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Landau theory of Fermi liquids

We start from a Fermi gas (without interactions, namely H =
∑

p,σ ε
0
pc
†
p,σcp,σ) at zero temperature

and add interactions to get a Fermi liquid. We suppose the system is isotropic and set ~ = 1. In the gas,
infinitely long lived particle-hole excitations are constructed from the one-particle spectrum εp. The ground
state is characterized by the distribution function n0

p = θ(pF − p).

Landau Fermi liquid theory is an effective theory describing the low-energy degrees of freedom of a Fermi
gas with interactions. The main assumption is that the low-energy excited states are adiabatically connected
to the non interacting ones. Then the Fermi liquid excitations are labelled by the same occupation numbers
np as the non-interacting ones. The main difference with the non interacting gas is that these elementary
excitations interact with each other. As a result they acquire a finite life time, and for this reason these
excitations are called quasiparticles (and quasiholes). Fortunately these quasiparticles are better and better
defined as one approaches the Fermi surface1, and as long as we consider only low energy excitations (i.e.
close to the FS), the quasiparticle damping can be neglected.

In the interacting system, np describes the distribution of quasiparticles, and is measured by the depar-
ture from the ground state distribution δnp = np − n0

p. We will only consider low energy excitations for
which δnp is non zero only for p close to the FS.

1 Introduction to Landau Fermi liquids

1. We consider the state obtained from a perturbation involving a small displacement δp of the Fermi
surface. What is the sign of δnp if p is

� deep in or far out of the Fermi sphere ?

� is newly in the FS ?

� is newly out of the FS ?

2. Near |p| = pF , the Fermi velocity is given by εp−µ ∼ vF (p−pF ), and the effective mass bym∗ = pF /vF .
Recover the energy density of particle states at the Fermi surface, for a periodic system of size L and
of volume Ω = L3 :

N0 =
Ωm∗ pF
π2

.

3. The excitation energy at zero temperature can be developed in δnp. A naive expansion of E to order
δnp is:

E = E0 +
∑
p

(εp − µ)δnp (1)

where E0 is the ground state energy.

For a displacement of the Fermi surface by a small amount δp, what is the order of εp − µ and∑
p(εp − µ)δnp in δp ? Is it reasonable to neglect the quadratic terms in δnp in the expansion (1) ?

1At zero temperature, this lifetime varies as the inverse square of the energy separation to the Fermi surface (cf calculation
of the self-energy).
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4. The phenomenological theory of Fermi liquids as proposed by Landau takes into account interaction
between quasiparticles through an extra quadratic term

E = E0 +
∑
p

(εp − µ)δnp +
1

2

∑
pp′

fpp′δnpδnp′ (2)

where fpp′ are the Landau parameters. They are symmetric.

What is the order of fpp′ in the volume Ω ? Give a physical justification.

5. What is the energy εp of an additional quasiparticle with momentum p?

We now introduce the spin of particles (σ = ±1/2) and suppose that the system is time reversal invariant
(no magnetic field):

E = E0 +
∑
pσ

(εp − µ)δnpσ +
1

2

∑
pp′σσ′

fσσ
′

pp′ δnpσδnp′σ′ . (3)

Because of the symmetries, we can split the Landau parameters into symmetric and antisymmetric coeffi-
cients:

fσσpp′ = f spp′ + fapp′

fσ−σpp′ = fspp′ − fapp′ .

As only wave vectors near the Fermi surface are considered in our isotropic system, only the relative angle
θ between p and p′ is important. We can expand the coefficients in term of Legendre polynomials:

f
s(a)
pp′ =

∞∑
l=0

f
s(a)
l Pl(cos θ). (4)

We recall the orthogonality relation:
∫ 1
−1 Pn(x)Pm(x)dx = 2

2n+1δmn and give P0(x) = 1 and P1(x) = x. We

also define F
s(a)
l = N0f

s(a)
l .

Implicit in Landau theory is the hope that the series Eq. (4) converges rapidly with increasing l. As we
shall now see, leading parameters can be related to experimentally measurable quantities: effective mass,
specific heat, spin and charge susceptibility and first sound velocity.

2 Effective mass

We consider the system from a moving frame at an infinitesimal velocity v with respect to the laboratory
frame.

6. What is the Hamiltonian H ′ in the moving frame as a function of v, of the initial Hamiltonian H, of
the total mass M and of the total momentum P of the system ?

7. We take as our reference (excited) state the ground state of H viewed from the moving frame. Show
that in the thermodynamical limit:

δnpσ = − m

m∗
p · vδ(εp − εF ).

8. We add a quasiparticle of momentum p (in the moving frame) and of spin σ to the system. Calculate
its energy ε′pσ in the moving frame as a function of εpσ, v · p, m and m∗. Now, calculate it from the
energy of Q.5.

m∗

m
= 1 +

1

3
F s1 (5)
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3 Magnetic susceptibility

We now determine the spin susceptibility χ of a Fermi liquid. χ = 1
Ω

dM
dH

∣∣
H→0

, where H is the external
applied magnetic field in the z direction. The Zeeman coupling causes a change of energy of −γσH, where
γ is the gyromagnetic ratio. Our reference state is the equilibrium state of the Fermi liquid under H.

9. Is the chemical potential µ affected by H to first order in H (for a constant number of particles) ?
Why ? Relate δnp,σ to δnp,−σ.

10. What is the energy εpσ of a quasiparticle near the Fermi surface ? Express it as a function of ∆nσ =∑
p δnpσ.

11. Calculate ∆nσ and deduce that

χ =
γ2m∗pF

4π2(1 + F a0 )
(6)

Other quantities such as the compressibility (κ = 1
ρ2

∂ρ
∂µ) and the specific heat (Cv = ∂E

∂T

∣∣
N

) can be
calculated. The derivation can be found in the book from Pines and Nozières.

4 Compressibility

12. The compressibility is given by κ = 1
ρ2

∂ρ
∂µ where ρ is the particule density. Show that

κ =
pFm

∗

ρ2π2(1 + F s0 )
(7)
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