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1 Model for a quantum dot coupled to reservoirs in equilibrium

We consider a quantum dot, supposed to be small enough that we can keep only one electronic
level, denoted by |d〉, on this quantum dot. We assume that this dot is coupled to two infinite
electronic reservoirs Ra and Rb, on which we neglect electron-electron interactions. We also
assume that each reservoir has a continuous single particle spectrum extending from −∞ to
∞, and we do not take into account the electronic spin degree of freedom. The dot is coupled
to both reservoirs by single electron tunneling processes. This motivates the following single-
particle Hamiltonian Hsp = H0 + V :

H0 = εd|d〉〈d|+
∫ ∞
−∞

dεε(|ε, a〉〈ε, a|+ |ε, b〉〈ε, b|)

V =

∫ ∞
−∞

dε (va(ε)(|ε, a〉〈d|+ |d〉〈ε, a|) + vb(ε)(|ε, b〉〈d|+ |d〉〈ε, b|))

We assume that single particle states in the reservoirs are orthonormal, i.e. they are normalized
according to:

〈ε, i|ε′, j〉 = δijδ(ε− ε′), i, j ∈ {a, b}

To simplify expressions, we also suppose that tunneling amplitudes va(ε), vb(ε) are all real.

1. Intuitively, what do you expect for the |d〉 level, when the tunnel couplings va(ε), vb(ε) are
switched on ?

2. Give the expression of the retarded Green’s function G(ω) = (ω−Hsp+iη)−1 as a function
of G0(ω) (the retarded Green’s function for H0) and of V .

3. Calculate explicitely G0(ω).

4. Show that the diagonal matrix element of G(ω) has the form 〈d|G(ω)|d〉 = (ω−εd−Σ(ω)+
iη)−1 and give the expression of the self-energy Σ(ω).

5. Introducing fermionic creation operators d†, a†ε, b
†
ε associated to single particle states |d〉, |ε, a〉, |ε, b〉,

and the corresponding annihilation operators d, aε, bε, write down the second-quantized
version H of Hsp.

6. We suppose now that the system is in equilibrium at zero temperature, with all the single
particle states filled up to the chemical potential µ. This forms a non-interacting Fermi sea.
Let us denote by |FS〉 the corresponding many-electron state. Give a general expression
for the expectation value 〈FS|d†d|FS〉 as a function of G(ω) and µ.
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7. To proceed further, we assume that tunneling amplitudes va(ε), vb(ε) are independent of
ε, and we neglect the real part of Σ(ω). Give then an explicit expression for 〈FS|d†d|FS〉
as a function of εd and draw a plot of this function. We suggest the following notations:
Γa ≡ πv2a,Γb ≡ πv2b , Γ = Γa + Γb.

2 Out of equilibrium steady state

We wish now to study the situation when reservoirs Ra and Rb have different chemical potentials
µa and µb. The first task is to generalize the notion of Fermi sea to this out of equilibrium
situation. Because the spectrum is continuous, we use the same procedure as in quantum
scattering theory, and obtain the scattering states |Ψε,a〉, |Ψε,b〉 as solutions of the so-called
Lippmann-Schwinger equations:

|Ψε,i〉 = |ε, i〉+ (ε−H0 + iη)−1V |Ψε,i〉, i ∈ {a, b}

As usual, the small positive parameter η is supposed to go to zero in the end.

In the rest of the problem, we will take for granted that these scattering states are orthonor-
mal and complete, so:

〈Ψε,i|Ψε′,j〉 = δijδ(ε− ε′)

I =

∫ ∞
−∞

dε (|Ψε,a〉〈Ψε,a|+ |Ψε,b〉〈Ψε,b|)

8. Give explicitely the solution of these equations. We suggest the following notations:

|Ψε,a〉 = |ε, a〉+ xa(ε)|d〉+

∫ ∞
−∞

dε′
(
yaa(ε

′, ε)|ε′, a〉+ yba(ε
′, ε)|ε′, b〉

)
|Ψε,b〉 = |ε, b〉+ xb(ε)|d〉+

∫ ∞
−∞

dε′
(
yab(ε

′, ε)|ε′, a〉+ ybb(ε
′, ε)|ε′, b〉

)
Can you see some connection with the Green’s function G(ω) of the first part ?

9. The out of equilibrium Fermi sea |µa, µb〉 is naturally constructed by filling all scattering
states |Ψε,i〉 up to ε = µi for i = a, b. We wish to implement this idea in the language of
second quantization. For this, we intoduce two continuous families of fermionic creation
and annihilation operators A†(ε), B†(ε) and A(ε), B(ε) which are associated to single par-
ticle scattering states |Ψε,a〉, |Ψε,b〉. How are these operators related to the initial ones
d†, a†(ε), b†(ε) and d, a(ε), b(ε) ? What are their anticommutation relations ?

10. Express d† in terms of A†(ε), B†(ε), and d in term of A(ε), B(ε).

11. What are the expectation values 〈µa, µb|A†(ε)A(ε′)|µa, µb〉 and
〈µa, µb|B†(ε)B(ε′)|µa, µb〉 ?

12. From this, deduce a general expression for 〈µa, µb|d†d|µa, µb〉, and give its explicit value
when Σ(ω) is assumed to be purely imaginary and independent of ω. Give a plot of the
average electron number on the dot as a function of εd. Here we assume that µa < µb and
that µb − µa is significantly larger than Γa and Γb. What qualitative difference do you
notice, in comparison to the equilibrium case ?
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13. We now want to find the steady state currents Ia and Ib flowing from the reservoirs to
the dot. Quantum mechanically, these are defined as expectation values of operators Îa
and Îb. To find these operators, we note that they have to satisfy the charge conservation
equation:

d〈Ψ(t)|d†d|Ψ(t)〉
dt

= 〈Ψ(t)|Îa|Ψ(t)〉+ 〈Ψ(t)|Îb|Ψ(t)〉

for any many-electron state |Ψ(t)〉 evolving with the Hamiltonian H. Starting from an
evaluation of the left-hand side, show that this leads to explicit expressions for the current
operators Îa and Îb.

14. Transform these expressions for Îa and Îb using the dressed creation and annihilation
operators A†(ε), B†(ε) and A(ε), B(ε).

15. From these, deduce the value of Ij = 〈µa, µb|Îj |µa, µb〉 for j = a, b, in particular when Σ(ω)
is assumed to be purely imaginary and independent of ω. How do these currents depend
on the dot energy εd and on the chemical potentials µa, µb ?

16. Give the expressions of the Heisenberg operators A†(ε; t), B†(ε; t) and A(ε; t), B(ε; t).

17. Evaluate the correlation function

Cµa,µb(t) = 〈µa, µb|d†(t)d(t)d†(0)d(0)|µa, µb〉
− 〈µa, µb|d†(t)d(t)|µa, µb〉〈µa, µb|d†(0)d(0)|µa, µb〉,

in particular when Σ(ω) is assumed to be purely imaginary and independent of ω. How
does this correlation function depend on the dot energy εd and on the chemical potentials
µa, µb ?

3 A classical stochastic model

As this section will show, and a bit counter-intuitively, in the large bias regime where µa <
εd < µb and µb − µa is significantly larger than Γa and Γb, the quantum mechanical correlation
function Cµa,µb(t) can be very well described by a purely classical stochastic model! This model
is defined as follows: the dot can be either in state 0, or in state 1. Particles can tunnel from Rb
into the dot with a rate γb and from the dot into Ra with a rate γa. The probabilities to find
the dot in these two states evolve then according to:

dP (1, t)

dt
= −γaP (1, t) + γbP (0, t)

dP (0, t)

dt
= γaP (1, t)− γbP (0, t)

18. Show that this stochastic model has a unique stationary probability distribution Pst(n),
and give the expectation value of the number of particles n on the dot, and of the particle
currents Ia, Ib, in this steady state.

19. What is the conditional probability P(n′, t|n, 0) to observe a charge n′ on the dot at time
t, knowing that its charge was n at time 0 ?
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20. The charge correlation function Cs(t) for this stochastic model is defined as:

Cs(t) =
∑
n,n′

n′P(n′, t|n, 0)nPst(n)−
∑
n,n′

n′Pst(n
′)nPst(n)

Compute Cs(t).

21. Compare the results of questions 1) and 3) in this section with those of questions 5), 8)
and 10) in the previous section in the large bias regime, i.e. when µa < εd < µb and µb−µa
is significantly larger than Γa and Γb.

22. Do you find the result surprising ? Explain why.
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