCON (section 4.2.3).
REVIVE contains the accumulated data for a number of thermodynamic quantities and
RDFs, and is intended to be used as the input file for a following run. It is mot human
readable. The REVCON file contains the restart configuration i.e. the final positions, ve-
locities and forces of the atoms when the run ended and is human readable. The STATIS
file (section 4.2.7) contains a catalogue of instantaneous values of thermodynamic and other
variables, in a form suitable for temporal or statistical analysis. Finally, the HISTORY file
(section 4.2.1) provides a time ordered sequence of configurations to facilitate further anal-
ysis of the atomic motions. Depending on which version of the TRAJECT subroutine you
compiled in the code, this file may be either formatted (human readable) or unformatted.
You may move these output files back into the data sub-directory using the store macro
found in the execute sub-directory.

Note that versions of DL_POLY _2 after 2.10 may also create the files RDFDAT and
ZDNDAT, containing the RDF and Z-density data respectively. They are both human
readable files.

3.2.3 Restarting DL_POLY _2

The best approach to running DL_POLY _2 is to define from the outset precisely the simula-
tion you wish to perform and create the input files specific to this requirement. The program
will then perform the requested simulation, but may terminate prematurely through error,
inadequate time allocation or computer failure. Errors in input data are your responsibil-



©CCLRC 100

ity, but DL_POLY _2 will usually give diagnostic messages to help you sort out the trouble.
Running out of job time is common and provided you have correctly specified the job time
variables (using the close time and job time directives - see section 4.1.1) in the CON-
TROL file, DL_POLY _2 will stop in a controlled manner, allowing you to restart the job as
if it had not been interrupted.

To restart a simulation after normal termination you will again require the CONTROL
file, the FIELD (and TABLE) file, and a CONFIG file, which is the exact copy of the
REVCON file created by the previous job. You will also require a new file: REVOLD
(section 4.1.4), which is an exact copy of the previous REVIVE file. If you attempt to restart
DL_POLY_2 without this additional file available, the job will fail. Note that DL_POLY _2
will append new data to the existing STATIS and HISTORY files if the run is restarted,
other output files will be overwritten.

In the event of machine failure, you should be able to restart the job in the same way
from the surviving REVCON and REVIVE files, which are dumped at intervals to meet
just such an emergency. In this case check carefully that the input files are intact and use
the HISTORY and STATIS files with caution - there may be duplicated or missing records.
The reprieve processing capabilities of DL_POLY _2 are not foolproof - the job may crash
while these files are being written for example, but they can help a great deal. You are
advised to keep backup copies of these files, noting the times they were written, to help
you avoid going right back to the start of a simulation.

You can also extend a simulation beyond its initial allocation of timesteps, provided
you still have the REVCON and REVIVE files. These should be copied to the CONFIG
and REVOLD files respectively and the directive timesteps adjusted in the CONTROL
file to the new total number of steps required for the simulation. For example if you wish to
extend a 10000 step simulation by a further 5000 steps use the directive timesteps 15000
in the CONTROL file and include the restart directive. You can use the restart scale
directive if you want to reset the temperature at the restart, but note that this also resets
all internal accumulators (timestep included) to zero.

3.3 A Guide to Preparing Input Files

The CONFIG file and the FIELD file can be quite large and unwieldy particularly if a
polymer or biological molecule is involved in the simulation. This section outlines the paths
to follow when trying to construct files for such systems. The description of the DL_POLY _2
force field in chapter 2 is essential reading. The various utility routines mentioned in this
section are described in greater detail in chapter 6. Many of these have been incorporated
into the DL_POLY_2 Graphical User Interface [8] and may be convienently used from there.

3.3.1 Inorganic Materials

The utility GENLAT can be used to construct the CONFIG file for relatively simple lattice
structures. Input is interactive. The FIELD file for such systems are normally small and can
be constructed by hand. The utility GENLAT.TO constructs the CONFIG file for truncated-
octahedral boundary conditions. Otherwise the input of force field data for crystalline
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systems is particularly simple, if no angular forces are required (notable exceptions to this
are zeolites and silicate glasses - see below). Such systems require only the specification of
the atomic types and the necessary pair forces. The reader is referred to the description of
the DL_POLY 2 FIELD file for further details (section 4.1.3).

DL_POLY_2 allows the simulation of zeolites and silicate (or other) glasses. Both these
materials require the use of angular forces to describe the local structure correctly. In both
cases the angular terms are included as three body terms, the forms of which are described
in chapter 2. These terms are entered into the FIELD file with the pair potentials. Note
that you cannot use truncated octahedral or rhombic dodecahedral boundary conditions in
conjunction with three body forces, due to the use of the link-cell algorithm for evaluating
the forces.

An alternative way of handling zeolites is to treat the zeolite framework as a kind of
macromolecule (see below). Specifying all this is tedious and is best done computationally:
what is required is to determine the nearest image neighbours of all atoms and assign
appropriate bond and valence angle potentials. (This may require the definition of new
bond forces in subroutine BNDFRC, but this is easy.) What must be avoided at all costs is
specifying the angle potentials without specifying bond potentials. In this case DL_POLY_2
will automatically cancel the non-bonded forces between atoms linked via valence angles
and the system will collapse. The advantage of this method is that the calculation is likely
to be faster using three-body forces. This method is not recommended for amorphous
systems.

3.3.2 Macromolecules

Simulations of proteins are best tackled using the package DLPROTEIN [53] which is an
adaptation of DL_POLY specific to protein modelling. However you may simulate proteins
and other macromolecules with DL_POLY _2 if you wish. This is described below.

If you select a protein structure from a SEQNET file (e.g. from the Brookhaven
database), use the utility PROSEQ to generate the file CONFIG. This will then function
as input for DL_POLY_2 . Some caution is required here however, as the protein structure
may not be fully determined and atoms may be missing from the CONFIG file.

If you have the “edit.out” file produced by AMBER for your molecule use this as
the CONNECT _DAT input file for the utility AMBFORCE. AMBFORCE will produce the
DL_POLY _2 FIELD and CONFIG files for your molecule.

If you do not have the “edit.out” file things are a little more tricky, particularly in
coming up with appropriate partial charges for atomic sites. However there are a series of
utilities that will at least produce the CONNECT_DAT file for use with AMBFORCE. We
now outline these utilities and the order in which they should be used.

If you have a structure from the Cambridge Structural database (CSDB) then use the
utility FRACCON to take fractional coordinate data and produce a CONNECT_DAT and
“ambforce.dat” file for use with AMBFORCE. Note that you will need to modify FRACCON to
get the AMBER names correct for sites in your molecule. The version of FRACCON supplied
with DL_POLY_2 is specific to the valinomycin molecule.

If you require an all atom force field and the database file does not contain hydrogen
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positions then use the utility FRACFILL in place of FRACCON. FRACCON produces an output
file HFILL which should then be used as input for the utility HFILL. The HFILL utility fills
out the structure with the missing hydrogens. (Note that you may need to know what the
atomic charges are in some systems, for example the AMBER charges from the literature.)

Note: with minor modifications the utilities FRACFILL and FRACCON can be used on
structures from databases other than the Cambridge structural database.

3.3.3 Adding Solvent to a Structure

The utility WATERADD adds water from an equilibrated configuration of 256 SPC water
molecules at 300 K to fill out the MD cell. The utility SOLVADD fills out the MD box with
single-site solvent molecules from a f.c.c lattice. The FIELD files will then need to be edited
to account for the solvent molecules added to the file.

Hint: to save yourself some work in entering the non-bonded interactions variables
involving solvent sites to the FIELD file put two bogus atoms of each solvent type at the
end of the CONNECT DAT file (for AMBER force-fields) the utility AMBFORCE will then
evaluate all the non-bonded variables required by DL_POLY_2 . Remember to delete the
bogus entries from the CONFIG file before running DL_POLY 2 .

3.3.4 Analysing Results

DL_POLY_2 is not designed to calculate every conceivable property you might wish from
a simulation. Apart from some obvious thermodynamic quantities and radial distribution
functions, it does not calculate anything beyond the atomic trajectories on-line. You must
therefore be prepared to post-process the HISTORY file if you want other information.
There are some utilities in the DL_POLY _2 package to help with this, but the list is far
from exhaustive. In time, we hope to have many more. Our users are invited to submit
code to the DL_POLY_2 public library to help with this.

The utilities available are described in the DL_POLY _2 Reference Manual, Chapter 6.
Users should also be aware that many of these utilities are incorporated into the DL_POLY
Graphical User Interface [8].

3.3.5 Choosing Ewald Sum Variables
3.3.5.1 Ewald sum and SPME

This section outlines how to optimise the accuracy of the Ewald sum parameters for a
given simulation. In what follows the directive spme may be used anywhere in place of the
directive ewald if the user wishes to use the Smoothed Particle Mesh Ewald method.

As a guide to beginners DL_POLY _2 will calculate reasonable parameters if the ewald
precision directive is used in the CONTROL file (see section 4.1.1). A relative error (see
below) of 1079 is normally sufficient so the directive

ewald precision 1d-6
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will cause DL_POLY _2 to evaluate its best guess at the Ewald parameters o, kmax1, kmax2
and kmax3. (The user should note that this represents an estimate, and there are some-
times circumstances where the estimate can be improved upon. This is especially the case
when the system contains a strong directional anisotropy, such as a surface.) These four
parameters may also be set explicitly by the ewald sum directive in the CONTROL file.
For example the directive

ewald sum 0.35 6 6 8

would set o = 0.35 A~!, kmax1 = 6, kmax2 = 6 and kmax3 = 8. The quickest check on
the accuracy of the Ewald sum is to compare the Coulombic energy (U) and the coulombic
virial (W) in a short simulation. Adherence to the relationship U = —W shows the extent
to which the Ewald sum is correctly converged. These variables can be found under the
columns headed eng_cou and vir_cou in the OUTPUT file (see section 4.2.2).

The remainder of this section explains the meanings of these parameters and how they
can be chosen. The Ewald sum can only be used in a three dimensional periodic system.
There are three variables that control the accuracy: «, the Ewald convergence parameter;
reut the real space forces cutoff; and the kmax1,2,3 integers ' that effectively define the
range of the reciprocal space sum (one integer for each of the three axis directions). These
variables are not independent, and it is usual to regard one of them as pre-determined and
adjust the other two accordingly. In this treatment we assume that r.y; (defined by the
cutoff directive in the CONTROL file) is fixed for the given system.

The Ewald sum splits the (electrostatic) sum for the infinite, periodic, system into
a damped real space sum and a reciprocal space sum. The rate of convergence of both
sums is governed by a. Evaluation of the real space sum is truncated at r = rey so it is
important that o be chosen so that contributions to the real space sum are negligible for
terms with r > rey. The relative error (€) in the real space sum truncated at rey is given
approximately by

€ ~ erfe(areut) /Teus = exp[—(a.reut)?]/Teut (3.1)

The recommended value for « is 3.2/rq, or greater (too large a value will make the
reciprocal space sum very slowly convergent). This gives a relative error in the energy of no
greater than € = 4 x 1079 in the real space sum. When using the directive ewald precision
DL_POLY_2 makes use of a more sophisticated approximation:

erfe(z) =~ 0.56 exp(—2?) /x (3.2)

to solve recursively for «, using equation 3.1 to give the first guess.
The relative error in the reciprocal space term is approximately

€ & xP(—kinay /40%) [Kiaa (3.3)
where 5
kmaz = % kmax (3.4)

1Important note: For the SPME method the values of kmax1,2,3 should be double those obtained in
this prescription, since they specify the sides of a cube, not a radius of convergence.
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is the largest k-vector considered in reciprocal space, L is the width of the cell in the
specified direction and kmax is an integer.
For a relative error of 4 x 107> this means using kyae = 6.2c. kmax is then

kmax > 3.2 L/Tcut (3.5)

In a cubic system, 7¢yy = L/2 implies kmax = 7. In practice the above equation
slightly over estimates the value of kmax required, so optimal values need to be found
experimentally. In the above example kmax = 5 or 6 would be adequate.

If your simulation cell is a truncated octahedron or a rhombic dodecahedron then the
estimates for the kmax need to be multiplied by 2'/2. This arises because twice the normal
number of k-vectors are required (half of which are redundant by symmetry) for these
boundary contributions [37].

If you wish to set the Ewald parameters manually (via the ewald sum or spme sum
directives) the recommended approach is as follows. Preselect the value of r.u, choose a
working a value of « of about 3.2 /7y and a large value for the kmax (say 10 10 10 or more).
Then do a series of ten or so single step simulations with your initial configuration and with
« ranging over the value you have chosen plus and minus 20%. Plot the Coulombic energy
(and —W) versus «. If the Ewald sum is correctly converged you will see a plateau in the
plot. Divergence from the plateau at small « is due to non-convergence in the real space
sum. Divergence from the plateau at large « is due to non-convergence of the reciprocal
space sum. Redo the series of calculations using smaller kmax values. The optimum values
for kmax are the smallest values that reproduce the correct Coulombic energy (the plateau
value) and virial at the value of a to be used in the simulation.

Note that one needs to specify the three integers (kmax1, kmax2, kmax3) referring to
the three spatial directions, to ensure the reciprocal space sum is equally accurate in all
directions. The values of kmax1, kmax2 and kmax3 must be commensurate with the cell
geometry to ensure the same minimum wavelength is used in all directions. For a cubic cell
set kmax1 = kmax2 = kmax3. However, for example, in a cell with dimensions 24 = 2B = C
(ie. a tetragonal cell, longer in the ¢ direction than the a and b directions) use 2kmax1 =
2kmax2 = (kmax3).

If the values for the kmax used are too small, the Ewald sum will produce spurious
results. If values that are too large are used, the results will be correct but the calculation
will consume unnecessary amounts of c¢pu time. The amount of cpu time increases with
kmax1 X kmax2 X kmax3.

3.3.5.2 Hautman Klein Ewald Optimisation

Setting the HKE parameters can also be achieved rather simply, by the use of a hke
precision directive in the CONTROL file e.g.

hke precision 1d-6 1 1

which specifies the required accuracy of the HKE convergence functions, plus two additional
integers; the first specifying the order of the HKE expansion (nhko) and the second the
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maximum lattice parameter (nlatt). DL_POLY_2 will permit values of nhko from 1-3,
meaning the HKE Taylor series expansion may range from zeroth to third order. Also
nlatt may range from 1-2, meaning that (1) the nearest neighbour, and (2) and next nearest
neighbour, cells are explicitly treated in the real space part of the Ewald sum. Increasing
either of these parameters will increase the accuracy, but also substantially increase the cpu
time of a simulation. The recommended value for both these parameters is 1 and if both
these integers are left out, the default values will be adopted.

As with the standard Ewald and SPME methods, the user may set alternative control
parameters with the CONTROL file hke sum directive e.g.

hke sum 0.056 6 11

which would set & = 0.05 A~!, kmax1 = 6, kmax2 = 6. Once again one may check the
accuracy by comparing the Coulombic energy with the virial, as described above. The last
two integers specify, once again, the values of nhko and nlatt respectively. (Note it is
possible to set either of these to zero in this case.)

Estimating the parameters required for a given simulation follows a similar procedure
as for the standard Ewald method (above), but is complicated by the occurrence of higher
orders of the convergence functions. Firstly a suitable value for @ may be obtained when
nlatt=0 from the rule: o = /rcu, where 7oy is the largest real space cutoff compatible
with a single MD cell and =(3.46,4.37,5.01,5.55) when nhko=(0,1,2,3) respectively. Thus
in the usual case where nhko=1, $=4.37. When nlatt=£0, this § value is multiplied by a
factor 1/(2 * nlatt + 1).

The estimation of kmax1,2 is the same as that for the standard Ewald method above.
Note that if any of these parameters prove to be insufficiently accurate, DL_POLY_2 will
issue an error in the OUTPUT file, and indicate whether it is the real or reciprocal space
sums that is questionable.

3.4 DL _POLY 2 Error Processing

3.4.1 The DL_POLY 2 Internal Error Facility

DL_POLY_2 contains a number of in-built error checks scattered throughout the package
which detect a wide range of possible errors. In all cases, when an error is detected the
subroutine ERROR is called, resulting in an appropriate message and termination of the
program execution (either immediately, or after additional processing.).

Users intending to insert new error checks should ensure that all error checks are per-
formed concurrently on all nodes, and that in circumstances where a different result may
obtain on different nodes, a call to the global status routine GSTATE is made to set the
appropriate global error flag on all nodes. Only after this is done, a call to subroutine
ERROR may be made. An example of such a procedure might be:

logical safe
safe=(test_condition)
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call gstate(safe)
if (.not.safe) call error(node_id,message number)

In this example it is assumed that the logical operation test_condition will result in the
answer .true. if it is safe for the program to proceed, and .false. otherwise. The call to
ERROR requires the user to state the identity of the calling node (node_id), so that only
the nominated node in ERROR (i.e. node 0) will print the error message. The variable
message_number is an integer used to identify the appropriate message to be printed.

In all cases, if ERROR is called with a non-negative message number, the program run
terminates. If the message number is negative, execution continues, but even in this case
DL_POLY_2 will terminate the job at a more appropriate place. This feature is used in
processing the CONTROL and FIELD file directives. A possible modification users may
consider is to dump additional data before the call to ERROR is made.

A full list of the DL_.POLY_2 error messages and the appropriate user action can be
found in Appendix C of this document.



Chapter 4

DL POLY 2 Data Files
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Scope of Chapter

This chapter describes all the input and output files for DL_POLY_2 , examples of which
are to be found in the data sub-directory.
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4.1 The INPUT files

REVCON
CONFIG OUTPUT
CONTROL HISTORY *
FIELD == STATIS *
TABLE * RDFDAT *
REVOLD* ZDNDAT *
REVIVE

Figure 4.1: DL_POLY_2 input (left) and output (right) files. Note: files marked with an
asterisk are non-mandatory.

DL_POLY_2 requires six input files named CONTROL, CONFIG, FIELD, TABLE,
TABEAM and REVOLD. The first three files are mandatory, while TABLE and TABEAM
are used only to input certain kinds of pair potential, and are not always required. REVOLD
is required only if the job represents a continuation of a previous job. In the following
sections we describe the form and content of these files.

4.1.1 The CONTROL File

The CONTROL file is read by the subroutine SIMDEF and defines the control variables for
running a DL_POLY _2 job. It makes extensive use of directives and keywords. Directives
are character strings that appear as the first entry on a data record (or line) and which



©CCLRC 110

invoke a particular operation or provide numerical parameters. Also associated with each
directive may be one or more keywords, which may qualify a particular directive by, for
example, adding extra options. Directives have the following general form:

keyword [options| {data}

The keyword and options are text fields, while the data options are numbers (integers
or reals).

Directives can appear in any order in the CONTROL file, except for the finish directive
which marks the end of the file. Some of the directives are mandatory (for example the
timestep directive that defines the timestep), others are optional.

This way of constructing the file is very convenient, but it has inherent dangers. It is, for
example, quite easy to specify the same directive more than once, or specify contradictory
directives, or invoke algorithms that do not work together. By and large DL_POLY _2 tries
to sort out these difficulties and print helpful error messages, but it does not claim to be
foolproof. Fortunately in most cases the CONTROL file will be small and easy to check
visually. It is important to think carefully about a simulation beforehand and ensure that
DL_POLY 2 is being asked to do something that is physically reasonable. It should also be
remembered that the present capabilites the package may not allow the simulation required
and it may be necessary for you yourself to add new features.

An example CONTROL file appears below. The directives and keywords appearing are
described in the following section.

DL_POLY TEST CASE 1: K Na disilicate glass
temperature 1000.0
pressure 0.0000

ensemble nve

integrator leapfrog

steps 500
equilibration 200
multiple step 5
scale 10
print 10
stack 100
stats 10
rdf 10
timestep 0.0010
primary cutoff  9.0000
cutoff 12.030
delr width 1.0000

rvdw cutoff 7.6000
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ewald precision 1.0E-5

print rdf

job time 1200.0
close time 100.00
finish

4.1.1.1 The CONTROL file format

The file is free-formatted, integers, reals and additional keywords are entered following the
keyword on each record. Real and integer numbers must be separated by a non-numeric
character (preferably a space or comma) to be correctly interpreted. No logical variables
appear in the control file. Comment records (beginning with a #) and blank lines may be
added to aid legibility (see example above). The CONTROL file is not case sensitive.

e The first record in the CONTROL file is a header 80 characters long, to aid identifi-
cation of the file.

e The last record is a finish directive, which marks the end of the input data.

Between the header and the finish directive, a wide choice of control directives may be
inserted. These are described below.

4.1.1.2 The CONTROL File Directives

The directives available are as follows.

directive: meaning:
all pairs use all pairs for electrostatic calculations
cap f cap forces during equilibration period

fis maximum cap in units of kT /A
(default f=1000)

close time f set job closure time to fseconds

collect include equilibration data in overall statistics

coul calculate coulombic forces

cut f set required forces cutoff to f (A)

distan calculate coulombic forces using distance dependent dielectric
delr f set Verlet neighbour list shell width to f (A)

ensemble nve select NVE ensemble (default)

ensemble nvt ber f
select NVT ensemble with Berendsen thermostat
with relaxation constant f (ps)

ensemble nvt evans
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select NVT ensemble with Evans thermostat

ensemble nvt hoover f

select NVT ensemble with Hoover-Nose thermostat
with relaxation constant f (ps)

ensemble npt ber f; fo

select Berendsen NPT ensemble with fi, fo
as the thermostat and barostat relaxation times (ps)

ensemble npt hoover fi fo

select Hoover NPT ensemble with f, fo
as the thermostat and barostat relaxation times (ps)

ensemble nst ber f; fo

select Berendsen No'T' ensemble, with fi, fo
as the thermostat and barostat relaxation times (ps)

ensemble nst hoover f; fo

ensemble pmf
eps f

equil n

ewald precision f

select Hoover NgT ensemble with f1, fo

as the thermostat and barostat relaxation times (ps)
select (NVE) potential of mean force ensemble

set relative dielectric constant to f (default 1.0)
equilibrate simulation for first n timesteps

select Ewald sum for electrostatics, with

automatic parameter optimisation (0 < f < .5)

ewald sum « k1 k2 k3

finish
hke precision f i j

hke sum « k1 k2 i j

integrator type

job time f

select Ewald sum for electrostatics, with:

o = Ewald convergence parameter (A=)

k1 = maximum k-vector index in x-direction

k2 = maximum k-vector index in y-direction

k3 = maximum k-vector index in z-direction

close the CONTROL file (last data record)

select HK-Ewald sum for electrostatics, with
automatic parameter optimisation (0 < f < .5)

i = required order of HKE expansion (recommend 1)
j = required lattice sum order (recommend 1)

select HK-Ewald sum for electrostatics, with:

o = Ewald convergence parameter (A=)

k1 = maximum g-vector index in x-direction

k2 = maximum g-vector index in y-direction

nhko = required order of HKE expansion (recommend 1)
nlatt = required lattice sum order (recommend 1)

select type of integration algorithm:

leapfrog : leapfrog integration algorithm (default)
velocity : velocity Verlet integration algorithm

set job time to fseconds

112



©CCLRC

mult n
no elec
no vdw

pres f
prim f

print n
print rdf
quaternion f
rdf f

reaction
restart

restart scale

rvdw f

scale n

shake f

shift

spme precision f

113

set multiple timestep (multi-step)interval (activated when n>2)

ignore coulombic interactions

ignore short range (non-bonded) interactions

set required system pressure to fkatm

(target pressure for constant pressure ensembles)
set primary cutoff to f (A)

(for multiple timestep algorithm only)

print system data every n timesteps

print radial distribution functions

set quaternion tolerance to f (default 10~%)
calculate radial distribution functions at intervals
of ftimesteps

select reaction field electrostatics

restart job from end point of previous run

(i.e. continue current simulation)

restart job from previous run with temperature scaling
(i.e. begin a new simulation from older run)

set required vdw forces cutoff to f (A)

rescale atomic velocities every n steps (during equilibration)

set shake tolerance to f (default 10~%)

calculate electrostatic forces using shifted coulombic potential

select Ewald sum for electrostatics, with
automatic parameter optimisation (0 < f < .5)

spme sum « kI k2 k3

stack n
stats n
steps n
temp f
trajijk

timestep f
zden
Zero

select Ewald sum for electrostatics, with:

o = Ewald convergence parameter (A=)

k1 = maximum k-vector index in x-direction
k2 = maximum k-vector index in y-direction
k8 = maximum k-vector index in z-direction
set rolling average stack to n timesteps
accumulate statistics data every n timesteps
run simulation for n timesteps

set required simulation temperature to f K
write HISTORY file with controls:

i = start timestep for dumping configurations
j = timestep interval between configurations
k = data level (i.e. variable keytrj see table 4.3)
set timestep to f ps

calculate the z-density profile

perform zero temperature MD run
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4.1.1.3 Further Comments on the CONTROL File

1. A number of the directives (or their mutually exclusive alternatives) are manda-
tory:

(a) timestep: specifying the simulation timestep;
(b) temp or zero : specifying the system temperature (not mutually exclusive);

(c) ewald sum or ewald precision or spme sum or spme precision or hke sum
or hke precision or coul or shift or distan or reaction or no elec: specifying
the required coulombic forces option;

(d) cut and delr: specifying the short range forces cutoff and Verlet strip;
(e) prim: specifying primary forces cutoff (if mult>2 only).

2. The job time and close time directives are required to ensure a controlled close
down procedure when a job runs out of time. The time specified by the job time
directive indicates the total time allowed for the job. (This must obviously be set
equal to the time specified to the operating system when the job is submitted.) The
close time directive represents the time DL_POLY 2 will require to write and close
all the data files at the end of processing. This means the effective processing time
limit is equal to the job time minus the close time. Thus when DL_POLY _2 reaches
the effective job time limit it begins the close down procedure with enough time in
hand to ensure the files are correctly written. In this way you may be sure the restart
files etc. are complete when the job terminates. Note that setting the close time too
small will mean the job will crash before the files have been finished. If it is set too
large DL_POLY_2 will begin closing down too early. How large the close time needs
to be to ensure safe close down is system dependent and a matter of experience. It
generally increases with the job size.

3. The starting options for a simulation are governed by the keyword restart. If this
is not specified in the CONTROL file, the simulation will start as new. If specifed,
it will either continue a previous simulation (restart) or start a new simulation with
initial temperature scaling of the previous configuration (restart scale) or without
initial temperature scaling (restart noscale). Internally these options are handled
by the integer variable keyres, which is explained in table 4.1.

4. The various ensemble options (i.e. nve, nvt ber, nvt evans, nvt hoover, npt
ber, npt hoover, nst ber, nst hoover) are mutually exclusive, though none is
mandatory (the default is the NVE ensemble). These options are handled internally
by the integer variable keyens. The meaning of this variable is explained in table 4.2.

5. The force selection directives ewald sum, ewald precision, reaction, coul, shift,
dist, no elec and no vdw are handled internally by the integer variable keyfce. See
table 4.4 for an explanation of this variable. Note that these options are mutually
exclusive.
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6.

10.

11.

12.

13.

The choice of reaction field electrostatics (directive reaction) requires also the spec-
ification of the relative dielectric constant external to the cavity. This is specified in
the eps directive.

DL_POLY_2 uses as many as three different potential cutoffs. These are as follows:

(a) cut - this is the universal cutoff. It applies to the real space part of the elec-
trostatics calculations and to the van der Waals potentials if no other cutoff is
applied;

(b) rvdw - this is the user-specified cutoff for the van der Waals potentials. If not
specified its value defaults to rcut. It cannot exceed cut;

(¢) rprim - this is used in the multiple timestep algorithm to specify the primary
atom region (see section 2.5.8). It has no meaning if the multiple timestep option
is not used.

Some directives are optional. If not specified DL_POLY_2 will take default values if
necessary. The defaults appear in the above table.

The zero directive, enables a zero temperature simulation. This is intended as a
crude energy minimizer to help relax a system before a simulation begins. It should
not be thought of as a true energy minimization method.

The DL_POLY _2 multiple timestep option is invoked if the number appearing with
the mult directive is greater than 2. This number (stored in the variable multt)
specifies the number of timesteps (the multi-step) that elapse between partitions of
the full Verlet neighbour list into primary and secondary atoms.

If a multiple time-step is used, (i.e. multt>2), then statistics for radial distribution
functions are collected only at updates of the secondary neighbour list. The num-
ber specified on the rdf directive (the variable nstbgr) means that RDF data are
accumulated at intervals of nstbgr xmultt timesteps.

As a default, DL_POLY _2 does not store statistical data during the equilibration
period. If the directive collect is used, equilibration data will be incorporated into
the overall statistics.

The directive delr specifies the width of the border to be used in the Verlet neighbour
list construction. The width is stored in the variable delr. The list is updated
whenever two or more atoms have moved a distance of more then delr/2 from their
positions at the last update of the Verlet list.

Users are advised to study the example CONTROL files appearing in the data sub-
directory to see how different files are constructed.
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Table 4.1: Internal Restart Key

keyres meaning
0 | start new simulation from CONFIG file,
and assign velocities from Gaussian distribution.
1 | continue current simulation
2 | start new simulation from CONFIG file,
and rescale velocities to desired temperature
3 | start new simulation from CONFIG file,
without rescaling the velocities
Table 4.2: Internal Ensemble Key
keyens meaning
0 | Microcanonical ensemble (NVE)
1 | Evans NVT ensemble
2 | Berendsen NVT ensemble
3 | Nosé-Hoover NV'T ensemble
4 | Berendsen NPT ensemble
5 | Nosé-Hoover NPT ensemble
6 | Berendsen NoT ensemble
7 Nosé—HooverTVgT ensemble
8 | Potential of mean force (NVE) ensemble
Table 4.3: Internal Trajectory File Key
keytrj meaning

0 | coordinates only in file
1 | coordinates and velocities in file
2 | coordinates, velocities and forces in file

116



©CCLRC

Table 4.4: Non-bonded force key

keyfce meaning
odd | evaluate short-range potentials and electrostatics
even | evaluate Electrostatic potential only
Electrostatics are evaluated as follows:
07, 11 | Ignore Electrostatic interactions
2, 3 | Ewald summation
4, 5 | distance dependent dielectric constant
6, 7 | standard truncated Coulombic potential
8, 9 | truncated and shifted Coulombic potential
10,11 | Reaction Field electrostatics
12,13 | SPME electrostatics
14,15 | Hautman-Klein Ewald electrostatics

T keyfce = 0 means no non-bonded terms are evaluated.

I keyfce = 1 means only short-range potentials are evaluated.

117
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4.1.2 The CONFIG File

The CONFIG file contains the dimensions of the unit cell, the key for periodic boundary
conditions and the atomic labels, coordinates, velocities and forces. This file is read by
the subroutine SYSGEN. (It is also read by the subroutine SIMDEF if the ewald precision
directive is used.) The first few records of a typical CONFIG file are shown below:

Icel structure 6x6x6 unit cells with proton disorder
2 3
26.988000000000000  0.000000000000000  0.000000000000000
-13.494000000000000 23.372293600000000  0.000000000000000
0.000000000000000  0.000000000000000 44.028000000000000

ow 1

-2.505228382 -1.484234330 -7.274585343

0.5446573999 -1.872177437 -0.7702718106
3515.939287 13070.74357 4432.030587
HW 2

-1.622622646 -1.972916834 -7.340573742
1.507099154 -1.577400769 4.328786484
7455.527553 -4806.880540 -1255.814536
HW 3

-3.258494716 -2.1256627191 -7.491549620
2.413871957 -4.336956694 2.951142896

-7896.278327 -8318.045939 -2379.766752
ow 4

0.9720599243E-01 -2.503798635 -3.732081894
1.787340483 -1.021777575 0.5473436377
9226.455153 9445.662860 5365.202509

etc.

4.1.2.1 Format

The file is fixed-formatted: integers as “i10”, reals as “f20.0”. The header record is format-
ted as 80 alphanumeric characters.

4.1.2.2 Definitions of Variables

record 1
header a80 title line
record 2
levctg integer CONFIG file key. See table 4.5 for permitted values
imcon integer Periodic boundary key. See table 4.6 for permitted values
record 3 omitted if imcon = 0

cell(1l) real x component of a cell vector
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cell(2) real y component of a cell vector

cell(3) real z component of a cell vector
record 4 omitted if imcon = 0

cell(4) real x component of b cell vector

cell(5) real y component of b cell vector

cell(6) real z component of b cell vector
record 5 omitted if imcon = 0

cell(7) real x component of ¢ cell vector

cell(8) real y component of ¢ cell vector

cell(9) real z component of ¢ cell vector

Subsequent records consists of blocks of between 2 and 4 records depending on the
value of the levcfg variable. Each block refers to one atom. The atoms must be listed
sequentially in order of increasing index. Within each block the data are as follows:

record i
atmnam a8 atom name.
index integer  atom index
atmnum integer  atomic number
record ii
XXX real x coordinate
yyy real y coordinate
ZZZ real z coordinate
record iii included only if levefg > 0
VXX real x component of velocity
vyy real y component of velocity
vzz real x component of velocity
record iv included only if levefg > 1
fxx real x component of force
fyy real y component of force
fzz real z component of force

Note that on record i only the atom name is mandatory, any other items are not read
by DL_POLY_2 but may be added to aid alternative uses of the file, for example the
DL_POLY_2 Graphical User Interface [8].

4.1.2.3 Further Comments

The CONFIG file has the same format as the output file REVCON (section 4.2.3). When
restarting from a previous run of DL_POLY 2 (i.e. using the restart or restart scale di-
rectives in the CONTROL file - above), the CONFIG file must be replaced by the REVCON
file, which is renamed as the CONFIG file. The copy macro in the execute sub-directory of
DL_POLY_2 does this for you.
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Table 4.5: CONFIG file key (record 2)

levcig meaning
0 | Coordinates included in file
1 | Coordinates and velocities included in file
2 | Coordinates, velocities and forces included in file

Table 4.6: Periodic boundary key (record 2)

imcon meaning
0 | no periodic boundaries
1 | cubic boundary conditions
2 | orthorhombic boundary conditions
3 | parallelepiped boundary conditions
4 | truncated octahedral boundary conditions
5 | rhombic dodecahedral boundary conditions
6 | x-y parallelogram boundary conditions with
no periodicity in the z direction
7 | hexagonal prism boundary conditions
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4.1.3 The FIELD File

The FIELD file contains the force field information defining the nature of the molecular
forces. It is read by the subroutine SYSDEF. Excerpts from a force field file are shown
below. The example is the antibiotic Valinomycin in a cluster of 146 water molecules.

Valinomycin Molecule with 146 SPC Waters
UNITS kcal

MOLECULES 2

Valinomycin
NUMMOLS 1
ATOMS 168
0 16.0000 -0.4160 1
0S 16.0000 -0.4550 1
n n n n
HC 1.0080 0.0580
C 12.0100 0.4770
BONDS 78
harm 31 19 674.000 1.44900
harm 33 31 620.000 1.52600
n n n n n
harm 168 19 980.000 1.33500
harm 168 162 634.000 1.52200

CONSTRAINTS 90
20 19 1.000017
22 21 1.000032

166 164 1.000087
167 164 0.999968

ANGLES 312
harm 43 2 44 200.00 116.40
harm 69 5 70 200.00 116.40

n n n n n n
harm 18 168 162 160.00 120.40
harm 19 168 162 140.00 116.60
DIHEDRALS 371
harm 1 43 2 44 2.3000 180.00

harm 31 43 2 44 2.3000 180.00
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cos 149 17 161 16 10.500 180.00
cos 162 19 168 18 10.500 180.00
FINISH
SPC Water
NUMMOLS 146
ATOMS 3

ow 16.0000 -0.8200

HW 1.0080 0.4100

HW 1.0080 0.4100

CONSTRAINTS 3
1 2 1.0000
1 3 1.0000
2 3 1.63299

FINISH

VDW 45

C C 1j 0.12000 3.2963
C CT 1j 0.08485 3.2518
n n n n n

ow 0S 1j 0.15100 3.0451
0S 0S 1j 0.15000 2.9400
CLOSE

4.1.3.1 Format

The FIELD file is free formatted (though it should be noted that atom names are limited
to 8 characters and potential function keys are a maximum of 4 characters). The contents
of the file are variable and are defined by the use of directives. Additional information is
associated with the directives. The file is not case sensitive.

4.1.3.2 Definitions of Variables
The file divides into three sections: general information, molecular descriptions, and non-
bonded interaction descriptions, appearing in that order in the file.

4.1.3.2.1 General information

The first record in the FIELD file is the title. It must be followed by the units directive.
Both of these are mandatory. These records may optionally be followed by the neut
directive.

record 1
header a80 field file header
record 2
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units ad0 Unit of energy used for input and output
record 3 (optional)
neut a40 activate the neutral/charge groups option for

the electrostatic calculations

The energy units on the units directive are described by additional keywords:
a eV, for electron-volts

b kcal, for k-calories mol™!

¢ kJ, for k-Joules mol~!

d K, for Kelvin~!

e internal, for DL_POLY 2 internal units (10 J mol~!).

If no units keyword is entered, DL_POLY _2 units are assumed for both input and output.
The units keyword may appear anywhere on the data record provided it does not exceed
column 40. The units directive only affects the input and output interfaces, all internal
calculations are handled using DL_POLY _2 units.

4.1.3.2.2 Molecular details

It is important for the user to understand that there is an organisational correspondence
between the FIELD file and the CONFIG file described above. It is required that the order
of specification of molecular types and their atomic constituents in the FIELD file follows
the order in which they appear in the CONFIG file. Failure to adhere to this common
sequence will be detected by DL_POLY_2 and result in premature termination of the job.
It is therefore essential to work from the CONFIG file when constructing the FIELD file.
It is not as difficult as it sounds!

The entry of the molecular details begins with the mandatory directive:

molecules n

where n is an integer specifying the number of different types of molecule appearing in
the FIELD file. Once this directive has been encountered, DL_POLY _2 enters the molecular
description environment in which only molecular decription keywords and data are valid.

Immediately following the molecules directive, are the records defining individual
molecules:

1. name-of-molecule
which can be any character string up to 80 characters in length. (Note: this is not a
directive, just a simple character string.)
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2. nummols n
where n is the number of times a molecule of this type appears in the simulated
system. The molecular data then follow in subsequent records:

3. atoms n
where n indicates the number of atoms in this type of molecule. A number of records
follow, each giving details of the atoms in the molecule i.e. site names, masses and
charges. Each record carries the entries:

sitnam a8 atomic site name

weight real atomic site mass

chge real atomic site charge

nrept integer repeat counter

ifrz integer ‘frozen’ atom (if ifrz> 0)
igrp integer neutral/charge group number

Note that these entries are order sensitive. Do not leave blank entries unless all
parameters appearing after the last specified are void. The integer nrept need not be
specified (in which case a value of 1 is assumed.) A number greater than 1 specified
here indicates that the next (nrept - 1) entries in the CONFIG file are ascribed the
atomic characteristics given in the current record. The sum of the repeat numbers for
all atoms in a molecule should equal the number specified by the atoms directive.

4. shell n m
where n is the number of core-shell units and m is an integer specifying which shell
model is required:

e m=1 for adiabatic shell model,

e m=2 for relaxed shell model;

Each of the subsequent n records contains:

index 1 integer site index of core
index 2 integer site index of shell
spring real force constant of core-shell spring

The spring force constant is entered in units of engunit A~2, where engunit is the
energy unit specified in the units directive. The adiabatic and relaxed shell models
are mutually exclusive options in the same simulation.

Note that the atomic site indices referred to in this table are indices arising from
numbering each atom in the molecule from 1 to the number specified in the atoms
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directive for this molecule. This same numbering scheme should be used for all de-
scriptions of this molecule, including the bonds, constraints, angles, and dihe-
drals entries described below. DL_POLY _2 will itself construct the global indices for
all atoms in the systems.

This directive (and associated data records) need not be specified if the molecule
contains no core-shell units.

5. bonds n
where n is the number of flexible chemical bonds in the molecule. Each of the subse-
quent n records contains:

bond key ad see table 4.7

index 1 integer first atomic site in bond

index 2 integer second atomic site in bond
variable 1 real potential parameter see table 4.7
variable 2 real potential parameter see table 4.7
variable 3 real potential parameter see table 4.7
variable 4 real potential parameter see table 4.7

The meaning of these variables is given in table 4.7. This directive (and associated
data records) need not be specified if the molecule contains no flexible chemical bonds.
See the note on the atomic indices appearing under the shell directive above.

6. constraints n
where n is the number of constraint bonds in the molecule. Each of the following n
records contains:

index 1 integer first atomic index
index 2 integer second atomic index
bondlength real constraint bond length

This directive (and associated data records) need not be specified if the molecule
contains no constraint bonds. See the note on the atomic indices appearing under the
shell directive above.

7. pmf b
where b is the potential of mean force bondlength (A). There follows the definitions
of two PMF units:

(a) pmf unit n;
where nq is the number of sites in the first unit. The subsequent n; records
provide the site indices and weighting. Each record contains:



©CCLRC 126
Table 4.7: Chemical bond potentials
key potential type | Variables (1-4) functional form
harm | Harmonic kE | 7o U(r) = 3k(r —ro)?
-hrm
mors | Morse Ey |70 | k U(r) = Eo[{1 — exp(—k(r —r0))}? — 1]
-mrs
12-6 | 12-6 A | B U(r) = (%) - (%)
-126
rhrm | Restraint k| ro|re U(r) = %k(r —7g)? |r —ro| < 7re
U(r) = %/{:7‘3 + kro(|r —rol — 7o) |r—rol > e
-rhm
quar | Quartic k| ro | K |E" | Ulr)= %(r —19)? + %(r —70)% + %N(r —7ro)*
-qur
buck | Buckingham Alp|C U(r) = Aexp(—r/p) — C/r®
-bck

Note: bond potentials with a dash (-) as the first character of the keyword, do not con-
tribute to the excluded atoms list (see section 2.1). In this case DL_POLY_2 will also
calculate the nonbonded pair potentials between the described atoms, unless these are
deactivated by another potential specification.

index
weight

(b) pmf unit ny

integer
real

atomic site index
site weighting

where ny is the number of sites in the second unit. The subsequent ny records
provide the site indices and weighting. Each record contains:

index
weight

integer
real

atomic site index
site weighting

This directive (and associated data records) need not be specified if no PMF con-
straints are present. See the note on the atomic indices appearing under the shell
directive above. The pmf bondlength applies to the distance between the centres of
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the two pmf units. The centre, R, of each unit is given by

E — Za wafa
Za Wey

where r,, is a site position and w,, the site weighting. Note that the pmf constraint is
intramolecular. To define a constraint between two molecules, the molecules must be
described as part of the same DL_POLY “molecule”. This is illustrated in test case
6, where a pmf constraint is imposed between a potassium ion and the centre of mass
of a water molecule. DL_POLY _2 allows only one type of pmf constraint per system.
The value of nummols for this molecule determines the number of pmf constraint in
the system.

Note that the directive ensemble pmf must be specified in the CONTROL file for
this option to be implemented correctly.

8. angles n
where n is the number of valence angle bonds in the molecule. Each of the n records
following contains:

angle key ad potential key. See table 4.8

index 1 integer first atomic index

index 2 integer second atomic index (central site)
index 3 integer third atomic index

variable 1 real potential parameter see table 4.8
variable 2 real potential parameter see table 4.8

The meaning of these variables is given in table 4.8. See the note on the atomic
indices appearing under the shell directive above. This directive (and associated
data records) need not be specified if the molecule contains no angular terms.
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Table 4.8: Valence Angle potentials

key potential type Variables (1-4) functional formf
harm | Harmonic k | 6 U = %(9 — 6p)?
-hrm
quar | Quartic k|| K | K" |U®) =%0-00)%+ %(9 —00)3 + %(0 — 6p)*
-qur
thrm | Truncated harmonic | k | 6y | p U0) = £(0 — 0)? exp[—(rf; +15,)/p°]
-thm
shrm | Screened harmonic k|6 | p1 | p2 U(0) = 5(0 — 00)% exp[—(rij/p1 + Tit/ p2)]
-shm
bvsl | Screened Vessal[24] | k | 6y | p1 | p2 U() = W {[(00 —m)? (0 — 7r)2]2}
-bv1l exp|—(rij/p1 + Tir/ p2)]
bvs2 | Truncated Vessal[25] | k |6y | a | p | U(0) =k[0°(6 — 00)*( + 6y — 2m)* — gmo~!
-bv2 (0 — 60)*(m — 00)°] exp[—(r(; +15,)/p%]
hcos Harmonic Cosine k | 6 U9) = %(608(9) — cos(6p))?
-hcs
cos Cosine Al d | m U(0) = A[l + cos(mb — 9)]
-cos
mmsb | MM Stretch-bend A | Oy | dap | dae U) = A0 —00)(rap — dap)(Tac — dac)
-msb

10 is the a-b-c angle.

Note: valence angle potentials with a dash (-) as the first character of the keyword, do
not contribute to the excluded atoms list (see section 2.1). In this case DL_POLY_2 will
calculate the nonbonded pair potentials between the described atoms.
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9.

10.

11.

dihedrals n
where n is the number of dihedral interactions present in the molecule. Each of the
following n records contains:

dihedral key ad potential key. See table 4.9

index 1 integer first atomic index

index 2 integer second atomic index

index 3 integer third atomic index

index 4 integer fourth atomic index

variable 1 real potential parameter see table 4.9

variable 2 real potential parameter see table 4.9

variable 3 real potential parameter see table 4.9

variable 4 real 1-4 electrostatic interaction scale factor.
variable 5 real 1-4 Van der Waals interaction scale factor.

The meaning of the variables 1-3 is given in table 4.9. The variables 4 and 5 specify
the scaling factor for the 1-4 electrostatic and Van der Waals nonbonded interactions
respectively. This directive (and associated data records) need not be specified if
the molecule contains no dihedral angle terms. See the note on the atomic indices
appearing under the shell directive above.

inversions n
where n is the number of inversion interactions present in the molecule. Each of the
following n records contains:

inversion key ad potential key. See table 4.10
index 1 integer first atomic index

index 2 integer second atomic index

index 3 integer third atomic index

index 4 integer fourth atomic index

variable 1 real potential parameter see table 4.10
variable 2 real potential parameter see table 4.10

The meaning of the variables 1-2 is given in table 4.10. This directive (and associated
data records) need not be specified if the molecule contains no inversion angle terms.
See the note on the atomic indices appearing under the shell directive above.

rigid n
where n is the number of rigid units in the molecule. It is followed by at least n
records, each specifying the sites in a rigid unit:

m integer number of sites in rigid unit
site 1 integer first site atomic index
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Table 4.9: Dihedral Angle Potentials

key potential type Variables (1-4) functional formi
cos Cosine Al d |m U(¢) = A[1l + cos(me¢ — 0)]
harm | Harmonic E | ¢o U(p) = 3k(¢ — ¢o)?
hcos | Harmonic cosine | k | ¢o U(p) = %(cos(qb) — cos(¢p))?
cos3 | Triple cosine A | Ay | A U(¢) = 3A1(1 + cos(¢)) + 3 A2(1 — cos(2¢))
+3A3(1 + cos(3¢))
ryck | Ryckaert- A U(¢) = A(ag + aicosp — azcos? ¢ + azcos’ o+
Bellemans ascost¢ + ascos®p) [ag — as pre-set]
rbf Fluorinated B U(¢) = B(by — bicosp — bacos’ e — bzcos3p+
Ryckaert- bycos* ¢ + bscos®p + bgexp(—br (¢ — 7))
Bellemans [bp — bg pre-set]
opls | OPLS Ag | A1 | Ay | A3 | U(¢) = Ao + 5(A1(1 + cos(9)) + Aa(1 — cos(2¢))
+As3(1 4 cos(39)))

1¢ is the a-b-c-d dihedral angle.

site 2
site 3

site m

integer
integer

integer

second site atomic index
third site atomic index
etc.

m’th site atomic index

Up to 15 sites can be specified on the first record. Additional records are used if
necessary. Up to 16 sites are specified per record thereafter.

This directive (and associated data records) need not be specified if the molecule
contains no rigid units. See the note on the atomic indices appearing under the shell
directive above.

12.

teth n

where n is the number of tethered atoms in the molecule. It is followed by n records
specifying the tethered sites in the molecule:

tether key
index

ad
integer

tethering potential key see table 4.11
atomic index




©CCLRC

131

Table 4.10: Inversion Angle Potentials

key potential type Variables (1-2) functional formi
harm | Harmonic k ®o U(g) = 3k(¢ — ¢o)?
hcos | Harmonic cosine | k oo U(p) = %(COS((JS) — cos(¢p))?
plan | Planar A U(¢) = A[l — cos(9)]

1¢ is the inversion angle.

variable 1
variable 2
variable 3
variable 4

real
real
real
real

potential parameter see table 4.11
potential parameter see table 4.11
potential parameter see table 4.11
potential parameter see table 4.11

This directive (and associated data records) need not be specified if the molecule
contains no tethered atoms. See the note on the atomic indices appearing under the
shell directive above.

Table 4.11: Tethering potentials

key potential type | Variables (1-3) functional form
harm | Harmonic k U(r) = $kr?
rhrm | Restraint k| re U(r) = $kr? r<re
U= %kr? + kre(r —1re) r>re
quar | Quartic k| K k" U(r) = §T2 + %/7“3 + %/7“4
13. finish

This directive is entered to signal to DL_POLY_2 that the entry of the details of a
molecule has been completed.

The entries for a second molecule may now be entered, beginning with the name-of-
molecule record and ending with the finish directive.

The cycle is repeated until all the types of molecules indicated by the molecules
directive have been entered.
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The user is recommended to look at the example FIELD files in the data directory to
see how typical FIELD files are constructed.

4.1.3.3 Non-bonded Interactions

Non-bonded interactions are identified by atom types as opposed to specific atomic indices.
The first type of non-bonded potentials are the pair potentials. The input of pair potential
data is signalled by the directive:

vdw n

where n is the number of pair potentials to be entered. There follows n records, each
specifying a particular pair potential in the following manner:

atmnam 1 a8 first atom type

atmnam 2 a8 second atom type

key ad potential key. See table 4.12
variable 1 real potential parameter see table 4.12
variable 2 real potential parameter see table 4.12
variable 3 real potential parameter see table 4.12
variable 4 real potential parameter see table 4.12
variable 5 real potential parameter see table 4.12

The variables pertaining to each potential are described in table 4.12. Note that any pair
potential not specified in the FIELD file, will be assumed to be zero.
The specification of three body potentials is initiated by the directive:

tbp n

where n is the number of three-body potentials to be entered. There follows n records,
each specifying a particular three body potential in the following manner:

atmnam 1 a8 first atom type
atmnam 2 a8 second atom type (central site)
atmnam 3 a8 third atom type

key ad potential key. See table 4.13
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Table 4.12: Definition of pair potential functions and variables

key potential type Variables (1-5) functional form
12-6 | 12-6 A | B U(r) = (%) _ (ﬁﬁ)
1j Lennard-Jones | € | o U(r) = 4e {(%)12 B (%)6}
mn | v By | n |m| U(r) = gy m ()" = (2)"]
buck | Buckingham Al p|C U(r) = A exp (_%) — T%
bhm | Born-Huggins | A | B| o | C | D U(r) = A exp[B(oc — )] — TQG — TQS
-Meyer
hbnd | 12-10 H-bond | A | B U(r) = (%) _ (%)
snm | Shifted force! | E, | n | m | ro | vt Ur) = ( ,?5‘7’1) X
v e ()" = (3)"y —mm ()" (3)7)]
nmaE, [ T—7o B\" _ (B\™
tn-m) ( o >{(7) (v) }
mors | Morse Ey|ro| k U(r) = Eo[{1 — exp(—k(r —r9))}? — 1]
tab Tabulation tabulated potential

T Note: in this formula the terms «, § and v are compound expressions involving the
variables F,,n,m,ry and r.. See section 2.3.1 for further details.

! Note: r. defaults to the general van der Waals cutoff (rvdw or rcut) if it is set to zero or
not specified or not specified in the FIELD file.
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Table 4.13: Three-body potentials

key potential type

Variables (1-4)

functional formt

hbnd | H-bond [6]

thrm | Truncated harmonic k 0o
shrm | Screened harmonic k 0o
bvsl | Screened Vessal[24] k 6o

bvs2 | Truncated Vessal[25] | & 6o

Dpy | Rup

p
P1 | P2
P1 | P2
a | p

U(0) = 5(6 — 00)? exp[—(r§; +15,)/p°]
U(0) = £(0 — 00)% exp[—(rij/p1 + Tis/ p2)]

U(0) = s {1060 — )% — (0 — m)2)
exp|—(rij/p1 + Tik/p2)]

U(e) = k[@“(@ — 90)2(9 —+ 90 — 27-‘-)2 _ %ﬂ.a—l
(6= B0)2(x = 00)*] expl=(rf; +13) /o]

U(6) = Dppcos*(0)[5(Rnp/7jx)"> — 6(Rnp/7jk) "]

10 is the a-b-c angle.

variable 1
variable 2
variable 3
variable 4
variable 5

real
real
real
real
real

potential parameter see table 4.13
potential parameter see table 4.13
potential parameter see table 4.13
potential parameter see table 4.13
cutoff range for this potential (A)

The variables pertaining to each potential are described in table 4.13. Note that the fifth
variable is the range at which the three body potential is truncated. The distance is in A,
measured from the central atom.

The specification of four body potentials is initiated by the directive:

fbp n

where n is the number of four-body potentials to be entered. There follows n records,
each specifying a particular four-body potential in the following manner:

atmnam 1
atmnam 2
atmnam 3
atmnam 4
key

variable 1
variable 2
variable 3

a8
a8
a8
a8
a4
real
real
real

first atom type (central site)
second atom type

third atom type

fourth atom type

potential key. See table 4.14
potential parameter see table 4.14
potential parameter see table 4.14
cutoff range for this potential (A)
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The variables pertaining to each potential are described in table 4.14. Note that the third
variable is the range at which the four-body potential is truncated. The distance is in A,
measured from the central atom.

Table 4.14: Four-body Potentials

key potential type Variables (1-2) functional formi
harm | Harmonic k oo U(o) = %k(qﬁ — ¢o)?
hcos | Harmonic cosine | k do U(g) = %(cos(d)) — cos(¢o))?
plan | Planar A U(¢) = A[l — cos(9)]

1¢ is the inversion angle.

4.1.3.4 Metal Potentials

Metal potentials in DL_POLY_2 are based on the embedded atom model (EAM) [29, 30]
and the Finnis-Sinclair model (FSM)[31] .

The EAM potentials are tabulated and are supplied to DL_POLY_2 in the input file
TABEAM4.1.6 (see below).

The FSM potentials are analytical and DL_POLY _2 supports the explicit forms due to:
Finnis and Sinclair [31] ; Sutton and Chen [3, 33] ; and Gupta [35] ;

Metal potentials, like van der Waals potentials are also non-bonded potentials and
are characterised by atom types rather than specific atomic indices. The input of metal
potential data is signalled by the directive:

metal n

where n is the number of metal potentials to be entered. There follows n records, each
specifying a particular metal potential in the following manner:

atmnam 1 a8 first atom type

atmnam 2 a8 second atom type

key ad potential key. See table 4.15
variable 1 real potential parameter see table 4.15
variable 2 real potential parameter see table 4.15
variable 3 real potential parameter see table 4.15

variable 4 real potential parameter see table 4.15
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variable 5 real
variable 6 real
variable 7 real

potential parameter see table 4.15
potential parameter see table 4.15
potential parameter see table 4.15
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The variables pertaining to each potential are described in table 4.15. Note that any metal
potential not specified in the FIELD file, will be assumed to be zero. This includes cross

terms for alloys!

Table 4.15: Metal Potential

key potential type Variables (1-7) functional form
eam | EAM tabulated potential
fnsc | Finnis-Sinclair | ¢o | ¢1 [ o | ¢ | A | d| B | Ui(r) =3 ;.(rij — ¢)*(co + errg + cary) — Ay/pi
j#i
pi= 3 [y =0 + g7
J#i
stch | Sutton-Chen elaln|m|ec Ui(r) =€ [% %ﬁ:@' %)n —c ]
n=2 ()
gupt | Gupta Alrg| p|B| g U(r) =35 § Aexp( Tij— m) B./pi
i

Both EAM and FSM potentials can handle alloys, but care must be taken to enter the
cross terms of the potentials explicitly. Note that the rules for defining cross terms of the
potential are not the usual rules encountered in Lennard-Jones systems see section (2.3.5).

4.1.3.5 The Tersoff Potential

The Tersoff potential [4] is designed to reproduce the effects of covalency in systems com-
posed of group 4 elements in the periodic table (carbon, silicon, germanium etc) and their
alloys. Like the metal potentials these are also non-bonded potentials characterised by atom
types rather than specific atomic indices. The input of Tersoff potential data is signalled

by the directive:

tersoff n
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Where n is the number of specified Tersoff potentials. It is followed by 2n records
specifying n particular Tersoff single atom type parameters and n(n+1)/2 records specifying
cross atom type parameters in the following manner:

potential 1 : record 1

atmnam a8 atom type
key ad potential key, see Table 4.16
variable 1 real potential parameter, see Table 4.16
variable 2 real potential parameter, see Table 4.16
variable 3 real potential parameter, see Table 4.16
variable 4 real potential parameter, see Table 4.16
variable 5 real cutoff range for this potential (A) 4.16
potential 1 : record 2
variable 6 real potential parameter, see Table 4.16
variable 7 real potential parameter, see Table 4.16
variable 8 real potential parameter, see Table 4.16
variable 9 real potential parameter, see Table 4.16
variable 10 real potential parameter, see Table 4.16
variable 11 real potential parameter, see Table 4.16

potential n : record 2n —1
potential n : record 2n

cross term 1 : record 2n +1

atmnam 1 a8 first atom type

atmnam 2 a8 second atom type

variable a real potential parameter, see Table 4.16
variable b real potential parameter, see Table 4.16

cross term n(n+1)/2 : record 2n+n(n+1)/2

The variables pertaining to each potential are described in Table 4.16.
Note that the fifth variable is the range at which the particular Tersoff potential is
truncated. The distance is in A.

4.1.3.6 External Field

The presence of an external field is flagged by the extern directive. The next line in the
FIELD file should have another directive indicating what type of field is to be applied. On
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Table 4.16: Tersoff Potential

key | potential type | Variables (1-5,6-11,a-b) | functional form
ters | Tersoff Ala | B|b|R Potential form
(single) Si1B|nlc|d| h as shown in
Section
(cross) X | w 2.3.3

the following lines comes the mxf1d parameters, five per line, that describe the field. In the
include files supplied with DL_POLY_2 mxf1d is set to 10.
The variables pertaining to each potential are described in table 4.17.

Table 4.17: External fields

key potential type Variables (1-4) functional formt
elec Electric field E, | E, E, F=qF
oshm | Oscillating Shear Al n F, = Acos(2nm.z/L,)
shrx | Continuous Shear A | 2 | 2 |> 20t v, = (1/2)A(] 2| /2)
grav | Gravitational Field | G, y . F=m.G
magn | Magnetic Field H, | H, H, F=qux H)
sphr | Containing Sphere | A | Ry n Rewt | 7> Rewy: £ =A(Ry —1r)™"
zbnd | Repulsive wall A | Zy | f=41 zf > Zof: F, = —A(z — Zp)
(harmonic)
4.1.3.7 Closing the FIELD File

The FIELD file must be closed with the directive:

close

which signals the end of the force field data. Without this directive DL_POLY 2 will

abort.




©CCLRC 139

4.1.4 The REVOLD File

This file contains statistics arrays from a previous job. It is not required if the current job
is not a continuation of a previous run (ie. if the restart directive is not present in the
CONTROL file - see above). The file is unformatted and therefore not readable by normal
people. DL_POLY_2 normally produces the file REVIVE (see section 4.2.4) at the end of
a job which contains the statistics data. REVIVE should be copied to REVOLD before a
continuation run commences. This may be done by the copy macro supplied in the execute
sub-directory of DL_POLY_2 .

4.1.4.1 Format

The REVOLD file is unformatted. All variables appearing are written in native real*8
representation. Nominally integer quantities (e.g. the timestep number nstep) are repre-
sented by the the nearest real number. The contents are as follows (the dimensions of array
variables are given in brackets and are defined in the appropriate Fortran modules).

record 1:

nstep timestep of final configuration

numacc number of configurations used in averages

numrdf number of configurations used in rdf averages

chit thermostat momentum

chip barostat momentum

conint conserved quantity for selected ensemble

nzden number of configurations used in z density
record 2:

virtot total system virial

vircom rigid body COM virial

eta scaling factors for simulation cell matrix elements (9)

strcns constraint stress tensor elements (9)

strbod rigid body stress tensor elements (9)
record 3:

stpval instantaneous values of thermodynamic variables (mxnstk)
record 4:

sumval average values of thermodynamic variables (mxnstk)
record 5:

ssqval fluctuation (squared) of thermodynamic variables (mxnstk)
record 6:

zumval running totals of thermodynamic variables (mxnstk)
record T:

ravval rolling averages of thermodynamic variables (mxnstk)
record 8:

stkval stacked values of thermodynamic variables (mxstak xmxnstk)
record 9:

xx0 x component of atomic displacement (MSD) (mxatms)
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yyo y component of atomic displacement (MSD) (mxatms)
zz0 z component of atomic displacement (MSD) (mxatms)
record 10:
XXS x-coordinates of tether points (mxatms)
yys y-coordinates of tether points (mxatms)
zzs z-coordinates of tether points (mxatms)
record 11:
rdf (Optional) RDF array (mxrdf xmxvdw)
record 12:
zdens (Optional) z-density array (mxrdf xmxsvdw)

4.1.4.2 Further Comments

Note that recompiling DL_POLY_2 with a different DL_PARAMS.INC file, may render any
existing REVOLD file unreadable by the code.

4.1.5 The TABLE File

The TABLE file provides an alternative way of reading in the short range potentials - in
tabular form. This is particularly useful if an analytical form of the potential does not exist
or is too complicated to specify in the FORGEN subroutine. The table file is read by the
subroutine FORTAB.F in the VDW_TERMS.F file..

The option of using tabulated potentials is specified in the FIELD file (see above). The
specific potentials that are to be tabulated are indicated by the use of the tab keyword
on the record defining the short range potential (see table 4.12). The directive vdwtable
may be used in place of vdw to indicate that one or more of the short ranged potentials is
specified in the form of a table.

4.1.5.1 Format

The file is fixed-formatted with integers as “i10”, reals as “e15.8”. Character variables are
read as “a8”. The header record is formatted as 80 alphanumeric characters.

4.1.5.2 Definitions of Variables

record 1
header a80 file header
record 2
delpot real mesh resolution in A
cutpot real cutoff used to define tables A

ngrid integer number of grid points in tables
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The subsequent records define each tabulated potential in turn, in the order indicated by
the specification in the FIELD file. Each potential is defined by a header record and a set
of data records with the potential and force tables.

header record:

atom 1 a8 first atom type
atom 2 a8 second atom type
potential data records: (number of data records = Int((ngrid+3)/4))
data 1 real data item 1
data 2 real data item 2
data 3 real data item 3
data 4 real data item 4
force data records: (number of data records = Int((ngrid+3)/4))
data 1 real data item 1
data 2 real data item 2
data 3 real data item 3
data 4 real data item 4

4.1.5.3 Further Comments

It should be noted that the number of grid points in the TABLE file should not be less than
the number of grid points DL_.POLY 2 is expecting. (This number is given by the param-
eter mxgrid, which is defined in the PARSET.F subroutine in the SETUP_PROGRAM.F file.)
DL_POLY 2 will re-interpolate the tables if ngrid>mxgrid, but will abort if ngrid<mxgrid.

The potential and force tables are used to fill the internal arrays vvv and ggg respectively
(see section 2.3.1). The contents of force arrays are derived from the potential via the
formula: 9

G(r) = —TEU(T).

Note this is not the same as the true force.

Important The potential and force arrays in the TABLE file are written in the same
units as the FIELD file. So if you specified a particular unit using the UNITS directive
in the FIELD file, the same units are expected here. It is useful to note that the definition
of the force arrays given above means that the units are the same as for the potential - i.e.
are handled using the same conversion factors.

4.1.6 The TABEAM File

The TABEAM file contains the tabulated potential functions (no explicit analytic form)
describing the EAM metal interactions in the MD system. This file is read by the subroutine
METTAB.

The EAM potential for an n component metal alloy requires the specification of n
electron density functions (one for each atom type) and n embedding functions (again one
for each atom type) and n(n + 1)/2 cross pair potential functions. This makes n(n + 5)/2
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functions in total. Note that the option of using EAM interactions must also be explicitly
declared in the FIELD file so that for the n component alloy there are n(n+1)/2 cross pair
potential (eam) keyword entries in FILED (see above). (Note that all metal interactions
must be of the same type!)

4.1.6.1 The TABEAM File Format

The file is free-formatted but blank and commented lines are not allowed.

4.1.6.2 Definitions of Variables

record 1
header al00 file header
record 2
numpot integer number of potential functions in file

The subsequent records define the n(n+5)/2 functions for an n component alloy - n electron
density functions (one for each atom type) - density keyword, n embedding functions (again
one for each atom type) - embeding keyword, and n(n+1)/2 cross pair potential functions
- pairs keyword. The functions may appear in any random order in TABEAM as their
identification is based on their unique keyword, defined first in the function’s header record.
The header record is followed by a predefined number of data records as a maximum of
four data per record are read in - allowing for incompletion of the very last record.

header record:

keyword ad type of EAM function: dens, embed or pair
atom 1 a8 first atom type
atom 2 a8 second atom type - only specified for pair potential functions
ngrid integer number of function data points to read in
limit 1 real lower interpolation limit in Afor dens and pair
or in density units for embed
limit 2 real upper interpolation limit in Afor dens and pair

or in density units for embed
function data records: (number of data records = Int((ngrid+3)/4))

data 1 real data item 1
data 2 real data item 2
data 3 real data item 3

data 4 real data item 4
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4.2 The OUTPUT Files

DL_POLY _2 produces up to seven output files: HISTORY, OUTPUT, REVCON, REVIVE,
RDFDAT, ZDNDAT and STATIS. These respectively contain: a dump file of atomic co-
ordinates, velocities and forces; a summary of the simulation; the restart configuration;
statistics accumulators; radial distribution data, Z-density data and a statistical history.

4.2.1 The HISTORY File

The HISTORY file is the dump file of atomic coordinates, velocities and forces. Its principal
use is for off-line analysis. The file is written by the subroutines TRAJECT or TRAJECT_U.
The control variables for this file are 1traj, nstraj, istraj and keytrj which are cre-
ated internally, based on information read from the traj directive in the CONTROL file
(see above). The HISTORY file will be created only if the directive traj appears in the
CONTROL file. Note that the HISTORY file can be written in either a formatted or
unformatted version. We describe each of these separately below.

The HISTORY file can become wvery large, especially if it is formatted. For serious
simulation work it is recommended that the file be written to a scratch disk capable of
accommodating a large data file. Alternatively the file may be written as unformatted
(below), which has the additional advantage of speed. However, writing an unformatted
file has the disadvantage that the file may not be readily readable except by the machine
on which it was created. This is particularly important if graphical processing of the data
is required.

4.2.1.1 The Formatted HISTORY File

The formatted HISTORY file is written by the subroutine TRAJECT and has the following
structure.

record 1 (a80)

header a80 file header
record 2 (3i10)
keytrj integer trajectory key (see table 4.3)
imcon integer periodic boundary key (see table 4.6)
natms integer number of atoms in simulation cell

For timesteps greater than nstraj the HISTORY file is appended at intervals speci-
fied by the traj directive in the CONTROL file, with the following information for each
configuration:

record i (a8,4i10,f12.6)

timestep a8 the character string “timestep”
nstep integer the current time-step
natms integer number of atoms in configuration

keytrj integer trajectory key (again)
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imcon integer
tstep real
record ii (3g12.4) for imcon > 0
cell(1) real
cell(2) real
cell(3) real
record iii (3g12.4) for imcon > 0
cell(4) real
cell(5) real
cell(6) real
record iv (3gl2.4) for imcon > 0
cell(7) real
cell(8) real
cell(9) real
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periodic boundary key (again)
integration timestep

x component of a cell vector
y component of a cell vector
z component of a cell vector

x component of b cell vector
y component of b cell vector
z component of b cell vector

x component of ¢ cell vector
y component of ¢ cell vector
z component of ¢ cell vector

This is followed by the configuration for the current timestep. i.e. for each atom in the

system the following data are included:

record a (a8,i10,2f12.6)

atmnam a8
iatm i10
weight f12.6
charge f12.6
record b (3el2.4)
XXX real
yyy real
Z2ZZ real

record c (3el2.4) only for keytrj > 0
VXX real
vyy real
vzz real

record d (3e12.4) only for keytrj > 1
fxx real
fyy real
fzz real

atomic label

atom index

atomic mass (a.m.u.)
atomic charge (e)

x coordinate
y coordinate
7 coordinate

x component of velocity
y component of velocity
z component of velocity

x component of force
y component of force
z component of force

Thus the data for each atom is a minimum of two records and a maximum of 4.

4.2.1.2 The Unformatted HISTORY File

The unformatted HISTORY file is written by the subroutine TRAJECT_U and has the fol-

lowing structure:



©CCLRC 145

record 1
header configuration name (character*80)
record 2
natms number of atoms in the configuration (real*8)
record 3
atname(1,...,natms) atom names or symbols (character*8)
record 4
weight(1,...,natms) atomic masses (real*8)
record 5
charge(1,...,natms) atomic charges (real*8)

For time-steps greater than nstraj, the HISTORY file is appended, at intervals specified
by the traj directive in the CONTROL file, with the following information:

record i

nstep the current time-step (real*8)

natms number of atoms in configuration (real*8)

keytrj trajectory key (real*8)

imcon image convention key (real*8)

tstep integration timestep (real*8)
record ii for imcon > 0

cell(l,...,9) a, b and c cell vectors (real*8)
record iii

xxx(1,...,natms) atomic x-coordinates (real*8)
record iv

yyy(1,...,natms) atomic y-coordinates (real*8)
record v

zzz(1,...,natms) atomic z-coordinates (real*)
record vi only for keytrj> 0

vxx(1,...,natms) atomic velocities x-component (real*8)
record vii only for keytrj> 0

vyy(1,...,natms) atomic velocities y-component (real*8)
record viii only for keytrj> 0

vzz(1,...,natms) atomic velocities z-component (real*8)
record ix only for keytrj> 1

fxx(1,...,natms) atomic forces x-component (real*8)
record x only for keytrj> 1

fyy(1,...,natms) atomic forces y-component (real*8)
record xi only for keytrj> 1

fzz(1,...,natms) atomic forces z-component (real*8)

Note the implied conversion of integer variables to real on record i.
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4.2.2 The OUTPUT File

The job output consists of 7 sections: Header; Simulation control specifications; Force
field specification; Summary of the initial configuration; Simulation progress; Summary
of statistical data; Sample of the final configuration; and Radial distribution functions.
These sections are written by different subroutines at various stages of a job. Creation of
the OUTPUT file always results from running DL_POLY_2 . It is meant to be a human
readable file, destined for hardcopy output.

4.2.2.1 Header

Gives the DL_POLY_2 version number, the number of processors used and a title for the
job as given in the header line of the input file CONTROL. This part of the file is written
from the subroutines DLPOLY and SIMDEF

4.2.2.2 Simulation Control Specifications

Echoes the input from the CONTROL file. Some variables may be reset if illegal values
were specified in the CONTROL file. This part of the file is written from the subroutine
SIMDEF.

4.2.2.3 Force Field Specification

Echoes the FIELD file. A warning line will be printed if the system is not electrically
neutral. This warning will appear immediately before the non-bonded short-range potential
specifications. This part of the file is written from the subroutine SYSDEF.

4.2.2.4 Summary of the Initial Configuration

This part of the file is written from the subroutine SYSGEN. It states the periodic boundary
specification, the cell vectors and volume (if appropriate) and the initial configuration of
(a maximum of) 20 atoms in the system. The configuration information given is based on
the value of levcfg in the CONFIG file. If 1levcfg is 0 (or 1) positions (and velocities) of
the 20 atoms are listed. If levcfg is 2 forces are also written out.

For periodic systems this is followed by the long range corrections to the energy and
pressure.

4.2.2.5 Simulation Progress

This part of the file is written by the DL_POLY_2 root segment DLPOLY. The header line
is printed at the top of each page as:

step eng_tot temp_tot eng_cfg eng_vdw eng_cou eng bnd eng_ang eng_dih eng_tet
time (ps) eng_pv temp_rot vir_cfg vir_vdw vir_cou vir_bnd vir_ang vir_con vir_tet
cpu (s) volume temp_shl eng_shl  vir_shl alpha beta gamma vir_pmf press
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The labels refer to :

line 1
step
eng_tot
temp_tot
eng cfg
eng_vdw
eng_cou
eng_bnd
eng-ang
eng_dih
eng_tet

line 2
time (ps)
eng_pv
temp_rot
vir_cfg
vir_vdw
vir_cou
vir_bnd
vir_ang
vir_con
vir_tet

line 3
cpu (s)
volume
temp_shl
eng_shl
vir_shl
alpha
beta
gamma
vir_pmf
press

MD step number

total internal energy of the system

system temperature

configurational energy of the system

configurational energy due to short-range potentials

configurational energy due to electrostatic potential

configurational energy due to chemical bond potentials

configurational energy due to valence angle and three-body potentials
configurational energy due to dihedral inversion and four-body potentials
configurational energy due to tethering potentials

elapsed simulation time (ps) since the beginning of the job
enthalpy of system

rotational temperature

total configurational contribution to the virial

short range potential contribution to the virial

electrostatic potential contribution to the virial

chemical bond contribution to the virial

angular and three body potentials contribution to the virial
constraint bond contribution to the virial

tethering potential contribution to the virial

elapsed cpu time since the beginning of the job

system volume

core-shell temperature

configurational energy due to core-shell potentials
core-shell potential contribution to the virial

angle between b and c cell vectors

angle between ¢ and a cell vectors

angle between a and b cell vectors

Potential of mean force constraint contribution to the virial
pressure

Note: The total internal energy of the system (variable tot_energy) includes all contri-
butions to the energy (including system extensions due to thermostats etc.) It is nominally
the conserved variable of the system, and is not to be confused with conventional system
energy, which is a sum of the kinetic and configuration energies.

The interval for printing out these data is determined by the directive print in the
CONTROL file. At each time-step that printout is requested the instantaneous values of
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the above statistical variables are given in the appropriate columns. Immediately below
these three lines of output the rolling averages of the same variables are also given. The
maximum number of time-steps used to calculate the rolling averages is determined by the
parameter mxstak defined in the PARSET.F subroutine of the SETUP_PROGRAM. /F file. The
working number of time-steps for rolling averages is controlled by the directive stack in file
CONTROL (see above). The default value is mxstak.

Energy Units: The energy unit for the data appearing in the OUTPUT is defined by
the units directive appearing in the CONTROL file.

Pressure units: The unit of pressure is k atm, irrespective of what energy unit is chosen.

4.2.2.6 Summary of Statistical Data

This portion of the OUTPUT file is written from the subroutine RESULT. The number of
time-steps used in the collection of statistics is given. Then the averages over the production
portion of the run are given for the variables described in the previous section. The root
mean square variation in these variables follow on the next two lines. The energy and
pressure units are as for the preceeding section.

Also provided in this section is an estimate of the diffusion coefficient for the different
species in the simulation, which is determined from a single time origin and is therefore
very approximate. Accurate determinations of the diffusion coefficients can be obtained
using the MsSD utility program, which processes the HISTORY file (see chapter 6).

If an NPT or NgT simulation is performed the OUTPUT file also provides the mean
stress (pressure) tensor and mean simulation cell vectors.

4.2.2.7 Sample of Final Configuration

The positions, velocities and forces of the 20 atoms used for the sample of the initial
configuration (see above) are given. This is written by the subroutine RESULT.

4.2.2.8 Radial Distribution Functions

If both calculation and printing of radial distribution functions have been requested (by
selecting directives rdf and print rdf in the CONTROL file) radial distribution functions
are printed out. This is written from the subroutine RDF1. First the number of time-steps
used for the collection of the histograms is stated. Then each function is given in turn. For
each function a header line states the atom types (‘a’ and ‘b’) represented by the function.
Then r, g(r) and n(r) are given in tabular form. Output is given from 2 entries before the
first non-zero entry in the g(r) histogram. n(r) is the average number of atoms of type ‘b’
within a sphere of radius r around an atom of type ‘a’. Note that a readable version of
these data is provided by the RDFDAT file (below).
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4.2.2.9 Z Density Profile

If both calculation and printing of Z density profiles has been requested (by selecting direc-
tives zden and print rdf in the CONTROL file Z density profiles are printed out as the
last part of the OUTPUT file. This is written by the subroutine ZDEN1. First the number
of time-steps used for the collection of the histograms is stated. Then each function is given
in turn. For each function a header line states the atom type represented by the function.
Then z, p(z) and n(z) are given in tabular form. Output is given from Z = [-L/2, L/2]
where L is the length of the MD cell in the Z direction and p(z) is the mean number density.
n(z) is the running integral from —L/2 to z of (xy cell area)p(s)ds. Note that a readable
version of these data is provided by the ZDNDAT file (below).

4.2.3 The REVCON File

This file is formatted and written by the subroutine REVIVE. REVCON is the restart con-
figuration file. The file is written every ndump time steps in case of a system crash during
execution and at the termination of the job. A successful run of DL_POLY_2 will always
produce a REVCON file, but a failed job may not produce the file if an insufficient number
of timesteps have elapsed. ndump is a parameter defined in the PARSET.F subroutine of the
SETUP_PROGRAM.F file found in the srcf90 directory of DL_POLY _2 . Changing ndump ne-
cessitates recompiling DL_POLY_2 . REVCON is identical in format to the CONFIG input
file (see section 4.1.2). REVCON should be renamed CONFIG to continue a simulation
from one job to the next. This is done for you by the copy macro supplied in the execute
directory of DL_POLY_2 .

4.2.4 The REVIVE File

This file is unformatted and written by the subroutine REVIVE. It contains the accumulated
statistical data. It is updated whenever the file REVCON is updated (see previous section).
REVIVE should be renamed REVOLD to continue a simulation from one job to the next.
This is done by the copy macro supplied in the execute directory of DL_.POLY_2 . In
addition, to continue a simulation from a previous job the restart keyword must be included
in the CONTROL file.

The format of the REVIVE file is identical to the REVOLD file described in section
4.1.4.

4.2.5 The RDFDAT File

This is a formatted file containing em Radial Distribution Function (RDF) data. Its con-
tents are as follows:

record 1

cfgname character (A80) configuration name
record 2

ntpvdw integer (i10) number of RDFs in file
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mxrdf integer (i10) number of data points in each RDF

There follow the data for each individual RDF i.e. nipvdw times. The data supplied
are as follows:

first record

atname 1  character (A8) first atom name

atname 2  character (A8) second atom name
following records (mardf records)

radius real (el4) interatomic distance (A)

g(r) real (el4) RDF at given radius.

Note the RDFDAT file is optional and appears when the print rdf option is specified in
the CONTROL file.

4.2.6 The ZDNDAT File

This is a formatted file containing the Z-density data. Its contents are as follows:

record 1

cfgname character (A80) configuration name
record 2

mxrdf integer (i10) number of data points in the Z-density function
following records (mardf records)

z real (el4) distance in z direction (A)

p(2) real (el4) Z-density at given height z

Note the ZDNDAT file is optional and appears when the print rdf option is specified
in the CONTROL file.

4.2.7 The STATIS File

The file is formatted, with integers as “i10” and reals as “e14.6”. It is written by the
subroutine STATIC. It consists of two header records followed by many data records of
statistical data.

record 1

cfgname character configuration name
record 2

string character energy units
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Data records
Subsequent lines contain the instantaneous values of statistical variables dumped from
the array stpval. A specified number of entries of stpval are written in the format
“(1p,5el4.6)”. The number of array elements required (determined by the parameter
mxnstk in the DL_PARAMS.INC file) is

mxnstk > 27 4 ntpatm(number of unique atomic sites)
+9(if stress tensor calculated)

+9(if constant pressure simulation requested)

The STATIS file is appended at intervals determined by the stats directive in the CON-
TROL file. The energy unit is as specified in the CONTROL file with the the units
directive, and are compatible with the data appearing in the OUTPUT file. The contents
of the appended information is:

record i
nstep integer current MD time-step
time real elapsed simulation time = nstepxAt
nument integer number of array elements to follow
record ii stpval(l) — stpval(5)
engcns real total extended system energy
(i.e. the conserved quantity)
temp real system temperature
engcfg real configurational energy
engsrp real VdW /metal/Tersoff energy
engcpe real electrostatic energy
record iii stpval(6) — stpval(10)
engbnd real chemical bond energy
engang real valence angle/3-body potential energy
engdih real dihedral/inversion/four body energy
engtet real tethering energy
enthal real enthalpy (total energy + PV)
record iv stpval(1ll) — stpval(1l5)
tmprot real rotational temperature
vir real total virial
virsrp real VdW /metal /Tersoff virial
vircpe real electrostatic virial
virbnd real bond virial
record v stpval(16) -stpval(20)
virang real valence angle/3-body virial
vircon real constraint virial
virtet real tethering virial
volume real volume

tmpshl real core-shell temperature
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record vi stpval(21) -stpval(25)
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core-shell potential energy
core-shell virial
MD cell angle o
MD cell angle 3
MD cell angle ~

Potential of Mean Force virial
pressure

mean squared displacement of first atom types
mean squared displacement of second atom types

mean squared displacement of last atom types

the next 9 entries - if the stress tensor is calculated

xx component of stress tensor
xy component of stress tensor
xz component of stress tensor
yx component of stress tensor

zz component of stress tensor

the next 9 entries - if a NPT simulation is undertaken

engshl real
virshl real
alpha real
beta real
gamma real
record vii stpval(26) -stpval(27)
virpmf real
press real
the next ntpatm entries
amsd (1) real
amsd (2) real
amsd (ntpatm) real
stress(1) real
stress(2) real
stress(3) real
stress(4) real
. real
stress(9) real
cell(1) real
cell(2) real
cell(3) real
cell(4) real
. real
cell(9) real

x component of a cell vector
y component of a cell vector
z component of a cell vector
x component of b cell vector

z component of ¢ cell vector

Note. The stress tensor is calculated only if the code is compiled with the “-STRESS”
option (see section 3.2.1). Cell shape varying constant pressure simulations (keyword en-
semble nst ... in the CONTROL file) are only possible if the stress tensor is calculated.
If isotropic constant pressure simulations are required, where the cell volume but not the
shape may vary, (keyword ensemble npt ...) the stress tensor need not be calculated.
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Scope of Chapter

This chapter describes the standard test cases for DL_POLY_2 , the input and output files
for which are in the data sub-directory.
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5.1 DL_POLY Examples

5.1.1 Test Cases

The following example data sets (both input and output) are stored in the subdirectory
data. Two versions are provided for the Leapfrog (LF) and Velocity Verlet (VV) algorithms
respectively, so that you may check that your version of DL_POLY is working correctly. All
the jobs are short and should require no more than a few minutes execution time, even on
a single processor computer. he test cases can be chosen by typing

select n a
from the execute directory, where n is the number of the test case and a is either LF or VV.
The select macro will copy the appropriate CONTROL, CONFIG, and FIELD files to the
erecute directory ready for execution. The output files OUTPUT, REVCON and STATIS
may be compared with the files supplied in the data directory.

The example output files provided in the data directory were obtained on 8 processors of
a Cray XD1 parallel system. The program was compiled with the three point interpolation
option.

It should be noted that the potentials and the simulation conditions used in the following
test cases are chosen to demonstrate functionality only. They are not necessarily ap-
propriate for serious simulation of the test systems. Note also that the DL_POLY _2
Graphical User Interface [8] provides a convenient means for running and viewing these test
cases.

5.1.1.1 Test Case 1: KNaSiyO5

Potassium Sodium disilicate glass (NaKSiyOj) using two and three body potentials. Some
of the two body potentials are read from the TABLE file. Electrostatics are handled by
a multiple timestep Ewald sum method. Cubic periodic boundaries are in use. NVE
ensemble.

5.1.1.2 Test Case 2: Metal simulation with Sutton Chen potentials
FCC Aluminium using Sutton-Chen potentials. Temperature is controlled by the method
of Gaussian constraints. NVT Evans ensemble.

5.1.1.3 Test Case 3: An antibiotic in water

Valinomycin in 1223 spc water molecules. The temperature is controlled by a Nosé-Hoover
thermostat while electrostatics are handled by a shifted Coulombic potential. The water
is defined as a rigid body while bond constraints are applied to all chemical bonds in the
valinomycin. Truncated octahedral boundary conditions are used. NVT Hoover ensemble.

5.1.1.4 Test Case 4: Shell model of water

256 molecules of water with a polarizable oxygen atom using adiabatic dynamics. Tem-
perature is controlled by the Berendsen thermostat while electrostatics are handled by the
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reaction field method with a “charge group” cutoff scheme. “Slab” period boundary condi-
tions are used. The water molecule (apart from the shell) is treated as a rigid body. NVT
Berendsen ‘ensemble’.

5.1.1.5 Test Case 5: Shell model of MgCls; at constant pressure

Adiabatic shell model simulation of MgCls. Temperature and pressure are controlled by a
Berendsen thermostat and barostat. An Ewald sum is used with cubic periodic boundary
conditions. NPT Berendsen ‘ensemble’.

5.1.1.6 Test Case 6: PMF calculation

Potential of mean force calculation of a potassium ion in SPC water. Electrostatics are
handled by the Ewald sum. The water is treated as a constrained triangle. PMF ‘ensemble’

5.1.1.7 Test Case 7: Linked rigid bodies

8 biphenyl molecules in cubic boundary conditions. Each phenyl ring is treated as a rigid
body, with a constraint bond to the other ring of the molecule. In the centre of each ring
are three massless charge sites which imparts a quadrupole moment to the ring. NVE
ensemble.

5.1.1.8 Test Case 8: An osmosis experiment with a semi permeable membrane

The membrane is a collection of tethered sites interconnected by harmonic springs. There
are no electrostatic forces in the system. The simulation is run with the Hoover anisotropic
constant presure algorithm. (NST Hoover ensemble.)

5.1.1.9 Test Case 9: A surfactant at the air-water interface

The system is comprised of 32 surfactant molecules (trimethylaminododecane bromide or
TAB-C12) arranged either side of a slab of 342 water molecules approximately 30 A thick.
The surfactant chains are treated with rigid bonds and the water molecules are treated as
rigid bodies. The TAB headgroup has fractional charges summing to +1 (the bromide ion
has charge -1). The Ewald sum handles the electrostatic calculations. The short range
forces are taken from the Dreiding force field. NVE ensemble.

5.1.1.10 Test Case 10: DNA strand in water

This system consists of a strand of DNA 1260 atoms in length in a solution of 706 (SPC) wa-
ter molecules. The DNA is aligned in the Z-direction and hexagonal prism periodic bound-
ary conditions applied. The electrostatic interactions are calculated using the Smoothed
Particle Mesh Ewald method. Note that the system has a strong overall negative charge
which is strongly anisotropic in distribution. The short range forces are taken from the
Dreiding force field, and constraints are used for all covalent bonds. For simplicity H-bonds
are treated as harmonic bonds with an equilibrium bondlength of 1.724 A. NVE ensemble.
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5.1.1.11 Test Case 11: Hautman-Klein test case 1

The system consists of 100 short chain surfactant molecules in a layer simulated under NVE
conditions . The total system size is 2300 atoms and the XY periodicity is a square. The
Dreiding force field describes the molecular interactions. All bonds are harmonic and all
atoms are explicit. The link-cell algorithm is in operation. NVE ensemble.

5.1.1.12 Test Case 12: Hautman-Klein test case 2

This is a simple test system consisting of 1024 charged particles in a layer under NVE
conditions. Lennard Jones forces are used to keep the atoms apart. The similation cell is
square in the XY plane. NVE ensemble.

5.1.1.13 Test Case 13: Carbon Nanotube with Tersoff potential

This system consists of 800 carbon atoms in a nanotube 41.7 A in length. The MD cell is
orthorhombic and square in the XY plane. The integration algorithm is NPT Berendsen.
This is a test for the Tersoff potential . NPT Berendsen ‘ensemble’.

5.1.1.14 Test Case 14: Carbon Diamond with Tersoff potential

This is another test of the Tersoff potential , this time for the carbon diamond structure
consisting of 512 atoms. A cubic MD cell is used with a NST Hoover integration algorithm.
NST Hoover ensemble.

5.1.1.15 Test Case 15: Silicon Carbide with Tersoff potential

This is an alloy system consisting of 2744 atoms of silicon carbide in a diamond structure.
The potential function used is the Tersoff potential . The integration algorithm is NPT
Hoover and the initial MD cell is cubic. NPT Hoover ensemble.

5.1.1.16 Test Case 16: Magnesium Oxide with relaxed shell model

Relaxed shell model of magnesium oxide with 324 sites. The lattice is cubic and the
integration algorithm is NST Berendsen. NST Berendsen ‘ensemble’.

5.1.1.17 Test Case 17: Sodium ion in SPC water

A simple simulation of a sodium ion in 140 SPC water molecules (421 sites in all). The
water molecules are treated as rigid bodies.The algorithm is the NVE ensemble and the
Ewald sum handles the electrostatic forces. The MD box is cubic. NVE ensemble.

5.1.1.18 Test Case 18: Sodium chloride molecule in SPC water

This system resembles test case 17, except that a sodium chloride ion pair is dissolved in
139 SPC water molecules (419 sites in all). The MD cell is cubic and the water molecules
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are treated by constraint dynamics in the NVE Evans scheme. Ewald’s method handles
the electrostatics. NVT Evans ensemble.

5.1.1.19 Test Case 19: Sodium chloride molecule in SPC water

This is a repeat of test case 18, except that half of the water molecules are treated using
constraint dynamics and the rest by rigid body dynamics. The integration algorithm is
NPT Hoover. NPT Hoover ensemble.

5.1.1.20 Test Case 20: Linked benzene ring molecules

This test consists of pairs of benzene rings linked via a rigid (constraint) bond. Each
molecule has 22 atoms and there are 81 molecules, making a total of 1782 sites. The
benzene rings are treated in a variety of ways in the same system. In one third of cases
the benzene rings and hydrogens form rigid groups. In another third the carbon rings are
rigid but the C-H bonds are treated via constraints. In the final third, the C-H bonds are
fully flexible and the rings are rigid. The MD cell is orthorhombic (nearly cubic) and the
integration is NPT hoover. NPT Hoover ensemble.

5.1.1.21 Test Case 21: Aluminium metal with EAM potential

This case presents an example of the use of the EAM potential for metals, in this case
aluminium. The system is 256 atoms and runs under a berendsen NPT enemble.

5.1.1.22 Test Case 22: Copper metal with EAM potential

Another example of a metal with an EAM potential. 256 copper atoms under a Berendsen
NPT ensemble.

5.1.1.23 Test Case 23: Copper-Gold (3/1) alloy with Gupta potential

This is an example of the analytical Gupta potential applied to a copper-gold alloy with
a 3/1 Cu/Au ratio. The system consists of 256 atoms in total running under the NVE
ensemble.

5.1.1.24 Test Case 24: Iron metal with Finnis Sinclair potential

In this example the analytical Finnis-Sinclair potential is applied to iron. The system
consists of 250 iron atoms and runs under a Berendsen NPT ensemble.

5.1.1.25 Test Case 25: Nickel-Aluminium (1/1) alloy with EAM potential

Another example of an alloy using the EAM potential. This is a Nickel-Aluminium alloy
in the 1/1 ratio. The NVE ensemble is used and the system has 432 atoms.
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5.1.1.26 Test Case 26: Nickel metal with EAM potential

Another EAM simulation of a metal. 256 Nickel atoms under the Berendsen NPT ensemble.

5.1.2 Benchmark Cases

These represent rather larger test cases for DL_.POLY_2 that are also suitable for bench-
marking the code on large scale computers. They have been selected to show fairly the the
capabilities and limitations of the code.

5.1.2.1 Benchmark 1

Simulation of metallic aluminium at 300K using a Sutton-Chen density dependent potential.
The system is comprised of 19652 identical atoms. The simulation runs on 16 to 512
processors only.

5.1.2.2 Benchmark 2

Simulation of a 15-peptide in 1247 water molecules. This was designed as an AMBER
comparison. The system consists of 3993 atoms in all and runs on 8-512 processors. It
uses neutral group electrostatics and rigid bond constraints and is one of the smallest
benchmarks in the set.

5.1.2.3 Benchmark 3

Simulation of the enzyme transferrin in 8102 water molecules. The simulation makes use
of neutral group electrostatics and rigid bond constraints. The system is 27539 atoms and
runs on 8-512 processors.

5.1.2.4 Benchmark 4

Simulation of a sodium chloride melt with Ewald sum electrostatics and a multiple timestep
algorithm to enhance performance. The system is comprised of 27000 atoms and runs on
8-512 processors.

5.1.2.5 Benchmark 5

Simulation of a sodium-potassium disilicate glass. Uses Ewald sum electrostatics, a mul-
tiple timestep algorithm and a three-body valence angle potentials to support the silicate
structure. It also using tabluated two-body potentials stored in the file TABLE. The system
is comprised of 8640 atoms and runs on 16-512 processors.

5.1.2.6 Benchmark 6

Simulation of a potassium-valinomycin complex in 1223 water molecules using an adapted
AMBER forcefield and truncated octahedral periodic boundary conditions. The system
size is 3838 atoms and runs on 16-512 processors.
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5.1.2.7 Benchmark 7

Simulation of gramicidin A molecule in 4012 water molecules using neutral group elec-
trostatics. The system is comprised of 12390 atoms and runs on 8-512 processors. This
example was provided by Lewis Whitehead at the University of Southampton.

5.1.2.8 Benchmark 8

Simulation of an isolated magnesium oxide microcrystal comprised of 5416 atoms originally
in the shape of a truncated octahedron. Uses full coulombic potential. Runs on 16-512
processors.

5.1.2.9 Benchmark 9

Simulation of a model membrane with 196 41-unit membrane chains, 8 valinomycin molecules
and 3144 water molecules using an adapted AMBER potential, multiple timestep algorithm
and Ewald sum electrostatics. The system is comprised of 18866 atoms and runs on 8-512
processors.
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Scope of Chapter

This chapter describes the more important utility programs and subroutines of DL_POLY _2
, found in the sub-directory utility. A more complete description of the sub-directory
contents is to be found in the DL_POLY_2 Reference Manual.

6.1 Miscellaneous Utilities

6.1.1 Useful Macros
6.1.1.1 Macros

Macros are simple executable files containing standard unix commands. A number of the
are supplied with DL_POLY and are found in the ezecute sub-directory. The available
macros are as follows.

e cleanup

e copy
e gopoly
o gui
e select
e store
The function of each of these is described below. It is worth noting that most of these
functions can be performed by the DL_POLY 2 java GUI [8].

6.1.1.2 cleanup

cleanup removes several standard data files from the ezecute sub-directory. It contains the
unix commands:

rm OUTPUT REVCON REVOLD STATIS REVIVE gopoly.x*

and removes the files OUTPUT, REVCON, REVOLD, STATIS, REVIVE and gopoly.* (all
variants). It is useful for cleaning the sub-directory up after a run. (Useful data should be
stored elsewhere however!)

6.1.1.3 copy

copy invokes the unix commands:

mv CONFIG CONFIG.OLD
mv REVCON CONFIG
mv REVIVE REVOLD
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which collectively prepare the DL_POLY files in the ezecute sub-directory for the continu-
ation of a simulation. It is always a good idea to store these files elsewhere in addition to
using this macro.

6.1.1.4 gopoly

gopoly is used to submit a DL_POLY job to the Daresbury IBM SP/2, which operates a
LOADLEVELLER job queuing system. It invokes the following script.

#0@ min_processors = 4

#0 max_processors = 4

#0@ job_type = parallel

#0 requirements = (Adapter == "hps_ip") && ( Pool == 2)
#0 executable = /usr/bin/poe

#0 cpu_limit = 00:10:00

#0@ arguments = ~/dl_poly_2.10/execute/DLPOLY.X -euilib ip
#0@ output = gopoly.o

#Q@ error = gopoly.e

#0 class = dev

#Q@ queue

Using LOADLEVELLER, the job is submitted by the unix command:
lIsubmit gopoly

where llsubmit is a local command for submission to the SP/2. The number of required
nodes and the job time are indicated in the above script.
6.1.1.5 gui

gui is a macro that starts up the DL_POLY_2 Java GUI. It invokes the following unix
commands:

java -jar ../java/GUI.jar

In other words the macro invokes the Java Virtual Machine which executes the instruc-
tions in the Java archive file GUI.jar, which is stored in the java subdirectory of DL_POLY _2
. (Note: Java 1.3.0 or a higher version is required to run the GUL.)

6.1.1.6 select

select is a macro enabling easy selection of one of the test cases. It invokes the unix
commands:
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cp ../data/TEST$1/$2/CONTROL CONTROL
cp ../data/TEST$1/$2/FIELD  FIELD
cp ../data/TEST$1/$2/CONFIG CONFIG
cp ../data/TEST$1/$2/TABLE  TABLE

select requires two arguments to be specified:
select n a

where n is the (integer) test case number, which ranges from 1 to 20 and a is the charac-
ter string LF or VV according to which algorithm leapfrog (LF)or velcioty Verlet (VV) is
required.

This macro sets up the required input files in the execute sub-directory to run the n-th
test case.

6.1.1.7 store

The store macro provides a convenient way of moving data back from the ezecute sub-
directory to the data sub-directory. It invokes the unix commands:

mkdir ../data/TEST$1

mkdir ../data/TEST$1/$2

mv OUTPUT ../data/TEST$1/$2/0UTPUT
mv REVCON ../data/TEST$1/$2/REVCON
mv STATIS ../data/TEST$1/$2/STATIS
mv REVIVE ../data/TEST$1/$2/REVIVE
mv RDFDAT ../data/TEST$1/$2/RDFDAT
mv ZDNDAT ../data/TEST$1/$2/ZDNDAT
chmod 400 ../data/TEST$1/$2/*

which first creates a new DL_.POLY data/TEST.. sub-directory and then moves the stan-
dard DL_POLY output data files into it.
store requires two arguments:

store n a

where n is a unique string or number to label the output data in the data/TESTn sub-
directory and a is a string: LF or VV according to the integration algorithm (leafrog - LF
or velocity Verlet - VV).

Note that store sets the file access to read-only. This is to prevent the store macro
overwriting existing data without your knowledge.
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Appendix A

The DL_POLY 2 Makefile

# Master makefile for DL_POLY_2.0
# Author: W. Smith December 2006

#

# Define default settings
BINROQT = ../execute

CC = gcc

EX = DLPOLY.X

EXE = $(BINROOT)/$(EX)
FC=undefined
SHELL=/bin/sh
TYPE=par

#_
# Define object files

0BJ_MOD = setup_module.o angles_module.o bonds_module.o \
config module.o core_shell _module.o dihed_module.o \
ewald_module.o exclude_module.o external_field_module.o \
four_body_module.o hkewald_module.o inversion_module.o \
metal_module.o pmf_module.o property_module.o \
rigid_body_module.o shake_module.o site_module.o \
spme_module.otether_module.o three_body_module.o \
vdw_module.o parse_module.o tersoff_module.o \
pair_module.o

OBJ_ALL

angle_terms.o bond_terms.o core_shell_terms.o \
coulomb_terms.o define_system.o dlpoly.o error.o \
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exclude_terms.o external_field_terms.o force_drivers.o \
four_body_terms.o hkewald_terms.o inversion_terms.o \
neu_coul_terms.o neu_ewald_terms.o nlist_builders.o \

pnf_terms.o rigid_body_terms.o setup_program.o \

shake_terms.o site_terms.o spme_terms.o strucopt.o \
system_properties.o temp_scalers.o tether_terms.o \
three_body_terms.o timchk.o traject.o utility_pack.o \
warning.o tersoff_terms.o parse_tools.o ensemble_tools.o \

kinetic_terms.o

0BJ_LF = 1f_integrate.o 1f_motion_1.o0 1f_rotation_1.o \
1f _rotation_2.0 pmf_1f.o

0BJ_VV

vv_integrate.o vv_motion_1.0 vv_rotation_1.0 \

vv_rotation_2.o0 pmf_vv.o

OBJ_RRR = dihedral_terms.o ewald_terms.o metal_terms.o \
vdw_terms.o

0OBJ_PAR = basic_comms.o merge_tools.o pass_tools.o

H

1
w

# Define targets

all:
Q@echo
Q@echo
@echo
Q@echo
Q@echo
Q@echo
Q@echo
Q@echo
Q@echo
Q@echo
Q@echo

"Error - please specify a target machine!"

"Permissible targets for this Makefile are:"
n n

"gfortran (parallel)"
"hpcx (parallel)"
"crayxdl (parallel)"
"macosx-x1f-gb-mpi (parallel)"
"hitachi-sr2201 (parallel)"
"sg8k-mpi (parallel)"

"Please examine Makefile for details"

# system specific targets follow :

#_

gfortran:

GNU Fortran, MPI version

$ (MAKE) FC="mpif90" LD="mpif90 -o" \
LDFLAGS="-02 -ffast-math" \
FFLAGS="-c -02 -ffast-math" \
EX=$(EX) BINROOT=$(BINROOT) $(TYPE)
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f========= HPCx SP Power 5 ====

$(MAKE) FC="mpxlf" LD="mpxlf -o" \

LDFLAGS="-03 -q64 -gmaxmem=-1" \

FFLAGS="-c -03 -gmaxmem=-1 -qarch=pwrb5 -qtune=pwr5 -qnosave" \
EX=$ (EX) BINROOT=$(BINROOT) $(TYPE)

# Cray XD1 (Portland Group)
crayxdl:
$(MAKE) LD="mpif90 -o" LDFLAGS="" \
FC=mpif90 FFLAGS="-c -0 -Mdalign" \
EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#= === MacOSX-XLF-G5-MPI ===

macosx-x1f-gb-mpi:
$ (MAKE) LD="/opt/ibmcmp/x1£/8.1/bin/x1f -o" \
LDFLAGS="-L/opt/mpich-mx/1ib -lmpich -lpmpich \
-L/opt/mx/1ib -lmyriexpress -L/usr/lib -1SystemStubs" \
FC="/opt/ibmcmp/x1£/8.1/bin/x1f" \
FFLAGS="-c -gstrict -03 -garch=auto -qmaxmem=32768"\
EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

# Hitachi SR2201
hitachi-sr2201:
$(MAKE) FC=xf90 \
FFLAGS="-c -WO0,’form(fixed),opt(0o(3)),langlvl(save(0))’ \
-s,TRACE" intlist.o
$(MAKE) LDFLAGS="" LDLIBS="-1fmpi -lmpi" LD="xf90 -o" \
FC=xf90 \
FFLAGS="-c -WO0, ’form(fixed),opt(o(3)),langlvl(save(0))’ \
-s,TRACE" CC=xcc EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#=========== Silicon Graphics 8000 =
sg8k—mpi:
$(MAKE) LD="f90 -03 -64 -o" FC=f90 LDFLAGS="-lmpi" \
FFLAGS="-c -03 -64" \
EX=$ (EX) BINROOT=$(BINROOT) $(TYPE)

H
w

# Default code for parallel (MPI) execution

par: check $(0BJ_MOD) $(0OBJ_ALL) $(0OBJ_RRR) $(0BJ_PAR)\
$(0BJ_LF) $(0BJ_VV)
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$(LD) $(EX) $(0BJ_MOD) $(0BJ_ALL) $(0OBJ_RRR) \
$(0BJ_LF) $(0BJ_VV) $(0OBJ_PAR)
mv $(EX) $(EXE)

H
1

# Check that a machine has been specified

check:
@if test $(FC) = "undefined";\
then echo "You must specify a target machine!"; \
exit 99;\
fi

H
+

# Clean up the source directory

clean:
rm -f $(0BJ_MOD) $(0BJ_ALL) $(OBJ_RRR) $(OBJ_PAR)\
$(0BJ_LF) $(0BJ_VV) *.mod

#=

# Declare dependencies

.f.o:
$(FC) $(FFLAGS) $x.f

c.o:

$(CC) -c $*.c

H=
H

# Declare dependency on module files

$(0OBJ_ALL) : $(0OBJ_MOD)
$(0BJ_LF): $(0BJ_MOD)
$(0BJ_VV): $(0OBJ_MOD)
$(OBJ_RRR) : $(0BJ_MOD)



Appendix B

Periodic Boundary Conditions in
DL POLY

Introduction

DL_POLY _2 is designed to accommodate a number of different periodic boundary condi-
tions, which are defined by the shape and size of the simulation cell. Briefly, these are
as follows (which also indicates the IMCON flag defining the simulation cell type in the
CONFIG File - see 4.1.2):

1. None e.g. isolated polymer in space. (IMCON=0).

2. Cubic periodic boundaries.(IMCON=1).

3. Orthorhombic periodic boundaries.(IMCON=2).

4. Parallelepiped periodic boundaries.(IMCON=3).

5. Truncated octahedral periodic boundaries. (IMCON=4).
6. Rhombic dodecahedral periodic boundaries. (IMCON=5).
7. Slab (X,Y periodic, Z nonperiodic). (IMCON=6).

8. Hexagonal prism periodic boundaries. (IMCON=T).

We shall now look at each of these in more detail. Note that in all cases the cell vectors
and the positions of the atoms in the cell are to be specified in Angstroms (A).

No periodic boundary (IMCON=0)

Simulations requiring no periodic boundaries are best suited to in vacuuo simulations, such

as the conformational study of an isolated polymer molecule. This boundary condition is

not recommended for studies in a solvent, since evaporation is likely to be a problem.
Note this boundary condition cannot be used with the Ewald summation method.
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Cubic periodic boundaries (IMCON=1)

The cubic MD cell.

The cubic MD cell is perhaps the most commonly used in simulation and has the
advantage of great simplicity. In DL_POLY_2 the cell is defined with the principle axes
passing through the centres of the faces. Thus for a cube with sidelength D, the cell vectors
appearing in the CONFIG file should be: (D,0,0); (0,D,0); (0,0,D). Note the origin of the
atomic coordinates is the centre of the cell.

The cubic boundary condition can be used with the Ewald summation method.

Orthorhombic periodic boundaries (IMCON=2)

The orthorhombic cell is also a common periodic boundary, which closely resembles the
cubic cell in use. In DL_POLY _2 the cell is defined with principle axes passing through the
centres of the faces. For an orthorhombic cell with sidelengths D (in X-direction), E (in
Y-direction) and F (in Z-direction), the cell vectors appearing in the CONFIG file should
be: (D,0,0); (0,E,0); (0,0,F). Note the origin of the atomic coordinates is the centre of the
cell.

The orthorhombic boundary condition can be used with the Ewald summation method.
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The orthorhomic MD cell.

Parallelepiped periodic boundaries (IMCON=3)

ony

The parallelepiped MD cell.

The parallelepiped (e.g. monoclinic or triclinic) cell is generally used in simulations of
crystalline materials, where its shape and dimension is commensurate with the unit cell of
the crystal. Thus for a unit cell specified by three principal vectors a, b, ¢, the MD cell
is defined in the DL_POLY 2 CONFIG file by the vectors (Laj,Lag,Las), (Mby,Mbe,Mbs),
(Nep,Meg,Nes), in which L,M,N are integers, reflecting the multiplication of the unit cell
in each principal direction. Note that the atomic coordinate origin is the centre of the MD
cell.

The parallelepiped boundary condition can be used with the Ewald summation method.

Truncated octahedral boundaries (IMCON=4)
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The truncated octahedral MD cell.

This is one of the more unusual MD cells available in DL._POLY, but it has the advantage
of being more nearly spherical than most other MD cells. This means it can accommodate
a larger spherical cutoff for a given number of atoms, which leads to greater efficiency. This
can be very useful when simulating (for example) a large molecule in solution, where fewer
solvent molecules are required for a given simulation cell width.

The principal axes of the truncated octahedron (see figure) pass through the centres
of the square faces, and the width of the cell, measured from square face to square face
along a principal axis defines the width D of the cell. From this, the cell vectors required
in the DL_POLY_2 CONFIG file are simply: (D,0,0), (0,D,0), (0,0,D). These are also the
cell vectors defining the enscribing cube, which posseses twice the volume of the truncated
octahedral cell. Once again, the atomic positions are defined with respect to the cell centre.

The truncated octahedron can be used with the Ewald summation method.

Rhombic dodecahedral boundaries (IMCON=5)

This is another unusual MD cell (see figure), but which possesses similar advantages to the
truncated octahedron, but with a slightly greater efficiency in its use of the cell volume (the
ratio is about 74% to 68%).

The principal axis in the X-direction of the rhombic dodecahedron passes through the
centre of the cell and the centre of a rhombic face. The Y-axis does likewise, but is set at 90
degrees to the X-axis. The Z-axis completes the orthonormal set and passes through a vertex
where four faces meet. If the width D of the cell is defined as the perpendicular distance
between two opposite faces, the cell vectors required for the DL_POLY_2 CONFIG file are:
(D,0,0), (0,D,0), (0,0,/2D).These also define the enscribing orthorhombic cell, which has
twice the MD cell volume. In DL_POLY_2 the centre of the cell is also the origin of the
atomic coordinates.

The rhombic dodecahedron can be used with the Ewald summation method.
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The rhombic dodecahedral MD cell.

Slab boundary conditions (IMCON=6)

Slab boundaries are periodic in the X- and Y-directions, but not in the Z-direction. They
are particularly useful for simulating surfaces. The periodic cell in the XY plane can be any
parallelogram. The origin of the X,Y atomic coordinates lies on an axis perpendicular to
the centre of the parallelogram. The origin of the Z coordinate is where the user specifies
it, but at or near the surface is recommended.

If the XY parallelogram is defined by vectors A and B, the vectors required in the
CONFIG file are: (A1,A2,0), (B1,B2,0), (0,0,D), where D is any real number (including
zero). If D is nonzero, it will be used by DL_POLY to help determine a ‘working volume’
for the system. This is needed to help calculate RDF's etc. (The working value of D is in
fact taken as one of: 3xcutoff; or 2xmax abs(Z coordinate)4cutoff; or the user specified
D, whichever is the larger.)

Note that the standard Ewald sum cannot be used with this boundary condition.
DL_POLY 2 switches automatically to the Hautman-Klein-Ewald method instead [39].

The surface in a system with charges can also be modelled with DL_POLY 2 if period-
icity is allowed in the Z-direction. In this case slabs of ions well-separated by vacuum zones
in the Z-direction can be handled with IMCON=2 or 3.

Hexagonal prism boundaries (IMCON=7)

In this case the Z-axis lies along a line joining the centres of the hexagonal faces. The Y-
axis is perpendicular to this and passes through the centre of one of the faces. The X-axis
completes the orthonormal set and passes through the centre of an edge that is parallel to
the Z-axis. (Note: It is important to get this convention right!) The origin of the atomic
coordinates is the centre of the cell. If the length of one of the hexagon edges is D, the
cell vectors required in the CONFIG file are: (3D,0,0), (0,4/3D,0), (0,0,H), where H is the
prism height (the distance between hexagonal faces). The orthorhombic cell also defined by
these vectors enscribes the hexagonal prism and possesses twice the volume, but the height
and the centre are the same.
The Ewald summation method may be used with this periodic boundary condition.
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The hexagonal MD cell.

This MD cell is particularly suitable for simulating strands or fibres (i.e. systems with
a pronounced anisotropy in the Z-direction), such as DNA strands in solution, or stretched
polymer chains.



Appendix C

DL _POLY Error Messages and
User Action

Introduction

In this appendix we document the error messages encoded in DL_POLY_2 and the recom-
mended user action. The correct response is described as the standard user response
in the approriate sections below, to which the user should refer before acting on the error
encountered.

The reader should also be aware that some of the error messages listed below may be
either disabled in, or absent from, the installed version of DL_POLY_2 . Disabled messages
generally apply to older releases of the code, while absent messages apply to newer versions
of the code and will not usually apply to previous releases. They are all included for
completeness. Note that the wording of some of the messages may also have changed over
time, usually to provide more specific information. The most recent wording appears below.

DL_POLY_2 incorporates FORTRAN 90 dynamic array allocation to set the array sizes
at run time. It is not foolproof however. Sometimes an estimate of the required array sizes
is difficult to obtain and the calculated value may be too small. For this reason DL_POLY _2
retains a number of array dimension checks and will terminate when an array bound error
occurs.

When a dimension error occurs, the standard user response is to edit the DL_POLY 2
subroutine PARSET.F. Locate where the variable defining the array dimension is fixed and
increase accordingly. To do this you should make use of the dimension information that
DL_POLY_2 prints in the OUTPUT file prior to termination. If no information is supplied,
simply doubling the size of the variable will usually do the trick. If the variable concerned
is defined in one of the support subroutines CFGSCAN.F, FLDSCAN.F, CONSCAN.F you will
need to insert a new line in PARSET.F to redefine it - after the relevant subroutine has been
called! Finally the code must be recompiled, but in this case it will be necessary only to
recompile PARSET.F and not the whole code.
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The DL_POLY _2 Error Messages
Message 1: error - PVM_NODES unset
The code was C-preprocessed with the flag -DPVM set but the number of PVM nodes was

not stated.

Action:

Delete the module INITCOMMS.O from the srcf90 directory and re-make the executable,this
time including the directive PVM_NODES=n (where n is the number of nodes you require)
with the make command.

Message 2: error - machine not a hypercube

The number of nodes on the parallel machine is not a power of 2.

Action:

Specify an appropriate number of processors for job execution. If you are using PVM see
Action: for error message 1.

Message 3: error - unknown directive found in CONTROL file

This error most likely arises when a directive is misspelt.

Action:

Locate incorrect directive in CONTROL file and replace.

Message 4: error - unknown directive found in FIELD file

This error most likely arises when a directive is misspelt or is encountered in an incorrect lo-

cation in the FIELD file, which can happen if too few or too many data records are included.

Action:
Locate the erroneous directive in the FIELD file and correct error.

Message 5: error - unknown energy unit requested

The DL_POLY 2 FIELD file permits a choice of units for input of energy parameters. These
may be: electron volts (ev); kilocalories (kcal); kilojoules (kj); or the DL_POLY 2 internal
units (10 J mol~!) (internal). There is no default value. Failure to specify any of these
correctly, or reference to other energy units, will result in this error message. See documen-

tation of the FIELD file.

Action:
Correct energy keyword on units directive in FIELD file and resubmit.
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Message 6: error - energy unit not specified

A units directive is mandatory in the FIELD file. This error indicates that DL_POLY 2
has failed to find the required record.

Action:
Add units directive to FIELD file and resubmit.

Message 7: error - energy unit respecified
DL_POLY_2 expects only one units directive in the FIELD file. This error results if it

encounters another - implying an ambiguity in units.

Action:
Locate extra units directive in FIELD file and remove.

Message 8: error - time step not specified

DL_POLY 2 requires a timestep directive in the CONTROL file. This error results if none
is encountered.

Action:
Inserttimestep directive in CONTROL file with an appropriate numerical value.

Message 10: error - too many molecule types specified

DL_POLY_2 has a set limit on the number of kinds of molecules it will handle in any sim-
ulation (this is not the same as the number of molecules). If this permitted maximum is
exceeded, the program terminates. The error arises when the molecules directive in the
FIELD file specifes too large a number.

Action:

Standard user response. Fix parameter mxtmls.

Message 11: error - duplicate molecule directive in FIELD file

The number of different types of molecules in a simulation should only be specified once.

If DL_POLY _2 encounters more than one molecules directive, it will terminate execution.

Action:
Locate the extra molecule directive in the FIELD file and remove.

Message 12: error - unknown molecule directive in FIELD file

Once DL_POLY_2 encounters the molecules directive in the FIELD file, it assumes the
following records will supply data describing the intramolecular force field. It does not then
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expect to encounter directives not related to these data. This error message results if it
encounters a unrelated directive. The most probable cause is incomplete specification of
the data (e.g. when the finish directive has been omitted.)

Action:
Check the molecular data entries in the FIELD file and correct.

Message 13: error - molecule species not specified

This error arises when DL_POLY_2 encounters non-bonded force data in the FIELD file,
before the molecular species have been specified. Under these circumstances it cannot as-
sign the data correctly, and therefore terminates.

Action:
Make sure the molecular data appears before the non-bonded forces data in the FIELD file
and resubmit.

Message 14: error - too many unique atom types specified

This error arises when DL_POLY _2 scans the FIELD file and discovers that there are too
many different types of atoms in the system (i.e. the number of unique atom types exceeds
the mxsvdw parameter.

Action:
Standard user response. Fix parameter mxsvdw.

Message 15: error - duplicate pair potential specified

In processing the FIELD file, DL_POLY -2 keeps a record of the specified short range pair
potentials as they are read in. If it detects that a given pair potential has been specified

before, no attempt at a resolution of the ambiguity is made and this error message results.
See specification of FIELD file.

Action:
Locate the duplication in the FIELD file and rectify.

Message 16: error - strange exit from FIELD file processing

This should never happen! However one remote possibility is that there are more than
10,000 directives in the FIELD file! It simply means that DL_POLY_2 has ceased pro-
cessing the FIELD data, but has not reached the end of the file or encountered a close
directive. Probable cause: corruption of the DL_POLY _2 executable or of the FIELD file.
We would be interested to hear of other reasons!
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Action:
Recompile the program or recreate the FIELD file. If neither of these works, send the
problem to us.

Message 17: error - strange exit from CONTROL file processing

See notes on message 16 above.

Message 18: error - duplicate 3-body potential specified

DL_POLY 2 has encountered a repeat specification of a 3-body potential in the FIELD file.
Action:

Locate the duplicate entry, remove and resubmit job.

Message 19: error - duplicate 4-body potential specified

A 4-body potential has been duplicated in the FIELD file.

Action:

Locate the duplicated 4-body potential and remove. Resubmit job.

Message 20: error - too many molecule sites specified

DL_POLY _2 has a fixed limit on the number of unique molecular sites in any given simu-

lation. If this limit is exceeded, the program terminates.

Action:
Standard user response. Fix parameter mxsite.

Message 21: error - duplicate tersoff potential specified

The user has defined more than one Tersoff potential for a given pair of atoms types.
Action:
Locate the duplication in the FIELD file and correct.

Message 22: error - unsuitable radial increment in TABLE file

This arises when the tabulated potentials presented in the TABLE file have an increment
that is greater than that used to define the other potentials in the simulation. Ideally the
increment should be r_cut/(maxgrid — 4), where r_cut is the potential cutoff for the short
range potentials and mxgrid is the parameter defining the length of the interpolation ar-
rays. An increment less than this is permissible however.

Action:
The tables must be recalculated with an appropriate increment.
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Message 23: error - incompatible FIELD and TABLE file potentials

This error arises when the specification of the short range potentials is different in the
FIELD and TABLE files. This usually means that the order of specification of the poten-
tials is different. When DL_POLY _2 finds a change in the order of specification, it assumes
that the user has forgotten to enter one.

Action:

Check the FIELD and TABLE files. Make sure that you correctly specify the pair potentials
in the FIELD file, indicating which ones are to be presented in the TABLE file. Then check
the TABLE file to make sure all the tabulated potentials are present in the order the FIELD
file indicates.

Message 24: error - end of file encountered in TABLE file

This means the TABLE file is incomplete in some way: either by having too few potentials
included, or the number of data points is incorrect.

Action:
Examine the TABLE file contents and regenerate it if it appears to be incomplete. If it look
intact, check that the number of data points specified is what DL_POLY_2 is expecting.

Message 25: error - wrong atom type found in CONFIG file

On reading the input file CONFIG, DL_POLY _2 performs a check to ensure that the atoms
specified in the configuration provided are compatible with the corresponding FIELD file.
This message results if they are not.

Action:

The possibility exists that one or both of the CONFIG or FIELD files has incorrectly
specified the atoms in the system. The user must locate the ambiguity, using the data
printed in the OUTPUT file as a guide, and make the appropriate alteration.

Message 26: error - cutoff smaller than EAM potential range

DL_POLY_2 has detected an inconsistency in the definition of the EAM potential, namely
that the user is not using the correct potential range.

Action:

Look up the correct range for this potential and adjust the DL_POLY cutoff accordingly.

Message 27: error - incompatible FIELD and TABEAM file potentials

The user has (or has not) specified a set of EAM potentials in the FIELD file which are
not (or are) available in the TABEAM file.
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Action:
Examine the FIELD file. Make sure you have correctly specified the EAM potentials. Check
that these appear in the TABEAM file if required.

Message 28: error - transfer buffer too small in mettab

The number of points specifying an EAM potential in the TABEAM file exceeds the default
buffer size in METTAB.F.

Action:

Reset the mxbuff parameter in PARSET.F subroutine to accommodate the required array
length and recompile.

Message 29: error - end of file encountered in TABEAM file

DL_POLY 2 has reached the end of the TABEAM file without finding all the data it expects.
Action:

Either the TABEAM file is incomplete or it is improperly defined. Check the structure and
content of the file with the TABEAM file specification in the manual and fix the error.

Message 30: error - too many chemical bonds specified

DL_POLY_2 sets a limit on the number of chemical bond potentials that can be specified
in the FIELD file. Termination results if this number is exceeded. See FIELD file docu-
mentation. Do not confuse this error with that described by message 31 (below).

Action:
Standard user response. Fix parameter mxtbnd.

Message 31: error - too many chemical bonds in system

DL_POLY _2 sets a limit on the number of chemical bond potentials in the simulated system
as a whole. (This number is a combination of the number of molecules and the number
of bonds per molecule, divided by the number of processing nodes.) Termination results
if this number is exceeded. Do not confuse this error with that described by message 30

(above).

Action:
Standard user response. Fix the parameter mxbond.
Message 32: error - integer array memory allocation failure

DL_POLY_2 has failed to allocate sufficient memory to accommodate one or more of the
integer arrays in the code.
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Action:

This may simply mean that your simulation is too large for the machine you are running
on. Consider this before wasting time trying a fix. Try using more processing nodes if they
are available. If this is not an option investigate the possibility of increasing the heap size
for your application. Talk to your systems support people for advice on how to do this.

Message 33: error - real array memory allocation failure

DL_POLY 2 has failed to allocate sufficient memory to accommodate one or more of the
real arrays in the code.

Action:

This may simply mean that your simulation is too large for the machine you are running
on. Consider this before wasting time trying a fix. Try using more processing nodes if they
are available. If this is not an option investigate the possibility of increasing the heap size
for your application. Talk to your systems support people for advice on how to do this.

Message 34: error - character array memory allocation failure

DL_POLY _2 has failed to allocate sufficient memory to accommodate one or more of the
character arrays in the code.

Action:

This may simply mean that your simulation is too large for the machine you are running
on. Consider this before wasting time trying a fix. Try using more processing nodes if they
are available. If this is not an option investigate the possibility of increasing the heap size
for your application. Talk to your systems support people for advice on how to do this.

Message 35: error - logical array memory allocation failure

DL_POLY _2 has failed to allocate sufficient memory to accommodate one or more of the
logical arrays in the code.

Action:

This may simply mean that your simulation is too large for the machine you are running
on. Consider this before wasting time trying a fix. Try using more processing nodes if they
are available. If this is not an option investigate the possibility of increasing the heap size
for your application. Talk to your systems support people for advice on how to do this.

Message 36: error - failed fmet array allocation in mettab

DL_POLY_2 is unable to allocate the fmet array in the definition of an EAM potential.
Action:
Most probable cause is working too near the memory limit for the machine. Try using
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more processors to free up some memory. Check the TABEAM file in case the data are
incorrectly specified.

Message 40: error - too many bond constraints specified

DL_POLY_2 sets a limit on the number of bond constraints that can be specified in the
FIELD file. Termination results if this number is exceeded. See FIELD file documentation.
Do not confuse this error with that described by message 41 (below).

Action:
Standard user response. Fix the parameter mxtcon.

Message 41: error - too many bond constraints in system

DL_POLY 2 sets a limit on the number of bond constraints in the simulated system as a
whole. (This number is a combination of the number of molecules and the number of per
molecule, divided by the number of processing nodes.) Termination results if this number
is exceeded. Do not confuse this error with that described by message 40 (above).

Action:
Standard user response. Fix the parameter mxcons.

Message 42: error - transfer buffer too small in mergel

The buffer used to transfer data between nodes in the MERGE1 subroutines has been di-
mensioned too small.

Action:
Standard user response. Fix the parameter mxbuff.

Message 45: error - too many atoms in CONFIG file

DL_POLY 2 limits the number of atoms in the system to be simulated and checks for the
violation of this condition when it reads the CONFIG file. Termination will result if the
condition is violated.

Action:

Standard user response. Fix the parameter mxatms. Consider the possibility that the wrong
CONFIG file is being used (e.g similar system, but larger size.)

Message 46: ewlbuf array too small in ewaldl

The ewlbuf array used to store structure factor data in subroutine EWALD1 has been di-
mensioned too small.

Action:
Standard user response. Fix the parameter mxebuf.
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Message 47: error - transfer buffer too small in merge

The buffer used to transfer data between nodes in the MERGE subroutines has been dimen-
sioned too small.

Action:
Standard user response. Fix the parameter mxbuff.

Message 48: error - transfer buffer too small in fortab

The buffer used to transfer data between nodes in the FORTAB subroutines has been dimen-
sioned too small.

Action:
Standard user response. Fix the parameter mxbuff.

Message 49: error - frozen core-shell unit specified

The DL_POLY _2 option to freeze the location of an atom (i.e. hold it permanently in one
position) is not permitted for core-shell units. This includes freezing the core or the shell
independently.

Action:
Remove the frozen atom option from the FIELD file. Consider using a non-polarisable
atom instead.

Message 50: error - too many bond angles specified

DL_POLY_2 limits the number of valence angle potentials that can be specified in the
FIELD file and checks for the violation of this. Termination will result if the condition is
violated. Do not confuse this error with that described by message 51 (below).

Action:
Standard user response. Fix the parameter mxtang.

Message 51: error - too many bond angles in system

DL_POLY_2 limits the number of valence angle potentials in the system to be simulated
(actually, the number to be processed by each node) and checks for the violation of this.
Termination will result if the condition is violated. Do not confuse this error with that
described by message 50 (above).

Action:
Standard user response. Fix the parameter mxangl. Consider the possibility that the wrong
CONFIG file is being used (e.g similar system, but larger size.)
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Message 52: error - end of FIELD file encountered

This message results when DL_POLY_2 reaches the end of the FIELD file, without having
read all the data it expects. Probable causes: missing data or incorrect specification of
integers on the various directives.

Action:
Check FIELD file for missing or incorrect data and correct.

Message 53: error - end of CONTROL file encountered
This message results when DL_POLY_2 reaches the end of the CONTROL file, without

having read all the data it expects. Probable cause: missing finish directive.

Action:
Check CONTROL file and correct.

Message 54: error - problem reading CONFIG file

This message results when DL_POLY_2 encounters a problem reading the CONFIG file.
Possible cause: corrupt data.

Action:

Check CONFIG file and correct.

Message 55: error - end of CONFIG file encountered

This error arises when DL_POLY _2 attempts to read more data from the CONFIG file than
is actually present. The probable cause is an incorrect or absent CONFIG file, but it may
be due to the FIELD file being incompatible in some way with the CONFIG file.

Action:
Check contents of CONFIG file. If you are convinced it is correct, check the FIELD file for
inconsistencies.

Message 57: error - too many core-shell units specified

DL_POLY_2 has a restriction of the number of types of core-shell unit in the FIELD file
and will terminate if too many are present. Do not confuse this error with that described
by message 59 (below).

Action:
Standard user response. Fix the parameter mxtshl.
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Message 59: error - too many core-shell units in system

DL_POLY_2 limits the number of core-shell units in the simulated system. Termination
results if too many are encountered. Do not confuse this error with that described by mes-
sage 57 (above).

Action:
Standard user response. Fix the parameter mxshl.

Message 60: error - too many dihedral angles specified

DL_POLY_2 will accept only a limited number of dihedral angles in the FIELD file and
will terminate if too many are present. Do not confuse this error with that described by
message 61 (below).

Action:
Standard user response. Fix the parameter mxtdih.

Message 61: error - too many dihedral angles in system

The number of dihedral angles in the whole simulated system is limited by DL_POLY _2
. Termination results if too many are encountered. Do not confuse this error with that
described by message 60 (above).

Action:
Standard user response. Fix the parameter mxdihd.

Message 62: error - too many tethered atoms specified

DL_POLY _2 will accept only a limited number of tethered atoms in the FIELD file and
will terminate if too many are present. Do not confuse this error with that described by
message 63 (below).

Action:
Standard user response. Fix the parameter mxteth.

Message 63: error - too many tethered atoms in system

The number of tethered atoms in the simulated system is limited by DL_POLY _2 . Termi-
nation results if too many are encountered. Do not confuse this error with that described
by message 62 (above).

Action:
Standard user response. Fix the parameter msteth.
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Message 65: error - too many excluded pairs specified

This error can arise when DL_POLY _2 is identifying the atom pairs that cannot have a pair
potential between them, by virtue of being chemically bonded for example (see subroutine
EXCLUDE). Some of the working arrays used in this operation may be exceeded, resulting
in termination of the program.

Action:
Standard user response. Fix the parameter mxexcl.

Message 66: error - incorrect boundary condition for HK ewald

The Hautman-Klein Ewald method can only be used with XY planar periodic boundary
conditions (i.e. imcon = 6).

Action:
Either the periodic boundary condition, or the choice of calculation of the electrostatic
forces must be changed.

Message 67: error - incorrect boundary condition in thbfrc

Three body forces in DL_POLY_2 are only permissible with cubic , orthorhombic and par-
allelepiped periodic boundaries. Use of other boundary conditions results in this error.

Action:

If nonperiodic boundaries are required, the only option is to use a very large simulation cell,
with the required system at the centre surrounded by a vacuum. This is not very efficient
however and use of a realistic periodic system is the best option.

Message 69: error - too many link cells required in thbfrc

The calculation of three body forces in DL_POLY _2 is handled by the link cell algorithm.
This error arises if the required number of link cells exceeds the permitted array dimension
in the code.

Action:
Standard user response. Fix the parameter mxcell.

Message 70: error - constraint bond quench failure

When a simulation with bond constraints is started, DL_POLY_2 attempts to extract the
kinetic energy of the constrained atom-atom bonds arising from the assignment of initial
random velocities. If this procedure fails, the program will terminate. The likely cause is a
badly generated initial configuration.
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Action:

Some help may be gained from increasing the cycle limit, by following the standard user
response to increase the control parameter mxshak. You may also consider reducing the
tolerance of the SHAKE iteration, the directive shake in the CONTROL file. However it
is probably better to take a good look at the starting conditions!

Message 71: error - too many metal potentials specified
The number of metal potentials that can be specfied in the FIELD file is limited. This

error results if too many are used.

Action:
Standard user response. Fix the parameter mxvdw. Note that this parameter must be double
the number of required metal potentials. Recompile the program.

Message 72: error - different metal potential types specified

DL_POLY _2 does not permit the user to mix different types of metal potential in the same
simulation. There are no known rules for making alloys in this way.

Action:

Change the FIELD (and TABEAM) file as required so that only one type of metal potential
is used.

Message 73: error - too many inversion potentials specified

The number of inversion potentials specified in the FIELD file exceeds the permitted max-

imum.

Action:

Standard user response. Fix the parameter mxtinv.

Message 75: error - too many atoms in specified system

DL_POLY _2 places a limit on the number of atoms that can be simulated. Termination

results if too many are specified.

Action:
Standard user response. Fix the parameter mxatms.

Message 77: error - too many inversion potentials in system

The simulation contains too many inversion potentials overall, causing termination of run.

Action:
Standard user response. Fix the parameter mxinv.
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Message 79: error - incorrect boundary condition in fbpfrc
The 4-body force routine assumes a cubic or parallelepiped periodic boundary condition is

in operation. The job will terminate if this is not adhered to.

Action:
You must reconfigure your simulation to an appropriate boundary condition.

Message 80: error - too many pair potentials specified
DL_POLY_2 places a limit on the number of pair potentials that can be specified in the

FIELD file. Exceeding this number results in termination of the program execution.

Action:
Standard user response. Fix the parameters mxsvdw. and mxvdw.

Message 81: error - unidentified atom in pair potential list

DL_POLY 2 checks all the pair potentials specified in the FIELD file and terminates the
program if it can’t identify any one of them from the atom types specified earlier in the file.

Action:
Correct the erroneous entry in the FIELD file and resubmit.

Message 82: error - calculated pair potential index too large

In checking the pair potentials specified in the FIELD file DL_POLY 2 calculates a unique
integer index that henceforth identifies the potential within the program. If this index
becomes too large, termination of the program results.

Action:
Standard user response. Fix the parameters mxsvdw and mxvdw.

Message 83: error - too many three body potentials specified
DL_POLY_2 has a limit on the number of three body potentials that can be defined in the

FIELD file. This error results if too many are included.

Action:
Standard user response. Fix the parameter mxtbp.

Message 84: error - unidentified atom in 3-body potential list

DL_POLY 2 checks all the 3-body potentials specified in the FIELD file and terminates the
program if it can’t identify any one of them from the atom types specified earlier in the file.
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Action:
Correct the erroneous entry in the FIELD file and resubmit.
Message 85: error - required velocities not in CONFIG file

If the user attempts to start up a DL_POLY _2 simulation with the restart or restart scale
directives (see description of CONTROL file,) the program will expect the CONFIG file
to contain atomic velocities as well as positions. Termination results if these are not present.

Action:
FEither replace the CONFIG file with one containing the velocities, or if not available, remove
the restart directive altogether and let DL_POLY _2 create the velocities for itself.

Message 86: error - calculated 3-body potential index too large

DL_POLY _2 has a permitted maximum for the calculated index for any three body poten-
tial in the system (i.e. as defined in the FIELD file). If there are m distinct types of atom
in the system, the index can possibly range from 1 to (m? * (m — 1))/2. If the internally
calculated index exceeds this number, this error report results.

Action:

Standard user response. Fix the parameter mxtbp.

Message 87: error - too many link cells required in fbpfrc

The FBPFRC subroutine uses link cells to compute the four body forces. This message in-

dicates that the link cell arrays have insufficient size to work properly.

Action:

Standard user response. Fix the parameter mxcell.

Message 88: error - too many tersoff potentials specified

Too many Tersoff potentials have been defined in the FIELD file. Certain arrays must be

increased in size to accommodate the data.

Action:

Standard user response. Fix the parameter mxter.

Message 89: error - too many four body potentials specified

Too many four body potential have been defined in the FIELD file. Certain arrays must

be increased in size to accommodate the data.

Action:
Standard user response. Fix the parameter mxfbp.
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Message 90: error - system total electric charge nonzero

In DL_POLY_2 a check on the total system charge will result in an error if the net charge of
the system is nonzero. (Note: In DL_POLY 2 this message has been disabled. The program
merely prints a warning stating that the system is not electrically neutral but it does not
terminate the program - watch out for this.)

Action:

Check the specified atomic charges and their populations. Make sure they add up to zero.
If the system is required to have a net zero charge, you can enable the call to this error
message in subroutine SYSDEF.

Message 92: error - unidentified atom in tersoff potential list

The specification of a Tersoff potential in the FIELD file has referenced an atom type that
is unknown.

Action:
Locate the erroneous atom type in the Tersoff potential definition in the FIELD file and
correct. Make sure this atom type is specified by an atoms directive earlier in the file.

Message 91: error - unidentified atom in 4-body potential list

The specification of a four-body potential in the FIELD file has referenced an atom type
that is unknown.

Action:
Locate the erroneous atom type in the four body potential definition in the FIELD file and
correct. Make sure this atom type is specified by an atoms directive earlier in the file.

Message 93: error - cannot use shell model with rigid molecules

The dynamical shell model implemented in DL_POLY _2 is not designed to work with rigid
molecules. This error results if these two options are simultaneously selected.

Action:

In some circumstances you may consider overriding this error message and continuing with
your simulation. For example if your simulation does not require the polarisability to be a
feature of the rigid species, but is confined to free atoms or flexible molecules in the same
system. The appropriate error trap is found in subroutine SYSDEF.

Message 95: error - potential cutoff exceeds half cell width

In order for the minimum image convention to work correctly within DL_POLY_2 , it is
necessary to ensure that the cutoff applied to the pair potentials does not exceed half
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the perpendicular width of the simulation cell. (The perpendicular width is the shortest
distance between opposing cell faces.) Termination results if this is detected. In NVE
simulations this can only happen at the start of a simulation, but in NPT, it may occur at
any time.

Action:

Supply a cutoff that is less than half the cell width. If running constant pressure calcula-
tions, use a cutoff that will accommodate the fluctuations in the simulation cell. Study the
fluctuations in the OUTPUT file to help you with this.

Message 97: error - cannot use shell model with neutral groups

The dynamical shell model was not designed to work with neutral groups. This error results
if an attempt is made to combine both.

Action:

There is no general remedy for this error if you wish to combine both these capabilities.
However if your simulation does not require the polarisability to be a feature of rigid species
(comprising the charged groups), but is confined to free atoms or flexible molecules in the
same system, you may consider overriding this error message and continuing with your
simulation. The appropriate error trap is found in subroutine SYSDEF.

Message 99: error - cannot use shell model with constraints

The dynamical shell model was not designed to work in conjunction with constraint bonds.
This error results if both are used in the same simulation.

Action: There is no general remedy if you wish to combine both these capabilities. However
if your simulation does not require the polarisability to be a feature of the constrained
species, but is confined to free atoms or flexible molecules, you may consider overriding
this error message and continuing with your simulation. The appropriate error trap is in
subroutine SYSDEF.

Message 100: error - forces working arrays too small

There are a number of arrays in DL_POLY _2 that function as workspace for the forces cal-
culations. Their dimension is equal to the number of atoms in the simulation cell divided by
the number of nodes. If these arrays are likely to be exceeded, DL_POLY_2 will terminate
execution.

Action:
Standard user response. Fix the parameter msatms.
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Message 101: error - calculated 4-body potential index too large

DL_POLY _2 has a permitted maximum for the calculated index for any four body potential
in the system (i.e. as defined in the FIELD file). If there are m distinct types of atom
in the system, the index can possibly range from 1 to (m? * (m + 1) * (m + 2))/6. If the
internally calculated index exceeds this number, this error report results.

Action:
Standard user response. Fix the parameter mxfbp.

Message 102: error - parameter mxproc exceeded in shake arrays

The RD-SHAKE algorithm distributes data over all nodes of a parallel computer. Certain
arrays in RD-SHAKE have a minimum dimension equal to the maximum number of nodes
DL_POLY 2 is likely to encounter. If the actual number of nodes exceeds this, the program
terminates.

Action:
Standard user response. Fix the parameter mxproc.

Message 103: error - parameter mxlshp exceeded in shake arrays

The RD-SHAKE algorithm requires that information about ‘shared’ atoms be passed be-
tween nodes. If there are too many atoms, the arrays holding the information will be
exceeded and DL_POLY_2 will terminate execution.

Action:
Standard user response. Fix the parameter mx1shp.

Message 105: error - shake algorithm failed to converge

The RD-SHAKE algorithm for bond constraints is iterative. If the maximum number of
permitted iterations is exceeded, the program terminates. Possible causes include: a bad
starting configuration; too large a time step used; incorrect force field specification; too
high a temperature; inconsistent constraints involving shared atoms etc.

Action:

Corrective action depends on the cause. It is unlikely that simply increasing the iteration
number will cure the problem, but you can try: follow the standard user response to increase
the control parameter mxshak. But the trouble is much more likely to be cured by careful
consideration of the physical system being simulated. For example, is the system stressed
in some way? Too far from equilibrium?
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Message 106: error - neighbour list array too small in parlink
Construction of the Verlet neighbour list in subroutine parlink nonbonded (pair) force has

exceeded the neighbour list array dimensions.

Action:

Standard user response. Fix the parameter mxlist.

Message 107: error - neighbour list array too small in parlinkneu

Construction of the Verlet neighbour list in subroutine parlinkneu nonbonded (pair) force

has exceeded the neighbour list array dimensions.

Action:

Standard user response. Fix the parameter mxlist.

Message 108: error - neighbour list array too small in parneulst

Construction of the Verlet neighbour list in subroutine parneulst nonbonded (pair) force

has exceeded the neighbour list array dimensions.

Action:

Standard user response. Fix the parameter mxlist.

Message 109: error - neighbour list array too small in parlst_nsq

Construction of the Verlet neighbour list in subroutine parlst_nsq nonbonded (pair) force

has exceeded the neighbour list array dimensions.

Action:

Standard user response. Fix the parameter mxlist.

Message 110: error - neighbour list array too small in parlst

Construction of the Verlet neighbour list in subroutine parlst nonbonded (pair) force has

exceeded the neighbour list array dimensions.

Action:
Standard user response. Fix the parameter mxlist.

Message 112: error - vertest array too small

This error results when the dimension of the DL_POLY_2 VERTEST arrays, which are used
in checking if the Verlet list needs updating, have been exceeded.
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Action:
Standard user response. Fix the parameter mslst.

Message 120: error - invalid determinant in matrix inversion

DL_POLY 2 occasionally needs to calculate matrix inverses (usually the inverse of the ma-
trix of cell vectors, which is of size 3 x 3). For safety’s sake a check on the determinant is
made, to prevent inadvertent use of a singular matrix.

Action:
Locate the incorrect matrix and fix it - e.g. are cell vectors correct?

Message 130: error - incorrect octahedral boundary condition

When calculating minimum images DL_POLY_2 checks that the periodic boundary of the
simulation cell is compatible with the specifed minimum image algorithm. Program termi-
nation results if an inconsistency is found. In this case the error refers to the truncated
octahedral minimum image, which is inconsistent with the simulation cell. The most prob-
able cause is the incorrect definition of the simulation cell vectors present in the input file
CONFIG, these must equal the vectors of the enscribing cubic cell.

Action:
Check the specified simulation cell vectors and correct accordingly.

Message 135: error - incorrect hexagonal prism boundary condition

When calculating minimum images DL_POLY _2 checks that the periodic boundary of the
simulation cell is compatible with the specifed minimum image algorithm. Program termi-
nation results if an inconsistency is found. In this case the error refers to the hexagonal
prism minimum image, which is inconsistent with the simulation cell. The most probable
cause is the incorrect definition of the simulation cell vectors present in the input file CON-
FIG, these must equal the vectors of the enscribing orthorhombic cell.

Action:
Check the specified simulation cell vectors and correct accordingly.

Message 140: error - incorrect dodecahedral boundary condition

When calculating minimum images DL_POLY_2 checks that the periodic boundary of the
simulation cell is compatible with the specifed minimum image algorithm. Program ter-
mination results if an inconsistency is found. In this case the error refers to the rhombic
dodecahedral minimum image, which is inconsistent with the simulation cell. The most
probable cause is the incorrect definition of the simulation cell vectors present in the input
file CONFIG, these must equal the vectors of the enscribing tetragonal simulation cell.
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Action:
Check the specified simulation cell vectors and correct accordingly.

Message 141: error - duplicate metal potential specified

The user has specified a particular metal potential more than once in the FIELD file.

Action:
Locate the metal potential specification in the FIELD file and remove or correct the po-
tential concerned.

Message 145: error - no van der waals potentials defined

This error arises when there are no VDW potentials specified in the FIELD file but the
user has not specified no vdw in the CONTROL file. In other words DL_POLY _2 expects
the FIELD file to contain VDW potential specifications.

Action:
Edit the FIELD file to insert the required potentials or specify no vdw in the CONTROL
file.

Message 150: error - unknown van der waals potential selected

DL_POLY _2 checks when constructing the interpolation tables for the short ranged poten-
tials that the potential function requested is one which is of a form known to the program.
If the requested potential form is unknown, termination of the program results. The most
probable cause of this is the incorrect choice of the potential keyword in the FIELD file or
one in the wrong columns (input is formatted).

Action:

Read the DL_POLY_2 documentation and find the potential keyword for the potential
desired. Insert the correct index in the FIELD file definition and ensure it occurs in the
correct columns (17-20). If the correct form is not available, look at the subroutine FORGEN
(or its variant) and define the potential for yourself. It is easily done.

Message 151: error - unknown metal potential selected
The metal potentials available in DL_POLY_2 are confined to density dependent forms of

the Sutton-Chen type. This error results if the user attempts to specify another.

Action:
Re-specify the potential as Sutton-Chen type if possible. Check the potential keyword
appears in columns 17-20 of the FIELD file.
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Message 153: error - metals not permitted with multiple timestep

The multiple timestep algorithm cannot be used in conjunction with metal potentials in
DL_POLY_2 .

Action:
The simulation must be run without the multiple timestep option.

Message 160: error - unaccounted for atoms in exclude list

This error message means that DL_POLY _2 has been unable to find all the atoms described
in the exclusion list within the simulation cell. This should never occur, if it does it means
a serious bookkeeping error has occured. The probable cause is corruption of the code
somehow.

Action:
If you feel you can tackle it - good luck! Otherwise we recommend you get in touch with
the program authors. Keep all relevant data files to help them find the problem.

Message 170: error - too many variables for statistic array

This error means the statistics arrays appearing in subroutine STATIC are too small. This
can happen if the number of unique atom types is too large.

Action:
Standard user response. Fix the parameter mxnstk. mxnstk should be at least (45+number
of unique atom types).

Message 180: error - Ewald sum requested in non-periodic system

DL_POLY_2 can use either the Ewald method or direct summation to calculate the elec-
trostatic potentials and forces in periodic (or pseudo-periodic) systems. For non-periodic
systems only direct summation is possible. If the Ewald summation is requested (with
the ewald sum or ewald precision directives in the CONTROL file) without periodic
boundary conditions, termination of the program results.

Action:

Select periodic boundaries by setting the variable imcon>0 in the CONFIG file (if possible)
or use a different method to evaluate electrostatic interactions e.g. by usinf the coul
directive in the CONTROL file.

Message 185: error - too many reciprocal space vectors

DL_POLY 2 places hard limit on the number of k vectors to be used in the Ewald sum and
terminates if more than this is requested.
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Action:
Either consider using fewer k vectors in the Ewald sum (and a larger cutoff in real space)
or follow standard user response to reset the parameters kmaxb, kmaxc.

Message 186: error - transfer buffer array too small in sysgen

In the subroutine SYSGEN.F DL_POLY_2 requires dimension of the array buffer (defined
by the parameter mxbuff) to be no less than the parameter mxatms or the product of pa-
rameters mxnstk*mxstak. If this is not the case it will be unable to restart the program
correctly to continue a run. (Applies to parallel implementations only.)

Action:
Standard user response. Fix the parameter mxbuff.
Message 190: error - buffer array too small in splice

DL_POLY _2 uses a workspace array named buffer in several routines. Its declared size
is a compromise of several roles and may sometimes be too small (though in the supplied
program, this should happen only very rarely). The point of failure is in the SPLICE routine,
which is part of the RD-SHAKE algorithm.

Action:

Standard user response. Fix the parameter mxbuff.

Message 200: error - rdf buffer array too small in revive

This error indicates that the buffer array used to globally sum the rdf arrays in subroutine

REVIVE is too small.

Action:

Standard user response. Fix the parameter mxbuff. Alternatively mxrdf can be set smaller.
Message 220: error - too many neutral groups in system

DL_POLY _2 has a fixed limit on the number of charged groups in a simulation. This error

results if the number is exceeded.

Action:
Standard user response. Fix the parameter mxneut.

Message 230: error - neutral groups improperly arranged

In the DL_POLY_2 FIELD file the charged groups must be defined in consecutive order.
This error results if this convention is not adhered to.
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Action:

The arrangement of the data in the FIELD file must be sorted. All atoms in the same
group must be arranged consecutively. Note that reordering the file in this way implies a
rearrangement of the CONFIG file also.

Message 250: error - Ewald sum requested with neutral groups
DL_POLY _2 will not permit the use of neutral groups with the Ewald sum. This error

results if the two are used together.

Action:

Either remove the neut directive from the FIELD file or use a different method to evaluate
the electrostatic interactions.

Message 260: error - parameter mxexcl exceeded in excludeneu routine

An error has been detected in the construction of the excluded atoms list for neutral groups.

This occurs when the parameter mxexcl is exceeded in the EXCLUDENEU routine.

Action:

Standard user response. Fix parameter mxexcl.

Message 300: error - incorrect boundary condition in parlink

The use of link cells in DL_POLY_2 implies the use of appropriate boundary conditions.

This error results if the user specifies octahedral, dodecahedral or slab boundary conditions.

Action:

The simulation must be run with cubic, orthorhombic or parallelepiped boundary condi-
tions.

Message 301: error - too many rigid body types

The maximum number of rigid body types permitted by DL_POLY_2 has been exceeded.
Action:

Standard user response. Fix the parameter mxungp.

Message 302: error - too many sites in rigid body

This error arises when DL_POLY_2 finds that the number of sites in a rigid body exceeds

the dimensions of the approriate storage arrays.

Action:
Standard user response. Fix the parameter mxngp.
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Message 303: error - too many rigid bodies specified

The maximum number of rigid bodies in a simulation has been reached. Do not confuse
this with message 304 below.

Action:
Standard user response. Fix the parameter mxgrp.

Message 304: error - too many rigid body sites in system

This error occurs when the total number of sites within all rigid bodies exceeds the permit-
ted maximum. Do not confuse this with message 303 above.

Action:
Standard user response. Fix the parameter mxgatms.

Message 305: error - box size too small for link cells

The link cells algorithm in DL_POLY _2 cannot work with less than 27 link cells. Depending
on the cell size and the chosen cut-off, DL_POLY_2 may decide that this minimum cannot
be achieved and terminate.

Action:
If a smaller cut-off is acceptable use it. Otherwise do not use link cells. Consider running
a larger system, where link cells will work.

Message 306: error - failed to find principal axis system

This error indicates that the routine QUATBOOK has failed to find the principal axis for a
rigid unit.

Action:

This is an unlikely error. The code should correctly handle linear, planar and 3-dimensional
rigid units. Check the definition of the rigid unit in the CONFIG file, if sensible report the
error to the authors.

Message 310: error - quaternion setup failed

This error indicates that the routine QUATBOOK has failed to reproduce all the atomic po-
sitions in rigid units from the centre of mass and quaternion vectors it has calculated.

Action:

Check the contents of the CONFIG file. DL_POLY _2 builds its local body description of a
rigid unit type from the first occurrence of such a unit in the CONFIG file. The error most
likely occurs because subsequent occurrences were not sufficiently similar to this reference
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structure. If the problem persists increase the value of the variable tol in QUATBOOK
and recompile. If problems still persist double the value of dettest in QUATBOOK and
recompile. If you still encounter problems contact the authors.

Message 320: error - site in multiple rigid bodies

DL_POLY_2 has detected that a site is shared by two or more rigid bodies. There is no
integration algorithm available in this version of the package to deal with this type of model.

Action:
The only course is to redefine the molecular model (e.g. introducing flexible bonds and
angles in suitable places) to allow DL_POLY 2 to proceed.

Message 321: error - quaternion integrator failed

The quaternion algorithm has failed to converge. If the maximum number of permitted
iterations is exceeded, the program terminates. Possible causes include: a bad starting
configuration; too large a time step used; incorrect force field specification; too high a tem-
perature; inconsistent constraints involving shared atoms etc.

Action:

Corrective action depends on the cause. Try reducing the timestep or running a zero kelvin
structure optimization for a hundred timesteps or so. It is unlikely that simply increasing
the iteration number will cure the problem, but you can try: follow the standard user
response to increase the parameter mxquat. But the trouble is much more likely to be
cured by careful consideration of the physical system being simulated. For example, is the
system stressed in some way? Too far from equilibrium?

Message 330: error - mxewld parameter incorrect

DL_POLY 2 has two strategies for parallelization of the reciprocal space part of the Ewald
sum. If EWALDI is used the parameter mxewld should equal the parameter msatms. If
EWALDI1A is used this parameter should equal mxatms.

Action:
Standard user response. Set the parameter mxewld to the value appropriate for the version
of EWALD1 you are using. Recompile the program.

Message 331: error - mxhke parameter incorrect

The parameter mxhke, which defines the dimension of some arrays used in the Hautman-
Klein Ewald method, should equal the parameter msatms.
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Action:
Standard user response. Set the parameter mxhke to the value regquired. Recompile the
program.

Message 332: error - mxhko parameter too small

The parameter mxhko defines the maximum order for the Taylor expansion implicit in the
Hautman-Klein Ewald method. DL_POLY_2 has a maximum of mxhko = 3, but it can be
set to less in some implementations. If this error arises when the user requestes an order
in excess of this parameter.

Action:

Standard user response. Set the parameter mxhko to a higher value (if it is <3) and
recompile the program. Alternatively request a lower order in the CONTROL file through
the nhko variable (see 4.1.1).

Message 340: error - invalid integration option requested

DL_POLY _2 has detected an incompatibility in the simulation instructions, namely that
the requested integration algorithm is not compatible with the physical model. It may be
possible to override this error trap, but it is up to the user to establish if this is sensible.
Action:

This is a non recoverable error, unless the user chooses to override the restriction.

Message 350: error - too few degrees of freedom
This error can arise if a small system is being simulated and the number of constraints

applied is too large.

Action:

Simulate a larger system or reduce the number of constraints.

Message 360: error - frozen atom found in rigid body

DL_POLY_2 does not permit a site in a rigid body to be frozen i.e. fixed in one location in

space.

Action:
Remove the ‘freeze’ condition from the site concerned. Consider using a very high site mass
to achieve a similar effect.

Message 380: error - simulation temperature not specified

DL_POLY 2 has failed to find a temp directive in the CONTROL file.
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Action:
Place a temp directive in the CONTROL file, with the required temperature specified.

Message 381: error - simulation timestep not specified

DL_POLY 2 has failed to find a timestep directive in the CONTROL file.

Action:

Place a timestep directive in the CONTROL file, with the required timestep specified.
Message 382: error - simulation cutoff not specified

DL_POLY 2 has failed to find a cutoff directive in the CONTROL file.

Action:

Place a cutoff directive in the CONTROL file, with the required forces cutoff specified.
Message 383: error - simulation forces option not specified

DL_POLY 2 has failed to find any directive specifying the electrostatic interactions options

in the CONTROL file.

Action:
Ensure the CONTROL file contains at least one directive specifying the electrostatic po-
tentials (e.g. ewald, coul, no electrostatics etc.)

Message 384: error - verlet strip width not specified
DL_POLY 2 has failed to find the delr directive in the CONTROL file.

Action:
Insert a delr directive in the CONTROL file, specifying the width of the verlet strip
augmenting the forces cutoff.

Message 385: error - primary cutoff not specified

DL_POLY _2 has failed to find the prim directive in the CONTROL file. Necessary only if
multiple timestep option required.

Action:
Insert a prim directive in the CONTROL file, specifying the primary cutoff radius in the
multiple timestep algorithm.
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Message 386: error - primary cutoff larger than rcut

The primary cutoff specified by the prim directive in the CONTROL file exceeds the value
specified for the forces cutoff (directive cut). Applies only if the multiple timestep option
is required.

Action:

Locate the prim directive in the CONTROL file, and alter the chosen cutoff. Alternatively,
increase the real space cutoff specified with the cut directive. Take care to avoid error
number 398.

Message 387: error - system pressure not specified
The target system pressure has not been specified in the CONTROL file. Applies to NPT

simulations only.

Action:

Insert a press directive in the CONTROL file specifying the required system pressure.
Message 388: error - npt incompatible with multiple timestep

The use of NPT (constant pressure) and temperature is not compatible with the multiple

timestep option.

Action:

Simulation must be run at fixed volume in this case. But note it may be possible to use
NPT without the multiple timestep, in ourder to estimate the required system volume, then
switch back to multiple timestep and NVT dynamics at the required volume.

Message 389: number of pimd beads not specified in field file

The user has failed to specify how many quantum beads is required in a Path Integral

Molecular Dyamics simulation. Applies to PIMD version of DL_POLY _2 only.

Action:
The required numer of beads must be specified in the FIELD file.

Message 390: error - npt ensemble requested in non-periodic system

A non-periodic system has no defined volume, hence the NPT algorithm cannot be applied.

Action:
Fither simulate the system with a periodic boundary, or use another ensemble.
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Message 391: incorrect number of pimd beads in config file
The CONFIG file must specify the position of all the beads in a PIMD simulation, not just

the positions of the parent atoms, otherwise this error results.

Action:

The CONFIG file must be reconstructed to provide the required data.

Message 392: error - too many link cells requested

The number of link cells required for a given simulation exceeds the number allowed for by

the DL_POLY_2 arrays.

Action:

Standard user response. Fix the parameter mxcell.

Message 394: error - minimum image arrays exceeded

The work arrays used in IMAGES have been exceeded.

Action: Standard user response. Fix the parameter mxxdf.

Message 396: error - interpolation array exceeded

DL_POLY _2 has sought to read past the end of an interpolation array. This should never
happen!

Action:
Contact the authors.

Message 398: error - cutoff too small for rprim and delr

This error can arise when the multiple timestep option is used. It is essential that the
primary cutoff (rprim) is less than the real space cutoff (rcut) by at least the Verlet shell
width delr (preferably much larger!). DL_POLY 2 terminates the run if this condition is
not satisfied.

Action:
Adjust rcut, rprim and delr to satisfy the DL_POLY_2 requirement. These are defined
with the directives cut, prim and delr respectively.

Message 400: error - rvdw greater than cutoff

DL_POLY 2 requires the real space cutoff (rcut) to be larger than, or equal to, the van
der Waals cutoff (rvdw) and terminates the run if this condition is not satisfied.
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Action:

Adjust rvdw and rcut to satisfy the DL_POLY _2 requirement.

Message 402: error - van der waals cutoff unset

The user has not set a cutoff (rvdw) for the van der Waals potentials. The simulation

cannot proceed without this being specified.

Action:

Supply a cutoff value for the van der Waals terms in the CONTROL file using the directive
rvdw, and resubmit job.

Message 410: error - cell not consistent with image convention

The simulation cell vectors appearing in the CONFIG file are not consistent with the spec-

ified image convention.

Action:

Locate the variable imcon in the CONFIG file and correct to suit the cell vectors.
Message 412: error - mxxdf parameter too small for shake routine

In DL_POLY _2 the parameter mxxdf must be greater than or equal to the parameter mxcons.

If it is not, this error is a possible result.

Action:

Standard user response. Fix the parameter mxxdf.

Message 414: error - conflicting ensemble options in CONTROL file
DL_POLY_2 has found more than one ensemble directive in the CONTROL file.

Action:

Locate extra ensemble directives in CONTROL file and remove.

Message 416: error - conflicting force options in CONTROL file

DL_POLY_2 has found incompatible directives in the CONTROL file specifying the elec-

trostatic interactions options.

Action:
Locate the conflicting directives in the CONTROL file and correct.
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Message 418: error - bond vector work arrays too small in bndfrc
The work arrays in BNDFRC have been exceeded.

Action:

Standard user response. Fix the parameter msbad.

Message 419: error - bond vector work arrays too small in angfrc
The work arrays in ANGFRC have been exceeded.

Action:

Standard user response. Fix the parameter msbad.

Message 420: error - bond vector work arrays too small in tethfrc
The work arrays in TETHFRC have been exceeded.

Action:

Standard user response. Fix the parameter msbad.

Message 421: error - bond vector work arrays too small in dihfrc
The work arrays in DIHFRC have been exceeded.

Action:

Standard user response. Fix the parameter msbad.

Message 422: error - all-pairs must use multiple timestep

In DL_POLY _2 the ‘all pairs’ option must be used in conjunction with the multiple timestep.
Action:

Activate the multiple timestep option in the CONTROL file and resubmit.
Message 423: error - bond vector work arrays too small in shlfrc
The dimensions of the interatomic distance vectors have been exceeded in subroutine SHL-

FRC.

Action:
Standard user response. Fix the parameter msbad. Set equal to the value of the parameter
mxshl.
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Message 424: error - electrostatics incorrect for all-pairs

When using the all pairs option in conjunction with electrostatic forces, the electrostatics
must be handled with either the standard Coulomb sum, or with the distance dependent
dielectric.

Action:

Rerun the simulation with the appropriate electrostatic option.

Message 425: error - transfer buffer array too small in shlmerge

The buffer used to transfer data between nodes in the subroutine SHLMERGE has been di-

mensioned too small.

Action:

Standard user response. Fix the parameter mxbuff.

Message 426: error - neutral groups not permitted with all-pairs

DL_POLY 2 will not permit simulations using both the neutral group and all pairs options
together.

Action:

Switch off one of the conflicting options and rerun.

Message 427: error - bond vector work arrays too small in invfrc
The work arrays in subroutine INVFRC have been exceeded.

Action:
Standard user response. Fix the parameter msbad.

Message 430: error - integration routine not available

A request for a nonexistent ensemble has been made or a request with conflicting options
that DL_POLY_2 cannot deal with (e.g. a Evans thermostat with rigid body equations of
motion).

Action:
Examine the CONTROL and FIELD files and remove inappropriate specifications.

Message 432: error - intlist failed to assign constraints

If the required simulation has constraint bonds DL_POLY_2 attempts to apportion the
molecules to processors so that, if possible, there are no shared atoms between processors.
If this is not possible, one or more molecules may be split between processors. This message
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indicates that the code has failed to carry out either of these successfully.

Action:

The error may arise from a compiler error. Try recompiling INTLIST without the optimiza-
tion flag turned on. If the problem persists it should be reported to the authors, (after
checking the input data for inconsistencies).

Message 433: error - specify rcut before the Ewald sum precision

When specifying the desired precision for the Ewald sum in the CONTROL file, it is first
necessary to specify the real space cutoff rcut.

Action:
Place the cut directive before the ewald precision directive in the CONTROL file and
rerun.

Message 434: error - illegal entry into STRESS related routine

The calculation of the stress tensor in DL_POLY _2 requires additional code that must be
included at compile time through the use of the STRESS keyword. If this is not done, and
DL_POLY 2 is later required to calculate the stress tensor, this error will result.

Action:
The program must be recompiled with the STRESS keyword activated. This will ensure
all the relevant code is in place. See section 3.2.1.

Message 436: error - unrecognised ensemble

An unknown ensemble option has been specified in the CONTROL file.

Action:
Locate ensemble directive in the CONTROL file and amend appropriately.

Message 438: error - PMF constraints failed to converge

The constraints in the potential of mean force algorithm have not converged in the permit-
ted number of cycles. (The SHAKE algorithm for PMF constraints is iterative.) Possible
causes include: a bad starting configuration; too large a time step used; incorrect force field
specification; too high a temperature; inconsistent constraints involving shared atoms etc.

Action:

Corrective action depends on the cause. It is unlikely that simply increasing the iteration
number will cure the problem, but you can try: follow standard user response to increase the
parameter mxshak. But the trouble is much more likely to be cured by careful consideration
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of the physical system being simulated. For example, is the system stressed in some way?
Too far from equilibrium?

Message 440: error - undefined angular potential

A form of angular potential has been requested which DL_POLY _2 does not recognise.
Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL_POLY_2 if this is possible. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines SYSDEF and ANGFRC will be
required.

Message 442: error - undefined three body potential

A form of three body potential has been requested which DL_POLY_2 does not recognise.
Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL_POLY _2 if this is reasonable. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines SYSDEF and THBFRC will be
required.

Message 443: error - undefined four body potential

DL_POLY 2 has been requested to process a four-body potential it does not recognise.
Action:

Check the FIELD file and make sure the keyword is correctly defined. Make sure that
subroutine FBPFRC contains the code necessary to deal with the requested potential. Add
the code required if necessary, by amending subroutines SYSDEF and FBPFRC.

Message 444: error - undefined bond potential

DL_POLY _2 has been requested to process a bond potential it does not recognise.

Action:

Check the FIELD file and make sure the keyword is correctly defined. Make sure that
subroutine BNDFRC contains the code necessary to deal with the requested potential. Add
the code required if necessary, by amending subroutines SYSDEF and BNDFRC.

Message 446: error - undefined electrostatic key in dihfrc

The subroutine DIHFRC has detected a request for an unknown kind of electrostatic model.
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Action:
The probable source of the error is an improperly described force field. Check the CON-
TROL file and FIELD files for incompatible requirements.

Message 447: error - 1-4 separation exceeds cutoff range

In the subroutine DIHFRC the distance between the 1-4 atoms in the potential is larger than
the cutoff that is applied to the 1-4 potential, meaning the potential will not be computed,
though it may be an essential component of the dihedral force and not necessarily a van-
ishing force.

Action:

The probable source of the error is an improperly described force field. Effectively the 1-4
distance is not being restrained sufficently. Check the 1-4 potential parameters and the
valence angles that help define the dihedral geometry. If these are correct, then you may
have to comment out this error condition in the DIHFRC.F subroutine, but beware that when
the 1-4 atoms are too widely separated, the dihedral angle can become indeterminable.

Message 448: error - undefined dihedral potential

A form of dihedral potential has been requested which DL_POLY_2 does not recognise.
Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL_POLY _2 if this is reasonable. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines SYSDEF and DIHFRC (and its
variants) will be required.

Message 449: error - undefined inversion potential

A form of inversion potential has been encountered which DL_POLY _2 does not recognise.
Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL_POLY 2 if this is reasonable. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines SYSDEF and INVFRC will be
required.

Message 450: error - undefined tethering potential

A form of tethering potential has been requested which DL_POLY _2 does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable
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to DL_POLY -2 if this is reasonable. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines SYSDEF and TETHFRC will be
required.

Message 451: error - three body potential cutoff undefined
The cutoff radius for a three body potential has not been defined in the FIELD file.

Action:
Locate the offending three body force potential in the FIELD file and add the required
cutoff. Resubmit the job.

Message 452: error - undefined pair potential

A form of pair potential has been requested which DL_POLY _2 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL_POLY _2 if this is reasonable. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines SYSDEF and FORGEN will be
required.

Message 453: error - four body potential cutoff undefined
The cutoff radius for a four-body potential has not been defined in the FIELD file.
Action:

Locate the offending four body force potential in the FIELD file and add the required cut-
off. Resubmit the job.

Message 454: error - undefined external field

A form of external field potential has been requested which DL_POLY _2 does not recognise.

Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL_POLY -2 if this is reasonable. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines SYSDEF and EXTNFLD will be
required.

Message 456: error - core and shell in same rigid unit

It is not sensible to fix both the core and the shell of a polarisable atom in the same molec-
ular unit. Consequently DL_POLY _2 will abandon the job if this is found to be the case.
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Action:

Locate the offending core-shell unit (there may be more than one in your FIELD file) and
release the shell (preferably) from the rigid body specification.

Message 458: error - too many PMF constraints - param. mspmf too small
The number of constraints in the potential of mean force is too large. The dimensions of

the appropriate arrays in DL_POLY_2 must be increased.

Action:

Standard user response. Fix the parameter mspmf.

Message 460: error - too many PMF sites - parameter mxspmf too small

The number of sites defined in the potential of mean force is too large. The dimensions of

the appropriate arrays in DL_POLY_2 must be increased.

Action:

Standard user response. Fix the parameter mxspmf.

Message 461: error - undefined metal potential

The user has requested a metal potential DL_POLY_2 does not recognise.
Action:

Locate the metal potential specification in the FIELD file and replace with a recognised
potential.

Message 462: error - PMF UNIT record expected

A pmf unit directive was expected as the next record in the FIELD file but was not found.
Action:

Locate the pmf directive in the FIELD file and examine the following entries. Insert the
missing pmf unit directive and resubmit.

Message 463: error - unidentified atom in metal potential list

DL_POLY 2 checks all the metal potentials specified in the FIELD file and terminates the

program if it can’t identify any one of them from the atom types specified earlier in the file.

Action:
Correct the erroneous entry in the FIELD file and resubmit.
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Message 465: error - calculated pair potential index too large

A zero or negative value for the thermostat time constant has been encountered in the
CONTROL file.

Action:
Locate the ensemble directive in the CONTROL file and assign a positive value to the
time constant.

Message 464: error - thermostat time constant must be > 0.d0

A zero or negative value for the thermostat time constant has been encountered in the
CONTROL file.

Action:
Locate the ensemble directive in the CONTROL file and assign a positive value to the
time constant.

Message 466: error - barostat time constant must be > 0.d0

A zero or negative value for the barostat time constant has been encountered in the CON-
TROL file.

Action:
Locate the ensemble directive in the CONTROL file and assign a positive value to the
time constant.

Message 468: error - rO too large for snm potential with current cutoff

The specified location (r0) of the potential minimum for a shifted n-m potential exceeds
the specified potential cutoff. A potential with the desired minimum cannot be created.

Action:

To obtain a potential with the desired minimum it is necessary to increase the van der
Waals cutoff. Locate the rvdw directive in the CONTROL file and reset to a magnitude
greater than r0. Alternatively adjust the value of r0 in the FIELD file. Check that the
FIELD file is correctly formatted.

Message 470: error - n<m in definition of n-m potential
The specification of a n-m potential in the FIELD file implies that the exponent m is larger

than exponent n. (Not all versions of DL_POLY 2 are affected by this.)

Action:
Locate the n-m potential in the FIELD file and reverse the order of the exponents. Resubmit
the job.
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Message 474: error - mxxdf too small in parlst subroutine

The parameter mxxdf defining working arrays in subroutine PARLST of DL_POLY_2 has
been found to be too small.

Action:
Standard user response. Fix the parameter mxxdf.
Message 475: error - mxxdf too small in parlst_nsq subroutine

The parameter mxxdf defining working arrays in subroutine PARLST_NSQ DL_POLY _2 has
been found to be too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 476: error - mxxdf too small in parneulst subroutine

The parameter mxxdf defining working arrays in subroutine PARNEULST is too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 477: error - mxxdf too small in prneulst subroutine

The parameter mxxdf defining working arrays in subroutine PRNEULST is too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 478: error - mxxdf too small in forcesneu subroutine

The parameter mxxdf defining working arrays in subroutine FORCESNEU is too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 479: error - mxxdf too small in multipleneu subroutine

The parameter mxxdf defining working arrays in subroutine MULTIPLENEU is too small.

Action:
Standard user response. Fix the parameter mxxdf.
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Message 484: error - only one potential of mean force permitted

It is not permitted to define more than one potential of mean force in the FIELD file.

Action:
Check that the FIELD file contains only one PMF specification. If more than one is needed,
DL_POLY _2 cannot handle it.

Message 486: error - HK real space screening function cutoff violation

DL_POLY _2 has detected an unacceptable degree of inaccuracy in the screening function
near the radius of cutoff in real space, which implies the Hautman-Klein Ewald method will
not be sufficiently accurate.

Action:

The user should respecify the HK control parameters given in the CONTROL file. Either
the convergence parameter should be increased or the sum expanded to incorporate more
images of the central cell. (Warning: increasing the convergence parameter may cause
failure in the reciprocal space domain.) (See 4.1.1).

Message 487: error - HK recip space screening function cutoff violation

DL_POLY_2 has detected an unacceptable degree of inaccuracy in the screening function
near the radius of cutoff in reciprocal space, which implies the Hautman-Klein Ewald method
will not be sufficiently accurate.

Action:

The user should respecify the HK control parameters given in the CONTROL file. Either
the convergence parameter should be reduced or more k-vectors used. (Warning: reducing
the convergence parameter may cause failure in the real space domain.) (See 4.1.1).

Message 488: error - HK lattice control parameter set too large

The Hautman-Klein Ewald method in DL_POLY -2 permits the user to perform a real space
sum over nearest-neighbour and next-nearest-neighbour cells (i.e. up to nlatt=2). If the
user specifies a larger sum than this, this error will result.

Action:
The user should respecify the HK control parameters given in the CONTROL file and set
nlatt to a maximum of 2. (See 4.1.1).

Message 490: error - PMF parameter mxpmf too small in passpmf

The bookkeeping arrays have been exceeded in PASSPMF
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Action:
Standard user response. Fix the parameter mxpmf. Set equal to mxatms.

Message 492: error - parameter mxcons < number of PMF constraints

The parameter mxcons is too small for the number of PMF constraints in the system.

Action:
Standard user response. Fix the value of mxcons.

Message 494: error in csend: pvmfinitsend

The PVM routine PVMFINITSEND has returned an error. It is invoked by the routine CSEND.

Action:
Check your system implementation of PVM.

Message 496: error in csend: pvmfpack

The PVM routine PVMFPACK has returned an error. It is invoked by the routine CSEND.

Action:
Check your system implementation of PVM.

Message 498: error in csend: pvmfsend

The PVM routine PVMFSEND has returned an error. It is invoked by the routine CSEND.

Action:
Check your system implementation of PVM.

Message 500: error in crecv: pvmfrecv

The PVM routine PVMFRECV has returned an error. It is invoked by the routine CRECV.

Action:
Check your system implementation of PVM.

Message 502: error in crecv: pvmfunpack

The PVM routine PVMFUNPACK has returned an error. It is invoked by the routine CRECV.

Action:
Check your system implementation of PVM.
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Message 504: error - cutoff too large for TABLE file
The requested cutoff exceeds the information in the TABLE file.

Action:
Reduce the value of the vdw cutoff (rvdw) in the CONTROL file or reconstruct the TABLE
file.

Message 506: error - work arrays too small for quaternion integration

The working arrays associated with quaternions are too small for the size of system being
simulated. They must be redimensioned.

Action:
Standard user response. Fix the parameter msgrp.

Message 508: error - rigid bodies not permitted with RESPA algorithm

The RESPA algorithm implemented in DL_POLY _2 is for atomic systems only. Rigid bod-
ies or constraints cannot be treated.

Action:
There is no cure for this. The code simply does not have this capability. Consider writing
it for yourself!

Message 510: error - structure optimiser not permitted with RESPA

The RESPA algorithm in DL_POLY_2 has not been implemented to work with the struc-
ture optimizer. You have asked for a forbidden operation.

Action:
There is no fix for this. In any case it does not make sense to use the RESPA algorithm
for this purpose.

Message 513: error - SPME not available for given boundary conditions

The SPME algorithm in DL_POLY_2 does not work for aperiodic (IMCON=0) or slab
(IMCON=6) boundary conditions.

Action:

If the system must have aperiodic or slab boundaries, nothing can be done. In the latter
case however, it may be acceptable to represent the same system with slabs replicated in
the z direction, thus permitting a periodic simulation.
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Message 514: error - SPME routines have not been compiled in

The inclusion of the SPME algorithm in DL_POLY _2 is optional at the compile stage. If
the executable does not contain the SPME routines, but the method is requested by the
user, this error results.

Action:

DL_POLY_2 must be recompiled with the SPME flags set. Beware that your system has
the necessary fast Fourier transform routines to permit this.

Message 1000: error - failed allocation of configuration arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1010: error - failed allocation of angle arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1011: error - failed allocation of dihedral arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1012: error - failed allocation of exclude arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1013: error - failed allocation of rigid body arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
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Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1014: error - failed allocation of vdw arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1020: error - failed allocation of angle work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1030: error - failed allocation of bond arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1040: error - failed allocation of bond work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1050: error - failed allocation of dihedral arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.



©CCLRC 9294

Message 1060: error - failed allocation of dihedral work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1070: error - failed allocation of constraint arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1090: error - failed allocation of site arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1100: error - failed allocation of core_shell arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1110: error - failed allocation of core_shell work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1120: error - failed allocation of inversion arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
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Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1130: error - failed allocation of inversion work arrays’

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1140: error - failed allocation of four-body arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1150: error - failed allocation of four-body work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1170: error - failed allocation of three-body arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1180: error - failed allocation of three-body work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.
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Message 1200: error - failed allocation of external field arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1210: error - failed allocation of pmf arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1220: error - failed allocation of pmf_If or pmf_vv work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1230: error - failed allocation of pmf shake work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1240: error - failed allocation of ewald arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1250: error - failed allocation of excluded atom arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
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Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1260: error - failed allocation of tethering arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1270: error - failed allocation of tethering work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1280: error - failed allocation of metal arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1290: error - failed allocation of work arrays in nvt_hO.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1300: error - failed allocation of densO array in npt_bO.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.
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Message 1310: error - failed allocation of work arrays in npt_bO0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1320: error - failed allocation of densO array in npt_hO.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1330: error - failed allocation of work arrays in npt_h0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1340: error - failed allocation of dens0O array in nst_bO0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1350: error - failed allocation of work arrays in nst_bO0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1360: error - failed allocation of densO array in nst_h0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
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Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1370: error - failed allocation of work arrays in nst_ho0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1380: error - failed allocation of work arrays in nve_1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1390: error - failed allocation of work arrays in nvt_el.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1400: error - failed allocation of work arrays in nvt_bl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1410: error - failed allocation of work arrays in nvt_hl1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.
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Message 1420: error - failed allocation of work arrays in npt_bl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1430: error - failed allocation of density array in npt_bl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1440: error - failed allocation of work arrays in npt_hl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1450: error - failed allocation of density array in npt_hl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1460: error - failed allocation of work arrays in nst_bl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1470: error - failed allocation of density array in nst_bl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
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Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1480: error - failed allocation of work arrays in nst_hl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1490: error - failed allocation of density array in nst_hl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1500: error - failed allocation of work arrays in nveq_1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1510: error - failed allocation of work arrays in nvtq_bl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1520: error - failed allocation of work arrays in nvtq_hl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.
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Message 1530: error - failed allocation of work arrays in nptq_bl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1540: error - failed allocation of density array in nptq_bl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1550: error - failed allocation of work arrays in nptq_hl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1560: error - failed allocation of density array in nptq_hl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1570: error - failed allocation of work arrays in nstq_bl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1580: error - failed allocation of density array in nstq_bl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
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Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1590: error - failed allocation of work arrays in nstq_hl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1600: error - failed allocation of density array in nstq_hl.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1610: error - failed allocation of work arrays in gshake.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1615: error - failed allocation of work arrays in qrattle_q.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1620: error - failed allocation of work arrays in nveq_2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.
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Message 1625: error - failed allocation of work arrays in qrattle_v.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1630: error - failed allocation of work arrays in nvtq_b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1640: error - failed allocation of work arrays in nvtq_h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1650: error - failed allocation of work arrays in nptq_b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1660: error - failed allocation of density array in nptq_b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1670: error - failed allocation of work arrays in nptq_h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
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Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1680: error - failed allocation of density array in nptq_h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1690: error - failed allocation of work arrays in nstq_b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1700: error - failed allocation of density array in nstq_b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1710: error - failed allocation of work arrays in nstq_h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1720: error - failed allocation of density array in nstq_h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.
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Message 1730: error - failed allocation of HK Ewald arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1740: error - failed allocation of property arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1750: error - failed allocation of spme arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1760: error - failed allocation of ewald_spme.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1770: error - failed allocation of quench.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1780: error - failed allocation of quatqnch.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
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Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1790: error - failed allocation of quatbook.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1800: error - failed allocation of intlist.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1810: error - failed allocation of forces.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1820: error - failed allocation of forcesneu.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1830: error - failed allocation of neutlst.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.
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Message 1840: error - failed allocation of multiple.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1850: error - failed allocation of multipleneu.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1860: error - failed allocation of multiple_nsq.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1870: error - failed allocation of parlst_nsq.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1880: error - failed allocation of parlst.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1890: error - failed allocation of parlink.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
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Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1900: error - failed allocation of parlinkneu.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1910: error - failed allocation of parneulst.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1920: error - failed allocation of strucopt.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1930: error - failed allocation of vertest.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1940: error - failed allocation of pair arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.
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Message 1945: error - failed allocation of tersoff arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1950: error - shell relaxation cycle limit exceeded

There has been a convergence failure during the execution of relaxed shell polarisation
model. Probable cause: the system is unstable e.g. in an abnormally high energy configu-
ration.

Action:

Increasing the maximum number of cycles permitted in the shell relaxation set by variable
mxpass in the dlpoly.f root program may help, but it is unlikely. A better option is to relax
the structure somehow first e.g. using the zero option in the CONTROL file.

Message 1953: error - tersoff radius of cutoff not defined

The Tersoff potential requires the user to specify a short ranged cutoff as part of the po-
tential description. This is distinct from the normal cutoff used by the Van der Waals
interactions.

Action:

Check the Tersoff potential description in the FIELD file. Make sure it is fully complete.

Message 1955: error - failed allocation of tersoff work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1960: error - conflicting shell option in FIELD file

The relaxed shell and adiabatic shell polarisation options in DL_POLY 2 are mutually ex-
clusive. The user has request both options in the same simulation.

Action:

Locate the occurrences of the shell directives in the FIELD file and ensure they specify the
same shell model.



©CCLRC 241

Message 1970: error - failed allocation of shell relax work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1972: error - unknown tersoff potential defined in FIELD file

DL_POLY 2 has failed to recognise the Tersoff potentials specified by the user in the FIELD
file.

Action:
Locate the Tersoff potential specification in the FIELD fiel and ensure it is correctly defined.

Message 1974: error - incorrect period boundary in tersoff.f

The implementation of the Tersoff potential in DL_POLY_2 is based on the link cell algo-
rithm, which is suitable for rectangular or triclinic MD cells only. It is not suitable for any
other shape of MD cell.

Action:

The user must reconstruct the system according to one of the permitted periodic boundaries.

Message 1976: error - too many link cells required in tersoff.f

The number of link cells required by the Tersoff routines exceeds the amount allowed for by
DL_POLY_2 . This can happen if the system is simulated under NPT or NST conditions
and the system volume increases dramatically.

Action:

The problem may cure itself on restart, provided the restart configuration has already ex-
pande significantly. Otherwise the user must locate and adjust the mxcell according to the
standard response procedure.

Message 1978: error - undefined potential in tersoff.f
A form of Tersoff potential has been requested which DL_POLY _2 does not recognise.
Action:

Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL_POLY _2 if this is reasonable. Alternatively, you may consider defining the required
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potential in the code yourself. Amendments to subroutines SYSDEF and TERSOFF will be
required.

Message 1980: error - failed allocation of nvevv_1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1990: error - failed allocation of nvtvv_bl.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2000: error - failed allocation of nvtvv_el.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2010: error - failed allocation of nvtvv_hl.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2020: error - failed allocation of nptvv_bl.f densO array

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.
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Message 2030: error - failed allocation of nptvv_bl.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2040: error - failed allocation of nptvv_hl.f densO array

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2050: error - failed allocation of nptvv_hl.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2060: error - failed allocation of nstvv_bl.f densO array

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2070: error - failed allocation of nstvv_bl.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2080: error - failed allocation of nstvv_hl.f densO array

This is a memory allocation error. Probable cause: excessive size of simulated system.
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Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2090: error - failed allocation of nstvv_bl.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2100: error - failed allocation of nveqvv_1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2110: error - failed allocation of nveqvv_2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2120: error - failed allocation of nvtqvv_bl.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2130: error - failed allocation of nvtqvv_b2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.
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Message 2140: error - failed allocation of nvtqvv_hl.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2150: error - failed allocation of nvtqvv_h2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2160: error - failed allocation of nptqvv_bl.f densO array

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2170: error - failed allocation of nptqvv_bl.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2180: error - failed allocation of nptqvv_b2.f densO array

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2190: error - failed allocation of nptqvv_b2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
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Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2200: error - failed allocation of nptqvv_hl.f densO array

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2210: error - failed allocation of nptqvv_hl.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2220: error - failed allocation of nptqvv_h2.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2230: error - failed allocation of nptqvv_h2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2240: error - failed allocation of nstqvv_bl.f densO array

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.
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Message 2250: error - failed allocation of nstqvv_bl.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2260: error - failed allocation of nstqvv_b2.f dens0O array

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2270: error - failed allocation of nstqvv_b2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2280: error - failed allocation of nstqvv_h1l.f densO array

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2290: error - failed allocation of nstqvv_hl.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2300: error - failed allocation of nstqvv_h2.f densO array

This is a memory allocation error. Probable cause: excessive size of simulated system.
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Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2310: error - failed allocation of nstqvv_h2.f work arrays
This is a memory allocation error. Probable cause: excessive size of simulated system.
Action:

If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.



Appendix D

Subroutine Locations

The Locations of Subroutines and Functions

The following table lists the subroutines and functions in DL_POLY_2 and which source
files they can be found in.

Routine Kind Location
abort_config_read subroutine define_system.f
abort_control_read subroutine  define_system.f
abort_eamtable_read subroutine metal_terms.f
abort_field_read subroutine  define_system.f
abort_table_read subroutine vdw_terms.f
abortscan subroutine setup_program.f
alloc_ang_arrays subroutine  angles_module.f
alloc_bnd_arrays subroutine  bonds_module.f
alloc_config_arrays subroutine config_module.f
alloc_csh_arrays subroutine core_shell_module.f
alloc_dih_arrays subroutine dihed_module.f
alloc_ewald_arrays subroutine ewald_module.f
alloc_exc_arrays subroutine exclude_module.f
alloc_fbp_arrays subroutine  four_body_module.f
alloc_fld_arrays subroutine external_field_module.f
alloc_hke_arrays subroutine hkewald_module.f
alloc_inv_arrays subroutine inversion_module.f
alloc_met_arrays subroutine metal_module.f
alloc_pair_arrays subroutine pair_module.f
alloc_pmf_arrays subroutine  pmf_module.f
alloc_prp_arrays subroutine  property_module.f
alloc_rgbdy_arrays subroutine rigid_body_module.f
alloc_shake_arrays subroutine shake_module.f
alloc_site_arrays subroutine site_module.f
alloc_spme_arrays subroutine  spme_module.f
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alloc_tbp_arrays
alloc_ter_arrays
alloc_tet_arrays
alloc_vdw_arrays

angfrc
bndfrc
bodystress
bspcoe
bspgen

cell _propagate

cell_update
cerfr
cfgscan

check_shells
check_syschg

conscan
copystring
corshl
coulO
coulOneu
coull
coul2
coul2neu
coul3
coul3neu
could
cpy_rtc
crecv
crecv
csend
csend
dblstr
dcell

define_angles
define_atoms
define_bonds
define_constraints
define_core_shell
define_dihedrals
define_external_field
define_four_body
define_inversions
define_metals

define_pmf

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
function

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
function

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine

three_body_module.f
tersoff_module.f
tether_module.f
vdw_module.f
angle_terms.f
bond_terms.f
rigid_body_terms.f
spme_terms.f
spme_terms.f
ensemble_tools.f
ensemble_tools.f
hkewald_terms.f
setup_program.f
core_shell_terms.f
site_terms.f
setup_program.f
parse_tools.f
core_shell_terms.f
coulomb_terms.f
neu_coul_terms.f
coulomb_terms.f
coulomb_terms.f
neu_coul_terms.f
coulomb_terms.f
neu_coul_terms.f
coulomb_terms.f
utility_pack.f
basic_comms.f

serial.f

basic_comms.f

serial.f

parse_tools.f
utility_pack.f
angle_terms.f
site_terms.f
bond_terms.f
shake_terms.f
core_shell_terms.f
dihedral_terms.f
external_field_terms.f
four_body_terms.f
inversion_terms.f
metal_terms.f

pnf_terms.f
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define_rigid_body subroutine rigid_body_terms.f
define_tersoff subroutine tersoff_terms.f
define_tethers subroutine tether_terms.f
define_three_body subroutine  three_body_terms.f
define_units subroutine define_system.f

define_van_der_waals subroutine vdw_terms.f

diffsn0 subroutine  system_properties.f
diffsni subroutine system_properties.f
dihfrc subroutine dihedral_terms.f
dlpfft3 subroutine spme_terms.f

duni function utility_pack.f
eamden subroutine metal_terms.f
ele_prd subroutine utility_pack.f
erfcgen subroutine ewald_terms.f
error subroutine error.f

ewaldl subroutine ewald_terms.f
ewald?2 subroutine ewald_terms.f
ewald2neu subroutine neu_ewald_terms.f
ewald3 subroutine ewald_terms.f
ewald3_neu subroutine neu_ewald_terms.f
ewald4 subroutine ewald_terms.f
ewald_spme subroutine  spme_terms.f
exclude subroutine exclude_terms.f
exclude_atom subroutine exclude_terms.f
exclude_link subroutine exclude_terms.f
excludeneu subroutine exclude_terms.f
exitcomms subroutine basic_comms.f
exitcomms subroutine serial.f

extnfld subroutine external_field_terms.f
fbpfrc subroutine  four_body_terms.f
fcap subroutine utility_pack.f
findstring function parse_tools.f
fldscan subroutine  setup_program.f
forces subroutine force_drivers.f
forcesneu subroutine force_drivers.f
forgen subroutine  vdw_terms.f
fortab subroutine vdw_terms.f
freeze subroutine utility_pack.f
fsden subroutine metal_terms.f
gauss subroutine utility_pack.f
gdsum subroutine  basic_comms.f
gdsum subroutine serial.f

getcom subroutine ensemble_tools.f
getkin function kinetic_terms.f
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getkinf
getking
getkinr
getkins
getkint
getmass
getrec
getrotmat
getvom
getword
gimax
gimax
gisum
gisum

global_sum_forces

gstate
gstate
gsync
gsync
hkewaldl
hkewald2
hkewald3
hkewald4
hkgen
images
initcomms
initcomms
intlist
intstr
intstr3
invert
invfrc
jacobi
kinstr
kinstress
kinstressf
kinstressg
1f_integrate
loc8
lowcase
lrcmetal
lrcorrect
machine
machine

function

subroutine
function

subroutine
function

function

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
function

function

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
function

subroutine
subroutine
subroutine
subroutine
subroutine

kinetic_terms.
kinetic_terms.
kinetic_terms.
kinetic_terms.
kinetic_terms.
ensemble_tools.f
parse_tools.f
utility_pack.f
ensemble_tools.f
parse_tools.f
basic_comms.f
serial.f
basic_comms.f
serial.f
utility_pack.f
basic_comms.f
serial.f

H Hh Hh Hh Hh

basic_comms.f
serial.f
hkewald_terms.
hkewald_terms.
hkewald_terms.
hkewald_terms.
hkewald_terms.
utility_pack.f
basic_comms.f
serial.f
define_system.f
parse_tools.f
utility_pack.f
utility_pack.f

H Hh Hh Hh Hh

inversion_terms.f
utility_pack.f
utility_pack.f
kinetic_terms.f
kinetic_terms.f
kinetic_terms.f
1f_integrate.f
utility_pack.f
parse_tools.f
metal_terms.f
vdw_terms.f
basic_comms.f
serial.f
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matmul
merge
merge
merge
merge
mergel
mergel
mergel
mergel
merge4
merge4
merge4
merge4

metal_deriv

metdens
metfrc
metgen
mettab
mkwd8
multiple

multiple_nsq
multipleneu

mynode
mynode
neutbook
neutlst
nodedim
nodedim
nosquish
npt_bl
npt_hl
nptq_bl
nptq_b2
nptq_hl
nptq_h2
nptqgscl_p
nptqgscl_t
nptqvv_bl
nptqvv_b2
nptqvv_hl
nptqvv_h2
nptscale_p
nptscale_t
nptvv_bl

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
function

subroutine
subroutine
subroutine
function

function

subroutine
subroutine
function

function

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine

utility_pack.f
merge_hcube.f
merge_systol.f
merge_tools.f
serial.f
merge_hcube.f
merge_systol.f
merge_tools.f
serial.f
merge_hcube.f
merge_systol.f
merge_tools.f
serial.f
metal_terms.
metal_terms.
metal_terms.
metal_terms.
metal_terms.
parse_tools.f
force_drivers.f
force_drivers.f
force_drivers.f
basic_comms.f
serial.f
define_system.f
force_drivers.f
basic_comms.f
serial.f

H Hh Hh Hh Hh

vv_rotation_1.f
1f _motion_1.f

1f _motion_1.f

1f_rotation_1.f
1f _rotation_2.f
1f _rotation_1.f
1f _rotation_2.f
ensemble_tools.f
ensemble_tools.f
vv_rotation_1.f
vv_rotation_2.f
vv_rotation_1.f
vv_rotation_2.f
ensemble_tools.f
ensemble_tools.f
vv_motion_1.f
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nptvv_hl
nst_bl
nst_hl
nstq_bl
nstq_b2
nstq_hl
nstq_h2
nstqmtk_p
nstqgscl_p
nstqscl_p2
nstqgscl_t
nstqgscl_t2
nstqvv_bl
nstqvv_b2
nstqvv_hl
nstqvv_h2
nstscale_p
nstscale_t
nstvv_bl
nstvv_hl
numnodes
numnodes
nve_1
nveq_1
nveq_2
nveqvv_1
nveqvv_2
nvevv_1
nvt_bl
nvt_el
nvt_hl
nvtq_bl
nvtq_b2
nvtq_hl
nvtq_h2
nvtqgscl
nvtquv_b1l
nvtqvv_b2
nvtquvv_hl
nvtqvv_h2
nvtscale
nvtvv_bl
nvtvv_el
nvtvv_hil

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
function

function

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine

vv_motion_1.f
1f _motion_1.f
1f _motion_1.f
1f_rotation_1.
1f _rotation_2.
1f_rotation_1.
1f _rotation_2.

ensemble_tools.f
ensemble_tools.f
ensemble_tools.f
ensemble_tools.f
ensemble_tools.f

vv_rotation_1.
vv_rotation_2.
vv_rotation_1.
vv_rotation_2.

ensemble_tools.f
ensemble_tools.f

vv_motion_1.f
vv_motion_1.f
basic_comms.f
serial.f

1f _motion_1.f
1f _rotation_1.
1f_rotation_2.
vv_rotation_1.
vv_rotation_2.
vv_motion_1.f
1f _motion_1.f
1f _motion_1.f
1f _motion_1.f
1f_rotation_1.
1f _rotation_2.
1f _rotation_1.
1f_rotation_2.

ensemble_tools.f

vv_rotation_1.
vv_rotation_2.
vv_rotation_1.
vv_rotation_2.

ensemble_tools.f

vv_motion_1.f
vv_motion_1.f
vv_motion_1.f

f
f
f
f

f
f
f
f

H Hh Hh Hh

f
f
f
f

f
f
f
f
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parlink
parlinkneu
parlst
parlst_nsq
parneulst
parset
passcon
passcon
passpmf
passpmf
passquat
passquat
pivot
pmf_rattle_r
pmf_rattle_v
pmf_shake
pmf_vectors
pmflf

pmfvv
primlst
prneulst

put_shells_on_cores

qrattle_r
qrattle_v
gshake
quatbook
quatgnch
quench
rdf0
rdfOneu
rdfil
rdrattle_r
rdrattle_v
rdshake_1
relax_shells
result
revive
rotate_omega
scl_csum
sdotO
sdotl
set_block
shellsort
shlfrc

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
function

function

subroutine
subroutine
subroutine

nlist_builders.
nlist_builders.
nlist_builders.
nlist_builders.
nlist_builders.
setup_program.f
pass_tools.f
serial.f
pass_tools.f
serial.f
pass_tools.f
serial.f
vv_rotation_2.f
pnf_vv.f
pnf_vv.f
pmf_1f.f
pnf_terms.f
pmf_1f.f
ponf_vv.f
nlist_builders.f
nlist_builders.f

Fh Hh Hh Hh Hh

core_shell_terms.f

vv_rotation_2.f
vv_rotation_2.f
1f_rotation_2.f
define_system.f
temp_scalers.f
temp_scalers.f

system_properties.f
system_properties.f
system_properties.f

vv_motion_1.f
vv_motion_1.f
1f _motion_1.f

core_shell_terms.f
system_properties.f
system_properties.f

vv_rotation_1.f
utility_pack.f
utility_pack.f
utility_pack.f
utility_pack.f
utility_pack.f

core_shell_terms.f
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shlmerge
shlmerge
shlmerge
shlmerge
shlqgnch
shmove
shmove
shmove
shmove
simdef
spl_cexp
splice
splice
splice
splice
spme_for
srfrce
srfrceneu
static
strip
striptext
strucopt
sysbook
sysdef
sysgen
sysinit
systemp
tergen
terint
tersoff
tersoff3
tethfrc
thbfrc
timchk
traject
traject

update_quaternions

vertest
vscaleg

vv_integrate

warning
xscale
zdenO
zdenl

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
subroutine
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merge_hcube.f
merge_systol.f
merge_tools.f
serial.f
temp_scalers.f
merge_hcube.f
merge_systol.f
merge_tools.f
serial.f
define_system.f
spme_terms.f
merge_hcube.f
merge_systol.f
merge_tools.f
serial.f
spme_terms.f
vdw_terms.f
vdw_terms.f
system_properties.f
parse_tools.f
parse_tools.f
strucopt.f
define_system.
define_system.
define_system.
define_system.
define_system.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tether_terms.f
three_body_terms.f
timchk.f

traject.f
traject_u.f
1f_rotation_1.f
nlist_builders.f
temp_scalers.f
vv_integrate.f
warning.f
utility_pack.f
system_properties.f
system_properties.f

Hh Hh Hh Hh Hh Hh Hh Hh Hh



Appendix E

Called Subroutines

Subroutines Called
The following table lists the subroutines in DL_POLY _2 and which subroutines they call.

Calling routine Called routine

angle_terms.f copystring
angle_terms.f dblstr
angle_terms.f error
angle_terms.f gdsum
angle_terms.f getrec
angle_terms.f getword
angle_terms.f gstate
angle_terms.f images
angle_terms.f intstr
angle_terms.f lowcase
angles_module.f error

I
I
I
I
I
I
|
I
|
I
I
I
I
| MPI_COMM_RANK
I
I
I
|
I
|
I
I
I
I
I
I
I

basic_comms.f MPI_BARRIER
basic_comms.f

basic_comms.f MPI_COMM_SIZE
basic_comms.f MPI_FINALIZE
basic_comms.f MPI_RECV
basic_comms.f MPI_allreduce
basic_comms.f MPI_init
basic_comms.f MPI_send
basic_comms.f exit
basic_comms.f gisum
basic_comms.f mynode
basic_comms.f numnodes
bond_terms.f copystring
bond_terms.f dblstr
bond_terms.f error
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bond_terms.
bond_terms.
bond_terms.
bond_terms.
bond_terms.
bond_terms.
bond_terms.f

bonds_module. f
config_module.f

H Hh Hh Hh Hh Hh

core_shell_module.f
core_shell_terms.
core_shell _terms.
core_shell_terms.
core_shell_terms.
core_shell _terms.
core_shell_terms.
core_shell _terms.
core_shell_terms.

define_system.f
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.

Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Fh Hh b Hh b Hh Hh Hh Hh Hh Hh Hh e Hh

Hh Fh Hh Fh Hh Fh Hh Fh

gdsum

getrec

getword

gstate

images

intstr

lowcase

error

error

error

dblstr

error

gdsum

getrec

images

intstr

merge

mergel
abort_config_read
abort_control_read
abort_field_read
ccfft3d
check_shells
check_syschg
copystring

dblstr

dcell
define_angles
define_atoms
define_bonds
define_constraints
define_core_shell
define_dihedrals
define_external_field
define_four_body
define_inversions
define_metals
define_pmf
define_rigid_body
define_tersoff
define_tethers
define_three_body
define_units
define_van_der_waals
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define_system.f | error
define_system.f | exclude
define_system.f | exclude_atom
define_system.f | exclude_link
define_system.f | excludeneu
define_system.f | £ftw3d_f77_create_plan
define_system.f | findstring
define_system.f | gauss
define_system.f | gdsum
define_system.f | getrec
define_system.f | gimax
define_system.f | gstate
define_system.f | images
define_system.f | intlist
define_system.f | intstr
define_system.f | invert
define_system.f | jacobi
define_system.f | lowcase
define_system.f | lrcmetal
define_system.f | lrcorrect
define_system.f | merge
define_system.f | merge4d
define_system.f | mkwd8
define_system.f | neutbook
define_system.f | passcon
define_system.f | passpmf
define_system.f | passquat
define_system.f | put_shells_on_cores
define_system.f | quatbook
define_system.f | quatqnch
define_system.f | quench
define_system.f | shellsort
define_system.f | shlgnch
define_system.f | strip
define_system.f | vscaleg
define_system.f | warning
define_system.f | zzfft3d
dihed_module.f | error
dihedral_terms.f | copystring
dihedral_terms.f | dblstr
dihedral_terms.f | error
dihedral_terms.f | gdsum
dihedral_terms.f | getrec
dihedral_terms.f | getword
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dihedral_terms.
dihedral_terms.
dihedral_terms.
dihedral_terms.

dlpoly.f
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.

Hh Hh Hh Hh Hh Hh Hh Fh Hh Fh Hh Fh Hh b Hh b Hh Hh Hh b Hh Hh Hh Hh Hh Hh Hh Hh Fh Hh b Hh b Hh Hh Hh Hh Hh Hh

Hh Hh Hh b
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gstate

images

intstr

lowcase
alloc_ang_arrays
alloc_bnd_arrays
alloc_config_arrays
alloc_csh_arrays
alloc_dih_arrays
alloc_ewald_arrays
alloc_exc_arrays
alloc_fbp_arrays
alloc_fld_arrays
alloc_hke_arrays
alloc_inv_arrays
alloc_met_arrays
alloc_pair_arrays
alloc_pmf_arrays
alloc_prp_arrays
alloc_rgbdy_arrays
alloc_shake_arrays
alloc_site_arrays
alloc_spme_arrays
alloc_tbp_arrays
alloc_ter_arrays
alloc_tet_arrays
alloc_vdw_arrays
angfrc

bndfrc

corshl

dcell

dihfrc

error

exitcomms

extnfld

fbpfrc

fcap

forces

forcesneu

freeze

gdsum
global_sum_forces
gsync

initcomms
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dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.f

Hh Hh Hh Hh Hh Fh Hh Hh Hh Fh Hh Hh Hh b Hh Hh Hh Hh Hh Hh Hh Hh Fh Hh Fh Hh Hh Hh b Hh Hh Hh Hh Hh Hh Hh Hh

ensemble_tools.
ensemble_tools.
ensemble_tools.
ensemble_tools.
ensemble_tools.
ensemble_tools.

Hh Hh Hh Hh Hh b

invfrc
kinstress
1f_integrate
lrcmetal
machine
multiple
multiple_nsq
multipleneu
parlink
parlinkneu
parlst
parlst_nsq
parneulst
parset
quatqnch
relax_shells
result
revive
shlfrc
shlgnch
simdef
static
strucopt
sysbook
sysdef
sysgen
sysinit
systemp
tersoff
tethfrc
thbfrc
timchk
traject
vertest
vscaleg
vv_integrate
xscale
zdenO
cell_update
dcell

gdsum
getkin
getkinf
getking
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ensemble_tools.
ensemble_tools.
ensemble_tools.
ensemble_tools.
ensemble_tools.
ensemble_tools.
ensemble_tools.

error.f

error.f

ewald_module.f
ewald_terms.
ewald_terms.
ewald_terms.
ewald_terms.f

H Hh Hh

H Hh Hh Hh Hh Hh Hh

exclude_module.f

exclude_terms.
exclude_terms.
exclude_terms.
exclude_terms.

external_field_module.f
external_field_terms.
external_field_terms.
external_field_terms.
external_field_terms.
external_field_terms.
external_field_terms.
external_field_terms.
terms.

external_field
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.

f
f
f
f

Hh Hh Hh Hh Hh Fh Hh Fh Hh b Hh b Hh b Hh Hh

Hh Hh Hh Hh Hh Hh Hh b

getking
invert
kinstress
kinstressf
kinstressg
matmul
sdotO
exitcomms
gsync
error
dcell
error
gdsum
invert
error
error
gimax
gstate
warning
error
copystring
dblstr
error
getrec
getword
intstr
lowcase
strip
coulO
coulOneu
coul?2
coul2neu
coul3
coul3neu
could
erfcgen
error
ewaldl
ewald?2
ewald3
ewald4
ewald_spme
gdsum
gimax
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force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.f

Hh Hh Hh Hh Hh Fh Hh b Hh b Hh Hh Hh Hh Hh

four_body_module.f

four_body_terms.
four_body_terms.
four_body_terms.
four_body_terms.
four_body_terms.
four_body_terms.
four_body_terms.
four_body_terms.
four_body_terms.
four_body_terms.
four_body_terms.
hkewald_module.f
hkewald_terms.f
hkewald_terms.f
hkewald_terms.f
hkewald_terms.f
hkewald_terms.f
hkewald_terms.f

inversion_module.f

inversion_terms.
inversion_terms.
inversion_terms.
inversion_terms
inversion_terms.
inversion_terms.
inversion_terms.
inversion_terms.

f
f
f
£
f
f
f
f

Hh Hh Fh Fh Hh Fh Hh Hh Hh Hh Hh

gstate
hkewaldl
hkewald?2
hkewald3
hkewald4
hkgen
images
metdens
metfrc
neutlst
primlst
prneulst
rdf0
rdfOneu
srfrce
srfrceneu
error
copystring
dblstr
dcell
error
gdsum
getrec
getword
gstate
intstr
invert
lowcase
error
cerfr
dcell
error
gdsum
invert
warning
error
copystring
dblstr
error
gdsum
getrec
getword
gstate
images
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inversion_terms.f
inversion_terms.f
kinetic_terms.f

1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_motion_1.
1f _motion_1.
1f _motion_1.
1f _motion_1.
1f _motion_1.
1f _motion_1.
1f _motion_1.
1f_motion_1.
1f_motion_1.
1f _motion_1.
1f _motion_1.
1f_motion_1.
1f _motion_1.
1f _motion_1.
1f _motion_1.
1f _motion_1.

Fh Hh Fh Hh Hh Fh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh

f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f

intstr
lowcase
gdsum
error
gstate
npt_bl
npt_hl
nptq_bl
nptq_b2
nptq_hl
nptq_h2
nst_bl
nst_hil
nstq_bl
nstq_b2
nstq_hl
nstq_h2
nve_1
nveq_1
nveq_2
nvt_bl
nvt_el
nvt_hil
nvtq_bl
nvtq_b2
nvtq_hl
nvtq_h2
pnflf

cell_propagate

error
gdsum
getcom
getkin
getmass
getvom
gstate
images
kinstress
matmul
merge
rdshake_1
sdotO
shmove
splice
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1f_rotation_1.f | bodystress
1f _rotation_1.f | cell_propagate
1f_rotation_1.f | error
1f_rotation_1.f | getcom

1f _rotation_1.f | getkinf
1f_rotation_1.f | getkinr
1f_rotation_1.f | getkint
1f_rotation_1.f | getmass
1f_rotation_1.f | getrotmat
1f_rotation_1.f | getvom
1f_rotation_1.f | gimax
1f_rotation_1.f | gstate
1f_rotation_1.f | images
1f_rotation_1.f | kinstressf
1f_rotation_1.f | kinstressg
1f_rotation_1.f | matmul
1f_rotation_1.f | merge
1f_rotation_1.f | mergel
1f_rotation_1.f | rdshake_1
1f _rotation_1.f | sdotO

1f rotation_1.f | update_quaternions
1f_rotation_2.f | bodystress
1f _rotation_2.f | cell_propagate
1f _rotation_2.f | error

1f _rotation_2.f | gdsum
1f_rotation_2.f | getcom

1f _rotation_2.f | getkinf
1f_rotation_2.f | getkinr
1f_rotation_2.f | getkint
1f_rotation_2.f | getmass
1f_rotation_2.f | getrotmat
1f_rotation_2.f | getvom
1f_rotation_2.f | gimax
1f_rotation_2.f | gstate
1f_rotation_2.f | images
1f_rotation_2.f | kinstressf
1f_rotation_2.f | kinstressg
1f_rotation_2.f | matmul
1f_rotation_2.f | merge
1f_rotation_2.f | mergel
1f_rotation_2.f | merge4d
1f_rotation_2.f | gshake
1f_rotation_2.f | shmove
1f_rotation_2.f | splice
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1f_rotation_2.f update_quaternions

|
merge_hcube.f | nodedim
merge_systol.f | nodedim
merge_tools.f | MPI_IRECV
merge_tools.f | MPI_SEND
merge_tools.f | MPI_WAIT
merge_tools.f | error
merge_tools.f | gdsum
merge_tools.f | gstate
merge_tools.f | gsync
metal_module.f | error
metal _terms.f | abort_eamtable_read
metal_terms.f | copystring
metal_terms.f | dblstr
metal_terms.f | eamden
metal_terms.f | error
metal_terms.f | findstring
metal_terms.f | fsden
metal_terms.f | gdsum
metal_terms.f | getrec
metal_terms.f | getword
metal_terms.f | images
metal_terms.f | intstr
metal_terms.f | loc8

metal _terms.f | lowcase
metal _terms.f | metal_deriv
metal_terms.f | metgen
metal_terms.f | mettab
metal_terms.f | warning
nlist_builders.f | dcell
nlist_builders.f | error
nlist_builders.f | gimax
nlist_builders.f | gisum
nlist_builders.f | gstate
nlist_builders.f | images
nlist_builders.f | invert
nlist_builders.f | merge
nlist_builders.f | shellsort
pair_module.f | error
parse_tools.f | gisum
parse_tools.f | gstate
parse_tools.f | gsync
pass_tools.f | MPI_IRECV
pass_tools.f | MPI_SEND
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pass_tools.
pass_tools.
pass_tools.
pass_tools.
pass_tools.
pmf_1f.f
pmf_1f.
pmf_1f.
pmf_1f.
pmf_1f.
pmf_1f.
pmf_1f.
pmf_1f.
pmf_1f.
pmf_1f.f
pmf_module.f
pmf_terms.f
pmf_terms.f
pmf_terms.f
pmf_terms.f
f
f
f
f

Hh Hh Hh Hh b

H Fh Hh Hh Hh Hh Hh b

pnf_terms.
pmf_terms.
pmf_terms.
pmf_terms.
pmf_vv.f

pmf_vv.
pmf_vv.
pmf_vv.
pmf_vv.
pmf_vv.
pmf_vv.
pmf_vv.
pmf_vv.
pmf_vv.
pmf_vv.

H Hh Hh Fh Hh Hh Hh Hh Hh

=)

property_module.f
rigid_body_module.f
rigid_body_terms.f
rigid_body_terms.f
rigid_body_terms.f
rigid_body_terms.f

serial.f

setup_program.f
setup_program.f

MPI_WAIT
error
gisum
gstate
gsync
error
gdsum
getkin
images
kinstress
merge
pnf_shake
pnf_vectors
rdshake_1
splice
error
dblstr
error
findstring
getrec
images
intstr
lowcase
strip
error
gdsum
getkin
images
kinstress
merge
pmf_rattle_v
pnf_vectors
rdrattle_r
rdrattle_v
splice
error
error
error
gdsum
getrec
intstr
error
abortscan
cfgscan
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setup_program.
setup_program.
setup_program.
setup_program.
setup_program.
setup_program.
setup_program.
setup_program.
setup_program.
setup_program.
setup_program.
shake_module.f
shake_terms.
shake_terms.
shake_terms.
shake_terms.
shake_terms.
site_module.
site_terms.
site_terms.
site_terms.
site_terms.
site_terms.
site_terms.
site_terms.
spme_module. f
spme_terms.
spme_terms.
spme_terms.
spme_terms.
spme_terms.
spme_terms.
spme_terms.
spme_terms.
spme_terms.
spme_terms.
spme_terms.
spme_terms.
spme_terms.
spme_terms.
spme_terms.
spme_terms.
spme_terms.
strucopt.f

H Hh Hh Hh Hh Hh

Hh Hh Hh Hh Hh Hh Hh

Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh B Hh Hh

Hh Hh Hh Hh Hh Hh Hh b Hh Hh Hh

conscan
dblstr
dcell
error
findstring
fldscan
gdsum
getrec
getword
intstr
lowcase
error
copystring
dblstr
error
getrec
intstr
error
copystring
dblstr
error
getrec
getword
intstr
warning
error
bspcoe
bspgen
ccfft3d
cpy_rtc
dcell
dcft3
dlpfft3
ele_prd
error
fftwnd_£f77_one
gdsum
invert
scl_csum
set_block
spl_cexp
spme_for
zzfft3d
error
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strucopt.f

system_properties.
system_properties.
system_properties.
system_properties.
system_properties.
system_properties.
system_properties.
system_properties.
system_properties.
system_properties.

temp_scalers.f
temp_scalers.
temp_scalers.
temp_scalers.
temp_scalers.
temp_scalers.
temp_scalers.
temp_scalers.
temp_scalers.
temp_scalers.
temp_scalers.
tersoff_module.f
tersoff_terms.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tersoff_terms.
tether_module.
tether_terms.
tether_terms.
tether_terms.
tether_terms.
tether_terms.

Fh Hh Fh Hh Hh Fh Hh b Hh

=

Hh Hh Hh Hh Hh Hh Hh b Hh b Hh Hh Hh Hh Hh Hh

Fh Hh Hh Hh Hh

Hh Hh Hh Fh Hh Fh Hh Hh Hh b

images
dcell
diffsn0
diffsnl
error
gdsum
merge
rdfil
revive
timchk
zdenl
error
gdsum
gstate
images
invert
merge
mergel
quatqnch
shlmerge
shmove
splice
error
copystring
dblstr
dcell
error
gdsum
getrec
getword
gstate
intstr
invert
loc8
lowcase
tergen
terint
tersoff3
error
copystring
dblstr
error
gdsum
getrec
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tether_terms.
tether_terms.
tether_terms.
tether_terms.
tether_terms.
tether_terms.f

Fh Fh Hh Hh Hh

three_body_module.f
three_body_terms.
three_body_terms.
three_body_terms.
three_body_terms.
three_body_terms.
three_body_terms.
three_body_terms.
three_body_terms.
three_body_terms.
three_body_terms.
three_body_terms.

timchk.f
timchk.f
utility_pack.
utility_pack.
utility_pack.
utility_pack.
utility_pack.
utility_pack.
utility_pack.
utility_pack.
utility_pack.
utility_pack.
vdw_module. f
vdw_terms.f
vdw_terms.f
vdw_terms.f
vdw_terms.f
vdw_terms.f
vdw_terms.f
vdw_terms.f
f
f
f
f
f
f

Hh Hh Hh Hh Hh Hh Hh Hh Hh b

vdw_terms.
vdw_terms.
vdw_terms.
vdw_terms.
vdw_terms.
vdw_terms.

Hh Fh Hh Fh Hh Fh Hh Fh Hh Hh b

getword
gstate
images
intstr
lowcase
strip
error
copystring
dblstr
dcell
error
gdsum
getrec
getword
gstate
intstr
invert
lowcase
date_and_time
mynode
date_and_time
error
exitcomms
gdsum
images
intstr3
invert
merge
sdotO
sdotl
error
abort_table_read
copystring
dblstr
error
findstring
forgen
fortab
gdsum
getrec
getword
intstr
loc8
lowcase
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vdw_terms.f

vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.

vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.
vv_motion_1.

Fh Hh Fh Hh Hh Fh Hh Fh Hh Hh Fh Hh Hh Hh Hh Hh Hh Hh

Fh Hh Fh Hh FHh kh Hh Hh Hh b Fh Hh Fh Hh Hh Hh Hh Fh Hh Hh Hh Hh b Hh Hh

warning
error
gstate
nptqvv_bl
nptqvv_b2
nptqvv_hl
nptqvv_h2
nptvv_bl
nptvv_hl
nstqvv_bl
nstqvv_b2
nstqvv_hl
nstqvv_h2
nstvv_bl
nstvv_hl
nveqvv_1
nveqvv_2
nvevv_1
nvtqvv_bl
nvtqvv_b2
nvtqvv_hl
nvtqvv_h2
nvtvv_bl
nvtvv_el
nvtvv_hl
pmfvv
dcell
error
gdsum
getcom
getkin
getmass
getvom
gstate
images
kinstress
matmul
merge
nptscale_p
nptscale_t
nstscale_p
nstscale_t
nvtscale
rdrattle_r
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vv_motion_1.f

vv_motion_1.f

vv_motion_1.f

vv_motion_1.°f

vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_1.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.

Hh Hh Hh Hh Hh Hh Hh Hh Hh Fh Hh Fh Hh b Hh b Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh b Hh b Hh Hh Hh Hh Hh

rdrattle_v
sdotO
shmove
splice
bodystress
dcell
error
getcom
getkinf
getking
getking
getmass
getrotmat
getvom
gimax
gstate
images
kinstressf
kinstressg
matmul
merge
mergel
nosquish
nptgscl_p
nptqgscl_t
nstqscl_p
nstqgscl_t
nvtqscl
rdrattle_r
rdrattle_v
sdotO
bodystress
dcell
error
gdsum
getcom
getkinf
getking
getking
getmass
getrotmat
getvom
gimax
gstate
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vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.
vv_rotation_2.

Hh Hh Hh Fh Hh b Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh b

images
kinstressf
kinstressg
matmul
merge
mergel
nosquish
nptqscl_p
nptqgscl_t
nstqgscl_p2
nstqscl_t2
nvtqgscl
pivot
qrattle_r
qrattle_v
rotate_omega
sdotO
shmove
splice
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Calling Subroutines

Calling Subroutines
The following table lists the subroutines in DL_POLY 2 and where they are called from.

Called routine
abort_config_read
abort_control_read
abort_eamtable_read
abort_field_read
abort_table_read
abortscan

Calling routine
define_system.f
define_system.f
metal_terms.f
define_system.f
vdw_terms.f
setup_program.f

I

I

I

I

I

I

I
alloc_ang_arrays | dlpoly.f
alloc_bnd_arrays | dlpoly.f
alloc_config_arrays | dlpoly.f
alloc_csh_arrays | dlpoly.f
alloc_dih_arrays | dlpoly.f
alloc_ewald_arrays | dlpoly.f
alloc_exc_arrays | dlpoly.f
alloc_fbp_arrays | dlpoly.f
alloc_fld_arrays | dlpoly.f
alloc_hke_arrays | dlpoly.f
alloc_inv_arrays | dlpoly.f
alloc_met_arrays | dlpoly.f
alloc_pair_arrays | dlpoly.f
alloc_pmf_arrays | dlpoly.f
alloc_prp_arrays | dlpoly.f
alloc_rgbdy_arrays | dlpoly.f
alloc_shake_arrays | dlpoly.f
alloc_site_arrays | dlpoly.f
alloc_spme_arrays | dlpoly.f
alloc_tbp_arrays | dlpoly.f
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alloc_ter_arrays
alloc_tet_arrays
alloc_vdw_arrays
angfrc

bndfrc
bodystress
bodystress
bodystress
bodystress
bspcoe

bspgen

ccfft3d

ccfft3d
cell_propagate
cell_propagate
cell_propagate
cell_update

I

|

I

|

I

I

I

I

I

I

I

I

|

I

|

I

I
cerfr | hkewald_terms.f
cfgscan | setup_program.f
check_shells | define_system.f
check_syschg | define_system.f
conscan | setup_program.f
copystring | angle_terms.f
copystring | bond_terms.f
copystring | define_system.f
copystring | dihedral_terms.f
copystring | external_field_terms.f
copystring | four_body_terms.f
copystring | inversion_terms.f
copystring | metal_terms.f
copystring | shake_terms.f
copystring | site_terms.f
copystring | tersoff_terms.f
copystring | tether_terms.f
copystring | three_body_terms.f
copystring | vdw_terms.f
corshl | dlpoly.f
coulO | force_drivers.f
coulOneu | force_drivers.f
coul2 | force_drivers.f
coul2neu | force_drivers.f
coul3 | force_drivers.f
coul3neu | force_drivers.f
coul4d | force_drivers.f

dlpoly.f
dlpoly.f
dlpoly.f
dlpoly.f
dlpoly.f

1f _rotation_1.
1f_rotation_2.
vv_rotation_1.
vv_rotation_2.
spme_terms.f
spme_terms.f
define_system.f
spme_terms.f
1f_motion_1.f
1f _rotation_1.f
1f_rotation_2.
ensemble_tools.f

Hh Hh Hh b
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cpy_rtc
date_and_time
date_and_time

spme_terms.f
timchk.f
utility_pack.f

define_angles
define_atoms
define_bonds
define_constraints
define_core_shell
define_dihedrals
define_external_field
define_four_body

define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.

|

|

|
dblstr | angle_terms.f
dblstr | bond_terms.f
dblstr | core_shell_terms.f
dblstr | define_system.f
dblstr | dihedral_terms.f
dblstr | external_field_terms.f
dblstr | four_body_terms.f
dblstr | inversion_terms.f
dblstr | metal_terms.f
dblstr | pmf_terms.f
dblstr | setup_program.f
dblstr | shake_terms.f
dblstr | site_terms.f
dblstr | tersoff_terms.f
dblstr | tether_terms.f
dblstr | three_body_terms.f
dblstr | vdw_terms.f
dcell | define_system.f
dcell | dlpoly.f
dcell | ensemble_tools.f
dcell | ewald_terms.f
dcell | four_body_terms.f
dcell | hkewald_terms.f
dcell | nlist_builders.f
dcell | setup_program.f
dcell | spme_terms.f
dcell | system_properties.f
dcell | tersoff_terms.f
dcell | three_body_terms.f
dcell | vv_motion_1.f
dcell | vv_rotation_1.f
dcell | vv_rotation_2.f
dcft3 | spme_terms.f

|

|

|

|

|

|

|

|

Hh Hh Hh Hh Hh Hh Hh b
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define_inversions
define_metals
define_pmf
define_rigid_body
define_tersoff
define_tethers
define_three_body
define_units
define_van_der_waals
diffsnO
diffsni

dihfrc

dlpfft3

eamden
ele_prd
erfcgen

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

error

277

define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
define_system.
system_properties.f
system_properties.f
dlpoly.f

spme_terms.f
metal_terms.f
spme_terms.f
force_drivers.f
angle_terms.f
angles_module.f
bond_terms.f
bonds_module.f
config_module.f
core_shell_module.f
core_shell _terms.f
define_system.f
dihed_module.f
dihedral_terms.f
dlpoly.f

ewald_module.f
ewald_terms.f
exclude_module.f
exclude_terms.f
external_field_module.f
external_field_terms.f
force_drivers.f
four_body_module.f
four_body_terms.f
hkewald_module.f
hkewald_terms.f
inversion_module.f
inversion_terms.f
1f_integrate.f

1f _motion_1.f
1f_rotation_1.f

1f _rotation_2.f

Hh Hh Fh Fh Hh Fh Hh b
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error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
error
ewaldl
ewald2
ewald3
ewald4
ewald_spme
exclude
exclude_atom
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merge_tools.f
metal_module.f
metal_terms.f
nlist_builders.f
pair_module.f
pass_tools.f
pmf_1f.f
pnf_module.f
pmf_terms.f
pnf_vv.f
property_module.f
rigid_body_module.f
rigid_body_terms.f
serial.f
setup_program.f
shake_module.f
shake_terms.f
site_module.f
site_terms.f
spme_module.f
spme_terms.f
strucopt.f
system_properties.f
temp_scalers.f
tersoff_module.f
tersoff_terms.f
tether_module.f
tether_terms.f
three_body_module.f
three_body_terms.f
utility_pack.f
vdw_module.f
vdw_terms.f
vv_integrate.f
vv_motion_1.f
vv_rotation_1.
vv_rotation_2.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
force_drivers.
define_system.
define_system.

Hh Hh Hh Hh Hh Fh Hh Hh Hh
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exclude_link define_system.f

excludeneu define_system.f
exit basic_comms.f
exitcomms dlpoly.f
exitcomms error.f
exitcomms utility_pack.f
extnfld dlpoly.f

fbpfrc dlpoly.f

fcap dlpoly.f

fftw3d_£f77_create_plan
fftwnd_£77_one

define_system.f
spme_terms.f

|

|

|

|

|

|

|

|

|

|

|
findstring | define_system.f
findstring | metal_terms.f
findstring | pmf_terms.f
findstring | setup_program.f
findstring | vdw_terms.f
fldscan | setup_program.f
forces | dlpoly.f
forcesneu | dlpoly.f
forgen | vdw_terms.f
fortab | vdw_terms.f
freeze | dlpoly.f
fsden | metal_terms.f
gauss | define_system.f
gdsum | angle_terms.f
gdsum | bond_terms.f
gdsum | core_shell_terms.f
gdsum | define_system.f
gdsum | dihedral_terms.f
gdsum | dlpoly.f
gdsum | ensemble_tools.f
gdsum | ewald_terms.f
gdsum | force_drivers.f
gdsum | four_body_terms.f
gdsum | hkewald_terms.f
gdsum | inversion_terms.f
gdsum | kinetic_terms.f
gdsum | 1f_motion_1.f
gdsum | 1f_rotation_2.f
gdsum | merge_tools.f
gdsum | metal_terms.f
gdsum | pmf_1f.f
gdsum | pmf_vv.f

|

gdsum rigid_body_terms.f
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gdsum | setup_program.f
gdsum | spme_terms.f
gdsum | system_properties.f
gdsum | temp_scalers.f
gdsum | tersoff_terms.f
dsum | tether_terms.f
g
gdsum | three_body_terms.f
gdsum | utility_pack.f
gdsum | vdw_terms.f
dsum | vv_motion_1.f
g
gdsum | vv_rotation_2.f
etcom | 1f_motion_1.f
g
getcom | 1f_rotation_1.f
getcom | 1f_rotation_2.f
getcom | vv_motion_1.f
etcom | vv_rotation_1.f
g
etcom | vv_rotation_2.f
g
getkin | ensemble_tools.f
etkin _motion_1.
getki | 1f_motion_1.f
getkin | pmf_1f.f
etkin mf_vv.
getki | pmf_vv.f
getkin | vv_motion_1.f
getkinf | ensemble_tools.f
getkinf | 1f_rotation_1.f
getkinf | 1f_rotation_2.f
getkinf | vv_rotation_1.f
getkinf | vv_rotation_2.f
etkin ensemble_tools.
getking I bl 1s.f
getking | ensemble_tools.f
getking | vv_rotation_1.f
getking | vv_rotation_1.f
getking | vv_rotation_2.f
getking | vv_rotation_2.f
etkinr _rotation_1.
getki | 1f ion_1.f
getkinr | 1f_rotation_2.f
getkint | 1f_rotation_1.f
getkint | 1f_rotation_2.f
getmass | 1f_motion_1.f
getmass | 1f_rotation_1.f
getmass | 1f_rotation_2.f
getmass | vv_motion_1.f
getmass | vv_rotation_1.f
getmass | vv_rotation_2.f
|

getrec angle_terms.f
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getrec
getrec
getrec
getrec
getrec
getrec
getrec
getrec
getrec
getrec
getrec
getrec
getrec
getrec
getrec
getrec
getrec
getrotmat
getrotmat
getrotmat
getrotmat
getvom
getvom
getvom
getvom
getvom
getvom
getword
getword
getword
getword
getword
getword
getword
getword
getword
getword
getword
getword
getword
gimax
gimax
gimax
gimax

281

bond_terms.f
core_shell_terms.f
define_system.f
dihedral_terms.f
external_field_terms.f
four_body_terms.f
inversion_terms.f
metal_terms.f
pmf_terms.f
rigid_body_terms.f
setup_program.f
shake_terms.f
site_terms.f
tersoff_terms.f
tether_terms.f
three_body_terms.f
vdw_terms.f

1f _rotation_1.
1f_rotation_2.
vv_rotation_1.
vv_rotation_2.
1f _motion_1.f
1f _rotation_1.f
1f _rotation_2.
vv_motion_1.f
vv_rotation_1.
vv_rotation_2.f
angle_terms.f
bond_terms.f
dihedral_terms.f
external_field_terms.f
four_body_terms.f
inversion_terms.f
metal_terms.f
setup_program.f
site_terms.f
tersoff_terms.f
tether_terms.f
three_body_terms.f
vdw_terms.f
define_system.f
exclude_terms.f
force_drivers.f

1f _rotation_1.f

H Hh Hh b
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gimax | 1f_rotation_2.f
gimax | nlist_builders.f
gimax | vv_rotation_1.f
gimax | vv_rotation_2.f
gisum | basic_comms.f
gisum | nlist_builders.f
gisum | parse_tools.f
gisum | pass_tools.f
global_sum_forces | dlpoly.f
gstate | angle_terms.f
gstate | bond_terms.f
gstate | define_system.f
gstate | dihedral_terms.f
gstate | exclude_terms.f
gstate | force_drivers.f
gstate | four_body_terms.f
gstate | inversion_terms.f
gstate | 1f_integrate.f
gstate | 1f_motion_1.f
gstate | 1f_rotation_1.f
gstate | 1f_rotation_2.f
gstate | merge_tools.f
gstate | nlist_builders.f
gstate | parse_tools.f
gstate | pass_tools.f
gstate | temp_scalers.f
gstate | tersoff_terms.f
gstate | tether_terms.f
gstate | three_body_terms.f
gstate | vv_integrate.f
gstate | vv_motion_1.f
gstate | vv_rotation_1.f
gstate | vv_rotation_2.f
gsync | dlpoly.f
gsync | error.f
gsync | merge_tools.f
gsync | parse_tools.f
gsync | pass_tools.f
hkewaldl | force_drivers.f
hkewald2 | force_drivers.f
hkewald3 | force_drivers.f
hkewald4 | force_drivers.f
hkgen | force_drivers.f
|

images angle_terms.f
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images | bond_terms.f
images | core_shell_terms.f
images | define_system.f
images | dihedral_terms.f
images | force_drivers.f
images | inversion_terms.f
images | 1f_motion_1.f
images | 1f_rotation_1.f
images | 1f_rotation_2.f
images | metal_terms.f
images | nlist_builders.f
images | pmf_1f.f
images | pmf_terms.f
images | pmf_vv.f
images | strucopt.f
images | temp_scalers.f
images | tether_terms.f
images | utility_pack.f
images | vv_motion_1.f
images | vv_rotation_1.f
images | vv_rotation_2.f
initcomms | dlpoly.f
intlist | define_system.f
intstr | angle_terms.f
intstr | bond_terms.f
intstr | core_shell terms.f
intstr | define_system.f
intstr | dihedral_terms.f
intstr | external_field_terms.f
intstr | four_body_terms.f
intstr | inversion_terms.f
intstr | metal_terms.f
intstr | pmf_terms.f
intstr | rigid_body_terms.f
intstr | setup_program.f
intstr | shake_terms.f
intstr | site_terms.f
intstr | tersoff_terms.f
intstr | tether_terms.f
intstr | three_body_terms.f
intstr | vdw_terms.f
intstr3 | utility_pack.f
invert | define_system.f

|

invert ensemble_tools.f
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invert
invert
invert
invert
invert
invert
invert
invert
invert
invfrc
jacobi
kinstress
kinstress
kinstress
kinstress
kinstress
kinstress
kinstressf
kinstressf
kinstressf
kinstressf
kinstressf
kinstressg
kinstressg
kinstressg
kinstressg
kinstressg

1f_integrate

ewald_terms.f
four_body_terms.f
hkewald_terms.f
nlist_builders.f
spme_terms.f
temp_scalers.f
tersoff_terms.f

three_body_terms.f

utility_pack.f
dlpoly.f
define_system.f
dlpoly.f
ensemble_tools.f
1f _motion_1.f
pmf_1f.f
pmf_vv.f
vv_motion_1.f
ensemble_tools.f
1f_rotation_1.f
1f _rotation_2.f
vv_rotation_1.f
vv_rotation_2.f
ensemble_tools.f
1f _rotation_1.f
1f _rotation_2.f
vv_rotation_1.f
vv_rotation_2.f
dlpoly.f

loc8 metal_terms.f

loc8 tersoff_terms.f
loc8 vdw_terms.f
lowcase angle_terms.f
lowcase bond_terms.f
lowcase define_system.f
lowcase dihedral_terms.f
lowcase external _field_terms.f
lowcase four_body_terms.f
lowcase inversion_terms.f
lowcase metal_terms.f
lowcase pmf_terms.f
lowcase setup_program.f
lowcase tersoff_terms.f
lowcase tether_terms.f
lowcase three_body_terms.f
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MPI_BARRIER
MPI_COMM_RANK
MPI_COMM_SIZE
MPI_FINALIZE

basic_comms.f
basic_comms.

lowcase | vdw_terms.f
lrcmetal | define_system.f
lrcmetal | dlpoly.f
lrcorrect | define_system.f
machine | dlpoly.f
matmul | ensemble_tools.f
matmul | 1f_motion_1.f
matmul | 1f_rotation_1.f
matmul | 1f_rotation_2.f
matmul | vv_motion_1.f
matmul | vv_rotation_1.f
matmul | vv_rotation_2.f
merge | core_shell_terms.f
merge | define_system.f
merge | 1f_motion_1.f
merge | 1f_rotation_1.f
merge | 1f_rotation_2.f
merge | nlist_builders.f
merge | pmf_1f.f
merge | pmf_vv.f
merge | system_properties.f
merge | temp_scalers.f
merge | utility_pack.f
merge | vv_motion_1.f
merge | vv_rotation_1.f
merge | vv_rotation_2.f
mergel | core_shell_terms.f
mergel | 1f_rotation_1.f
mergel | 1f_rotation_2.f
mergel | temp_scalers.f
mergel | vv_rotation_1.f
mergel | vv_rotation_2.f
merge4 | define_system.f
merge4 | 1f_rotation_2.f
metal_deriv | metal_terms.f
metdens | force_drivers.f
metfrc | force_drivers.f
metgen | metal_terms.f
mettab | metal_terms.f
mkwd8 | define_system.f

|

|

|

|

f
basic_comms.f
basic_comms.f
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MPI_IRECV
MPI_IRECV
MPI_RECV
MPI_SEND
MPI_SEND
MPI_WAIT
MPI_WAIT
MPI_allreduce
MPI_init
MPI_send
multiple
multiple_nsq
multipleneu
mynode
mynode
neutbook
neutlst
nodedim
nodedim
nosquish
nosquish
npt_bl
npt_hl
nptq_bl
nptq_b2
nptq_hl
nptq_h2
nptqgscl_p
nptqgscl_p
nptqscl_t
nptqgscl_t
nptqvv_bl
nptqvv_b2
nptqvv_hl
nptqvv_h2
nptscale_p
nptscale_t
nptvv_bl
nptvv_hl
nst_bl
nst_hl
nstq_bl
nstq_b2
nstq_hl

merge_tools.f
pass_tools.f
basic_comms.f
merge_tools.f
pass_tools.f
merge_tools.f
pass_tools.f
basic_comms.f
basic_comms.f
basic_comms.f
dlpoly.f
dlpoly.f
dlpoly.f
basic_comms.f
timchk.f

define_system.f
force_drivers.f

merge_hcube.f
merge_systol.

vv_rotation_1.f
vv_rotation_2.f

1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.

vv_rotation_1.f
vv_rotation_2.f
vv_rotation_1.f
vv_rotation_2.f

vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_motion_1.f
vv_motion_1.f
vv_integrate.
vv_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.

f

Hh Hh Hh b H Fh Hh Fh Hh Fh

Hh Hh Hh Hh Hh Hh Hh
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nstq_h2
nstqgscl_p
nstqgscl_p2
nstqscl_t
nstqgscl_t2
nstqvv_bl
nstqvv_b2
nstqvv_hl
nstqvv_h2
nstscale_p
nstscale_t
nstvv_bl
nstvv_hl
numnodes
nve_1
nveq_1
nveq_2
nveqvv_1
nveqvv_2
nvevv_1
nvt_bl
nvt_el
nvt_hil
nvtq_bl
nvtq_b2
nvtq_hl
nvtq_h2
nvtqgscl
nvtqgscl
nvtquv_bl
nvtqvv_b2
nvtqvv_hl
nvtqvv_h2
nvtscale
nvtvv_bl
nvtvv_el
nvtvv_hl
parlink
parlinkneu
parlst
parlst_nsq
parneulst
parset
passcon
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1f_integrate.f
vv_rotation_1.f
vv_rotation_2.f
vv_rotation_1.f
vv_rotation_2.f
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_motion_1.f
vv_motion_1.f
vv_integrate.f
vv_integrate.f
basic_comms.f
1f_integrate.
1f_integrate.
1f_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
1f_integrate.
vv_rotation_1.f
vv_rotation_2.f
vv_integrate.
vv_integrate.
vv_integrate.
vv_integrate.
vv_motion_1.f
vv_integrate.f
vv_integrate.f
vv_integrate.f
dlpoly.f
dlpoly.
dlpoly.
dlpoly.
dlpoly.
dlpoly.
define_system.f

H Hh b

Hh Hh b Hh Fh Hh Fh Hh Fh Hh Hh Hh Hh Hh b

Hh Hh Hh Hh b
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passpmf
passquat
pivot
pmf_rattle_v
pmf_shake
pmf_vectors
pmf_vectors
pmflf

pmfvv
primlst
prneulst
put_shells_on_cores
gqrattle_r
qrattle_v
gshake
quatbook
quatqgnch
quatgnch
quatqgnch
quench

rdf0
rdfOneu
rdf1
rdrattle_r
rdrattle_r
rdrattle_r
rdrattle_v
rdrattle_v
rdrattle_v
rdshake_1
rdshake_1
rdshake_1
relax_shells
result
revive
revive
rotate_omega
scl_csum
sdotO

sdotO

sdotO

sdotO

sdotO

sdotO

define_system.f
define_system.f
vv_rotation_2.f
pnf_vv.f
pmf_1f.f
pmf_1f.f
pmf_vv.f
1f_integrate.f
vv_integrate.f
force_drivers.
force_drivers.
define_system.
vv_rotation_2.
vv_rotation_2.
1f_rotation_2.
define_system.
define_system.
dlpoly.f
temp_scalers.f
define_system.f
force_drivers.f
force_drivers.f
system_properties.f
pnf_vv.f
vv_motion_1.f
vv_rotation_1.f
pmf_vv.f
vv_motion_1.f
vv_rotation_1.f

1f _motion_1.f

1f _rotation_1.f
pmf_1f.f

dlpoly.f

dlpoly.f

dlpoly.f
system_properties.f
vv_rotation_2.f
spme_terms.f
ensemble_tools.f
1f_motion_1.f
1f_rotation_1.f
utility_pack.f
vv_motion_1.f
vv_rotation_1.f

Hh Hh Fh Fh Fh Fh Hh b
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sdot0 | vv_rotation_2.f
sdotl | utility_pack.f
set_block | spme_terms.f
shellsort | define_system.f
shellsort | nlist_builders.f
shlfrc | dlpoly.f
shlmerge | temp_scalers.f
shlgnch | define_system.f
shlgnch | dlpoly.f

shmove | 1f_motion_1.f
shmove | 1f_rotation_2.f
shmove | temp_scalers.f
shmove | vv_motion_1.f
shmove | vv_rotation_2.f
simdef | dlpoly.f
spl_cexp | spme_terms.f
splice | 1f_motion_1.f
splice | 1f_rotation_2.f
splice | pmf_1f.f

splice | pmf_vv.f

splice | temp_scalers.f
splice | vv_motion_1.f
splice | vv_rotation_2.f
spme_for | spme_terms.f
srfrce | force_drivers.f
srfrceneu | force_drivers.f
static | dlpoly.f

strip | define_system.f
strip | external field_terms.f
strip | pmf_terms.f
strip | tether_terms.f
strucopt | dlpoly.f
sysbook | dlpoly.f

sysdef | dlpoly.f

sysgen | dlpoly.f
sysinit | dlpoly.f
systemp | dlpoly.f

tergen | tersoff_terms.f
terint | tersoff_terms.f
tersoff | dlpoly.f
tersoff3 | tersoff_terms.f
tethfrc | dlpoly.f

thbfrc | dlpoly.f

timchk | dlpoly.f
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timchk

traject
update_quaternions
update_quaternions
vertest

vscaleg

vscaleg
vv_integrate
warning

warning

warning

warning

warning

warning

xscale

zdenO

zdenl

zzfft3d

zzfft3d

system_properties.f
dlpoly.f
1f_rotation_1.f
1f_rotation_2.f
dlpoly.f
define_system.f
dlpoly.f

dlpoly.f
define_system.f
exclude_terms.f
hkewald_terms.f
metal_terms.f
site_terms.f
vdw_terms.f
dlpoly.f

dlpoly.f
system_properties.f
define_system.f
spme_terms.f
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algorithm, 5, 6, 59, 110
Brode-Ahlrichs, 17, 84-86
FIQA, 5, 60, 77
multiple timestep, 82, 83, 85, 94, 113,
115, 148, 155, 197, 203205, 207
NOSQUISH, 5, 61, 62, 77
QSHAKE, 6, 60-62, 79, 81, 89
RATTLE, 5, 61, 64, 88
RD-SHAKE, 193, 198
SHAKE, 5, 60, 84, 88, 89, 209
velocity Verlet, 5, 59, 61, 64
Verlet, 16, 17, 32, 47, 59, 62-64, 66, 68,
70, 88
Verlet leapfrog, 5, 59, 60, 62
AMBER, 4, 15, 101, 102
angular momentum, 76
angular restraints, 22
angular velocity, 76

barostat, 6, 79, 112, 214
Berendsen, 73, 81, 156
Hoover, 69

boundary conditions, 5, 47, 94, 101, 155, 156,

169, 187, 189
cubic, 120, 187, 189, 199
hexagonal prism, 120
parallelpiped, 187, 189, 199
rhombic dodecahedron, 120
slab, 199
truncated octahedron, 120

CCPs5, 3, 10
charge groups, 123, 156, 192, 198
constraints
bond, 4, 5, 17, 62, 63, 65, 74, 77, 79, 88,
89, 93, 94, 125, 147, 155, 156, 183,
187, 192, 193, 208

Gaussian, 50, 65, 155
PMF, 65, 126, 127
CVS, 6, 7

direct Coulomb sum, 47, 49

distance dependant dielectric, 49, 57, 111,
117, 208

distance restraints, 19

DL_POLY software licence, 11

DLPROTEIN, 101

ensemble, 6, 206, 208
Berendsen No'T, 6, 60, 61, 112, 114, 116
Berendsen NPT, 6, 60, 61, 114, 116
Berendsen NVT, 6, 60, 61, 111, 112, 114,
116
canonical, 65
Evans NVT, 6, 60, 61, 112, 114, 116
Hoover No'T, 6, 60, 61, 114
Hoover NPT, 6, 60, 61, 112, 114
Hoover NVT, 6, 60, 61, 114
microcanonical, see ensemble, NVE
NVE, 65, 111, 114, 116
equations of motion
Euler, 76
rigid body, 76
error messages, 106, 175, 245
Ewald
Hautman Klein, 47, 54, 104, 112, 173
optimisation, 102-104
SPME, 7, 47, 52, 87, 102, 113, 156
summation, 47, 50-52, 82, 84, 86, 103,
104, 112, 114, 155, 156, 197, 199,
201, 209

force field, 4, 15, 17, 25, 45, 46, 102, 177, 193
AMBER, 4, 15
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DL_POLY, 4, 15-59
Dreiding, 4, 15, 33, 156, 157
GROMOS, 4, 15
OPLS, 15
FORTRAN 90, 6-8
FTP, 10

Graphical User Interface, 10, 100, 102, 119

GROMOS, 4, 15

Hautman Klein Ewald, see Ewald, Hautman

Klein
Java GUI, 5, 10

licence, 3

long range corrections
van der Waals, 32

long-ranged corrections
metal, 41

minimisation
conjugate gradients, 59

parallelisation, 5, 83
Ewald summation, 87
intramolecular terms, 84
Replicated Data, 5
Verlet neighbour list, 86
polarisation, 58, 156, 157

dynamical shell model, 58, 59, 191, 192

relaxed shell model, 59
potential

bond, 4, 16-19, 24, 25, 29, 33, 58, 84, 88,

101, 126, 147, 181, 210
Coulombic, see potential,electrostatic

dihedral, 4, 15, 16, 23-27, 84, 129, 147

186, 211
EAM, 141, 142

electrostatic, 4, 8, 16, 19, 22, 46, 47,
82, 111-113, 117, 147, 155, 156, 203,
208

Embedded Atom, see potential,metal, see
potential,metal

Finis-Sinclair, see potential,metal, see po-
tential,metal
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Finnis-Sinclair, see potential,metal, see
potential,metal

four-body, 4, 15-17, 30, 36, 37, 87, 134,
135, 147, 179, 189-191, 193, 210,
212

Gupta, see potential,metal, see poten-
tial,metal

improper dihedral, 4, 25, 84

intramolecular, 30, 37, 94

inversion, 4, 15, 26-28, 36, 37, 131, 188,
211

metal, 4, 16, 37, 135, 188, 196

nonbonded, 4, 16, 17, 85, 87, 98, 101,
102, 113, 122, 126, 128, 132, 178

Sutton-Chen, see potential,metal, see po-
tential,metal

tabulated, 140, 179, 180

Tersoff, 15, 16, 34, 36, 136, 137, 157, 190,
191, 238

tethered, 29, 30, 130, 147, 156, 186, 211

three-body, 4, 15-17, 20, 30, 33, 87, 101,
132, 134, 147, 179, 187, 189, 190,
212

valence angle, 4, 15-17, 20, 21, 27, 33,
84, 87, 93, 101, 127, 128, 147, 184

van der Waals, 16, 19, 22, 82, 94, 98,
115, 129, 205, 206

quaternions, 5, 60, 77, 113

reaction field, 57, 58, 113

rigid body, 3-6, 30, 60, 62, 74, 75, 77, 79, 89,
93, 155, 156, 191, 199-202, 208, 213,
218

rigid bond, see constraints,bond

rigid molecule, see rigid body

SPME, see Ewald,SPME, see Ewald,SPME
stress tensor, 64
stress tensor, 22, 25, 28-30, 32, 33, 36, 37,
41, 48-50, 52, 58, 59, 64, 69, 209

sub-directory, 162-164

bench, 9

build, 9

data, 9
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execute, 9, 176
java, 9

public, 9
source, 9
utility, 9

thermostat, 6, 46, 79, 83, 112, 208, 214
Berendsen, 73, 74, 79, 81, 155, 156
Nosé-Hoover, 69, 70, 79, 81, 94, 155

units
DL_POLY, 8, 148
energy, 123
pressure, 8, 70, 113, 148
user registration, 11

Verlet neighbour list, 52, 82, 85-87, 93, 94,
115, 194

WWW, 3, 11
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