
ICFP Master Program
Condensed Matter Theory (B. Douçot, B. Estienne, L. Messio)

Homework for the fall vacation, 2019

This homework will count for 25% of the total note.

1 Electromagnetic response functions

Let us impose an external electromagnetic field to a physical system composed of charged
fermions, each carrying a charge −e. This field is described by the combination of a scalar
potential V and a vector potential A. Although we will consider non-relativistic systems, it
will be convenient to introduce the four-component vector Aµ ≡ (V,A). Here the scalar part
corresponds to µ = 0 and the vector part to µ = 1, 2, 3. In the sequel, we shall label these
three-dimensional spatial components by Latin superscripts such as i or j, whereas Greek let-
ters such as µ, ν, will be used to label four-vectors components. In this problem, we shall adopt
the following conventions for Fourier transforms:

f(r, t) =

∫
d3q

(2π)3

∫
dω

2π
ei(q.r−ωt)f̃(q, ω)

f̃(q, ω) =

∫
d3r

∫
dte−i(q.r−ωt)f(r, t)

The system response to this electromagnetic field will be described by the local charge density
δρ(r, t) and the charge current J(r, t), which will also be cast into a four-component vector
Jµ ≡ (δρ,J). In the linear response regime, we may write:

Jµ(r, t) = −
∫
d3r′

∫
dt′

3∑
ν=0

Kµν(r, t; r′, t′)Aµ(r′, t′).

1) Under which conditions can we write Kµν(r, t; r′, t′) = Kµν(r− r′; t− t′)?

2) Explain briefly why this allows us to write, in Fourier space:

J̃µ(q, ω) = −
3∑

ν=0

K̃µν(q, ω)Ãν(q, ω).

3) Using the local condition of charge conservation, show that that, for each ν ∈ {0, 1, 2, 3},
the component K̃0ν can be expressed in terms of the three components K̃iν with i ∈
{1, 2, 3}.

4) Consider a gauge transformation:

Aµ = (−∂λ
∂t
,∇λ),

where λ(r, t) is an arbitrary scalar function. Express then the four-vector K̃µν(q, ω) as a
function of the scalar function λ̃(q, ω).

5) Show that gauge invariance implies that the components K̃µ0 can be expressed in terms
of the three components K̃µj with j ∈ {1, 2, 3}.
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6) Combining the results of questions 3 and 5, show that K̃00 can be expressed as a function
of the spatial components K̃ij with i, j ∈ {1, 2, 3}. Show that K̃00 = −e2χc, where χc is
the charge susceptibility defined in the lectures.

7) To simplify further the spatial response tensor K̃ij , we are going to assume that both the
system Hamiltonian and its unperturbed state are invariant under arbitrary rotations. The
vector q at which the response is evaluated sets a particular direction in space if q 6= 0.
For an arbitrary spatial vector v, we decompose it as v = v‖ + v⊥, where

v‖ =
v.q

q.q
q,

so that v⊥.q = 0. Let us perform an arbitrary rotation along an axis parallel to q. What
happens to J(q, ω)?

8) Deduce from this that there are three functions K̃‖(q, ω), K̃⊥(q, ω), and K̃odd(q, ω) (we
have set q = |q|), such that:

δJ̃‖(q, ω) = −K̃‖(q, ω)Ã‖(q, ω)

δJ̃⊥(q, ω) = −K̃⊥(q, ω)Ã⊥(q, ω)− K̃odd(q, ω)
q ∧ Ã⊥(q, ω)

|q|

9) Show that if both the system Hamiltonian and its unperturbed state are invariant under
reflections with respect to arbitrary mirror planes, then K̃odd(q, ω) = 0. Can you think of
a physical situation where this would not apply? In the remainding part of this problem,
we shall assume that K̃odd(q, ω) = 0.

10) Show that we get then:

K̃ij(q, ω) = K̃‖(q, ω)
qiqj

q2
+ K̃⊥(q, ω)(δij − qiqj

q2
)

11) Deduce from this that:

K̃00(q, ω) = − q
2

ω2
K̃‖(q, ω)

K̃0j(q, ω) = K̃‖(q, ω)
qj

ω

K̃i0(q, ω) = −q
i

ω
K̃‖(q, ω)

12) We define the longitudinal conductivity σ̃‖(q, ω) by the relation J̃‖(q, ω) = σ̃‖(q, ω)Ẽ‖(q, ω),
where E is the external electric field defined by E = −∇V − ∂A/∂t. Show that σ̃‖(q, ω)

can be expressed uniquely as a function of K̃‖(q, ω).

13) Consider a free electron system, and a wave-vector q � 2kF, where kF is the Fermi wave-
vector. Using the results of the lectures, give the expressions of σ̃‖(q, ω) when ω � vFq
(vF being the Fermi velocity) and of the real part of σ̃‖(q, ω) when ω < vFq. What do you
think of these results? What is the origin of dissipation when ω < vFq?
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2 Comparison between longitudinal and transverse responses

14) Give a physical argument to show that K̃‖(q → 0, ω) = K̃⊥(q → 0, ω), when ω 6= 0.

15) Show that K̃‖(q, ω = 0) = 0.

16) For a free electron system, the static transverse response, when q � kF, is given by:

K̃⊥(q, ω = 0) =
ne2

m

q2

4k2F

Are you surprised by the fact that K̃‖(q, ω = 0) 6= K̃⊥(q, ω = 0)?

17) Do you know some physical systems in which the difference between these two static
response functions is even stronger at small q?

3 Response of a free fermion systems to a static magnetic field

18) We suppose that our system is exposed to a static external magnetic field Bext. This
magnetic field induces a current Jind in the system, which in turn generates an induced
magnetic field Bind. Ampère’s equation gives ∇ ×Bind = µ0Jind. We introduce a vector
potential Aind such that ∇ ×Aind = Bind. Working in the Coulomb gauge ∇.Aind = 0,
express the Fourier transform Ãind(q) as a function of J̃ind(q).

19) In a mean-field approximation, we assume that the system reacts as a non-interacting one
to the local vector potential Aloc = Aext + Aind. Express then the Fourier amplitude
Ãloc(q) as a function of Ãext(q).

20) Using the expression given in question 16, specialize this result to the small q limit. How
would you characterize this type of screening for an external magnetic field? Give an order
of magnitude estimate for the correction to Aext due to induced currents.

4 Charge susceptibility in a semi-conductor

In the lectures, we have computed the charge susceptibility for a non-interacting Fermi sea,
in the absence of any periodic potential. Let us now assume that electrons are subjected to
such periodic potential. The eigenstates of the corresponding single particle Hamiltonian are
normalized Bloch waves |α,k〉, whose spatial form reads 〈r|k〉 = eik.ruα,k(r), where uα,k(r) is
a periodic function. We assume that the system is a semi-conductor, so that the Fermi energy
lies in an energy gap of the single particle Hamiltonian.

21) Explain why the charge susceptibility can be expressed as:

χ̃c(r, r
′;ω) =

∑
α 6∈F ;β∈F

∑
k, k′

{
ei(k−k

′)(r−r′)u
∗
βk′(r)uαk(r)u∗αk(r′)uβk′(r′)

~ω − εα(k) + εβ(k′) + iη

− e−i(k−k′)(r−r′)u
∗
βk′(r′)uαk(r′)u∗αk(r)uβk′(r)

~ω + εα(k)− εβ(k′) + iη

}
In this sum, α 6∈ F means that band α is empty, and β ∈ F means that band β is filled.
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22) On a lattice, translational symmetry is limited to the underlying Bravais lattice vectors
R. This means that χ̃c(r + R, r′ + R;ω) = χ̃c(r, r

′;ω). So in general, χ̃c(r, r
′;ω) is not

a function of just r− r′ as in the absence of a periodic potential. To circumvent this, we
consider the double spatial Fourier transform:

χ̃c(q;ω) =
1

V

∫
d3r

∫
d3r′e−iq.(r−r

′)χ̃c(r, r
′;ω),

where V denotes the total volume of the system. Show that this quantity can be simplified
into:

χ̃c(q;ω) =
1

V

∑
α 6∈F ;β∈F

∑
k

{
|
〈
uβ,k−q

2
|uα,k+q

2

〉
|2

~ω − εα(k + q
2 ) + εβ(k− q

2 ) + iη
−

|
〈
uβ,k+q

2
|uα,k−q

2

〉
|2

~ω + εα(k− q
2 )− εβ(k + q

2 ) + iη

}

To obtain this expression, one has to modify the normalization of the Bloch functions, and
to impose that the integral of |uα,k(r)|2 over a unit cell should be equal to 1. The scalar
products which appear in the numerators of the above formula are also defined as integrals
over a single unit cell.

23) Deduce from this that the static charge susceptibility χ̃c(q;ω = 0) vanishes as q→ 0.

24) Assuming that χ̃c(q;ω = 0) ' −c q2 at small q, with c > 0, analyze the screening of an
external electric charge along the lines presented in the lectures. Do you see a qualitative
difference with the case of metallic screening? How would you characterize such behavior?
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