
ICFP Master Program
Condensed Matter Theory (B. Douçot, B. Estienne, L. Messio)

Homework for the fall vacation, 2018

This homework will count for 25% of the total note.

1 Particle current operator on a 1D tight-binding chain

We consider a one-dimensional tight-binding model, with single site orthonormal orbitals denoted
by |n〉, where n runs over integers. Plane-wave states, denoted by |k〉, are defined as: |k〉 =√
a
∑

n e
ikan|n〉, where a is the lattice spacing. This leads to the following expression for overlaps:

〈k|k′〉 = 2π
∑

m∈Z δ(k − k′ −
2π
a m) ≡ 2πδper(k − k′). Because the sum defining |k〉 runs over

integers, we have the periodicity |k〉 = |k + 2π
a 〉, so we will often restrict k to the first Brillouin

zone (BZ) |k| ≤ π
a . The local orbitals can be expressed in the plane-wave basis as: |n〉 =√

a
∫
BZ

dk
2π e

−ikan|k〉. The tight binding orbitals generate an energy band characterized by the
dispersion relation ε(k) between energy and wave-vector. This leads to the band Hamiltonian
H0 =

∫
BZ

dk
2π ε(k)|k〉〈k|. We will study the effect of a spatially uniform and constant in time

electric field E, which will be taken into account by the additional term −eEan̂ in the single
particle Hamiltonian, where n̂ is the dimensionless position operator n̂ =

∑
n∈Z n|n〉〈n|, and e

is the electron charge.
We will be interested in filling this band with a finite density of spinless fermions. To describe

them, we associate to single particle orbitals |n〉 fermionic creation and annihilation operators
ψ†(n) and ψ(n). Likewise, we also associate to plane-wave states |k〉 the corresponding fermionic
operators c†(k) and c(k). In the lectures, we have encountered many examples of single particle
operators, i.e. A1 =

∑
mnAmn|m〉〈n|, being extended to operators acting on fermionic Fock

space by the rule AFock =
∑

mnAmnψ
†(m)ψ(n). We will need to adapt this idea to unitary

operators, which can be obtained by exponentiating single particle operators. If U1 = e−iA1 , it
induces an operator UFock on Fock space whose action can be described as follows: starting from
an antisymmetrized N -particle state built from single particle states |ψ1〉,...,|ψN 〉, UFock returns
the antisymmetrized N -particle state built from U1|ψ1〉,...,U1|ψN 〉. Note that it is natural to
assume that the vacuum state |0〉 (N = 0) is invariant under the action of UFock. Exemples of
such unitary operators in the present problem are the evolution operator and also the lattice
translation operator T . To simplify notations, we will denote operators acting on the single
particle Hilbert space, such as A1 or U1 and their extension to Fock space AFock or UFock, by the
same symbol A or U . With this explanation, we hope that this will not cause any confusion.

1) Translate all previous definitions related to single particle states and operators in second
quantization language. In particular, write down canonical commutation relations com-
patible with the above normalizations for single particle states. Express ψ†(n) and ψ(n)
in terms of c†(k) and c(k), and vice-versa. Finally, give the second quantization expression
corresponding to the single-particle Hamiltonian H = H0 − eEn̂.

2) Express the local particle density ρ(n) = ψ†(n)ψ(n) in terms of c†(k) and c(k′) operators.

3) Evaluate [H0, c
†(k)c(k′)], and use this to compute [H, ρ(n)].

4) Recall the definition of Heisenberg operators AH(t) = eiHt/~Ae−iHt/~. We recall that dAH
dt =

i
~ [H,A]H . We want to define the particle current operator J(n). For continuous models,
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one usually starts from the continuity equation ∂ρ(x)H
∂t + ∂J(x)H

∂x = 0, but on a lattice, x is
an integer multiple of a, so defining the derivative with respect to x could lead to some
ambiguities. To avoid them, we propose to consider two current operators, JL(n) and
JR(n) defined by:

d

dt

( ∞∑
m=n

ρ(m)H(t)e−η(m−n)

)
= JL(n)H(t)

d

dt

(
n∑

m=−∞
ρ(m)H(t)eη(m−n)

)
= −JR(n)H(t)

where η is a small and positive dimensionless number. How do you interpret these defini-
tions? What is the role of η?

5) We define the lattice current operator J(n) by J(n) = 1
2 limη→0+(JL(n)+JR(n)). Show that:

J(n) =

∫
BZ

dk

2π

∫
BZ

dk′

2π
ei(k

′−k)an ε(k)− ε(k′)
~

a cos ((k − k′)a/2)

2 sin ((k − k′)a/2)
c†(k)c(k′).

What do you think of this expression?

6) In the sequel, an important role will be played by the lattice translation operator T defined
by T |n〉 = |n + 1〉. Show that T |k〉 = e−ika|k〉, and that the second quantized version of
T obeys T ψ†(n)T −1 = ψ†(n + 1), T ψ(n)T −1 = ψ(n + 1), T c†(k)T −1 = e−ikac†(k), and
T c(k)T −1 = eikac(k).

7) In the following, we shall be mostly interested in many particle states |Ψ〉 which are trans-
lationally invariant, i.e. they are eigenvectors for the lattice translation operator T . Show
that, for such states, we have: 〈Ψ|c†(k)c(k′)|Ψ〉 = 2πn(k)δper(k−k′) and 〈Ψ|c(k′)c†(k)|Ψ〉 =
2π(1− n(k))δper(k − k′), with 0 ≤ n(k) ≤ 1.

8) Use this to simplify the expectation value of J(n) in a translationally invariant state |Ψ〉.
Does the result sound consistent with physical intuition?

2 Dynamics under a constant and uniform electric field

Because we consider a non-interacting problem, with Hamiltonian H = H0 − eEan̂, it is useful
to study first the single particle dynamics.

9) For a single particle system, compute [n̂, T ]. Deduce from this that TH(t) = e−ieEat/~T .

10) Denoting par U(t) = e−iHt/~ the single particle evolution operator, show that we have:
U(t)|k〉 = eiθk(t)|k+eEt/~〉, for some phase θk(t) which will not play a role in the following
discussion. What do you think of this result?

11) We now translate this for the second quantized fermionic system. Show that we get:
U(t)c†(k)U(t)−1 = eiθk(t)c†(k + eEt/~) and U(t)c(k)U(t)−1 = e−iθk(t)c(k + eEt/~).

12) Show that, extended to Fock space, the result in question 9) becomes TH(t)|Ψ〉 = e−iNeEat/~T |Ψ〉,
where |Ψ〉 is a state with N particles.

2



13) Let |Ψ〉 be a translationally invariant many-particle state with a distribution function n0(k).
Show that |Ψ(t)〉 = U(t)|Ψ〉 is also a translationally invariant many-particle state with a
distribution function n(k, t) = n0(k− eEt/~). Show that n(k, t) obeys a very simple form
of kinetic equation. How do you interpret it?

14) Denote by J(t) the expectation value of the lattice current operator in state |Ψ(t)〉, in
the particular case where n0(k) is a Fermi-Dirac distribution at zero temperature, i.e.
n0(k) = 1 for |k| ≤ kF ≤ π/a and else n0(k) = 0. What can you say in general for J(t) as
a function of t? What do you think of such behavior?

15) Apply this to the particular case of nearest-neighbor hopping, so that ε(k) = −2W cos (ka).
Comment in particular the dependence of the current versus the Fermi momentum kF.

16) Specialize the result in the case of a Galilean invariant free particle dispersion relation

ε(k) = ~2k2
2m , after expressing kF in terms of the particle density n. How do you interpret

the qualitative difference with the previous result?

17) Coming back to the situation of question 14), give the linear response limit for J(t), and
compare it to the exact response. Are you surprised by such qualitative difference? What
kind of physical processes, absent in the present model, could contribute to make the full
response closer to its linear approximation?

3 Simple model for relaxation processes

In an attempt to make a slightly more realistic model, we assume that the time evolution of the
distribution function n(k, t) is given by a Boltzmann type equation:

∂n

∂t
(k, t) +

eE

~
∂n

∂k
(k, t) =

∫
BZ

dk′

2π

(
γkk′(1− n(k))n(k′)− γk′k(1− n(k′))n(k)

)
where n(k, t) has been abbreviated as n(k) on the right-hand site to lighten the notation.

18) What kind of physical processes can be modelled by such equation? Which processes are
either missing, or are only taken into account approximately?

19) Write down an evolution equation for the kinetic energy density 〈H0〉(t) =
∫
BZ

dk
2π ε(k)n(k, t),

and interpret the two terms that contribute to its time derivative.

20) We first take a model where γkk′ = 2πγeδ(k+ k′). What could be its physical justification?

21) Show that, in this case, the Boltzmann equation becomes linear, and identify its eigenmodes
and eigenfrequencies. Indication: use Fourier modes of n(k, t).

22) Show that, for any initial distribution n0(k), n(k, t) converges at large time t towards a
unique stationary distribution, which depends only on the total particle number in the
system. What is the average value of the current in this stationary state? What do you
think of this result?

23) Now, we consider the Boltzmann equation in which γkk′ = γin if ε(k) ≤ ε(k′) and γkk′ = 0
if ε(k) > ε(k′). What is the physical motivation for such choice?
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24) Finding explicitely the stationary state is more difficult in this case, because the Boltzmann
equation is non-linear in the distribution function. As an approximation, we consider a
shifted Fermi-Dirac distribution n(k) = 1 if −kF + q ≤ k ≤ kF + q and n(k) = 0 elsewhere.
Determine q so as to satisfy energy conservation on average, i.e. to enforce that the time
derivative of 〈H0〉 is zero. For this, you may assume that E and thus q are small, so that
you can linearize the dispersion relation near the Fermi wave vectors: ε(k) ' εF+vF(k−kF)
for k close to kF and ε(k) ' εF − vF(k + kF) for k close to −kF.

25) Express the average current in this shifted Fermi-Dirac distribution for this particular value
of q. Is Ohm’s law satisfied? How to you interpret this?

26) Do you think of possible experimental systems to observe some of the phenomena discussed
in this problem?
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