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| The Hubbard model |

The Hubbard model describes spin 1/2 fermions hopping on a lattice according to the following tight-
binding Hamiltonian:

-E[Hub = —t Z Z(C;»[UC]‘U + C;[»Jcig) + UZ(ﬁZ - 1)2 — IMZ(ﬁZ — 1), ’rAlZ' = 'fliT + ﬁii (1)
oe{td} (i.j) g g

where U > 0 is the repulsive interaction, ¢ the hopping and p the chemical potential. The sum (7, j) stands
for a sum over 4, j nearest neighbor sites on some lattice (in two dimensions this could be a square lattice
for instance). As usual for fermions we have:

{Ciaa C;U/} = 0i,j 00,07
{ciorcior} =0 (2)
{c;ra, c}g,} =0
1 Particle conservation and U(1) symmetry
1. Let N =3, #; be the total number of particles. Show without any calculation that [N, Hyp) = 0 (as

a homework exercice, this can be checked by working through the algebra).

2. Thus N is a conserved quantity. Give the local conservation equation. What is the expression for the
corresponding current ?

3. What would be an exemple of a (physical) tight-binding Hamiltonian without particle conservation ?
4. Check that the Hamiltonian is invariant under
i0 T i 1

Cjo = € " Cjg, Cig = €7 Cjy

Is such a transformation allowed ? Such a symmetry is called a global U(1) symmetry. Why is it
called a U(1) symmetry ? And why global 7

5. Let U be the unitary operator U = N What are U cicU T and U C;L.UU T 2 Show the equivalence
between the global U(1) symmetry of question 2. and the particle conservation of question 1.

2 SU(2) symmetry

6. What are the (global) SU(2) spin rotation generators in second quantized form ?
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7.

Is the Hubbard model SU(2) symmetric ?
Note that the U(1) and SU(2) symmetries can be combined into a U(2) symmetry

b, =Y Voo,  VeU©
o—/
Indeed a generic matrix V' in U(2) can be decomposed as

V=¢%W,  WeSU?2)

and is therefore the product of U(1) and a SU(2) unitary transformation.

3 Particle-hole conjugation

8.

10.

11.

For spinless particles, particle-hole conjugation can be defined as a linear, unitary operator I' such
that

FCZFT =q¢

(homework : does such an operator exist ? is it unique 7 What is I'|0) 7)

If we ignore the SU(2) symmetry of the Hubbard model, we can define particle-hole conjugation as
FCIUFT = Cio

Is the p = 0 Hubbard model invariant under I" 7

. We focus on the Hubbard model on a bipartite lattice, i.e. a lattice which can be partitioned into two

sublattices A and B, where are all the nearest neighbors of A are members of B. Show that the sign
of t is unphysical (i.e. one can find a unitary transformation that changes the sign of ¢).

It follows from the previous two questions that the Hubbard model (at p = 0) is in fact particle-hole
symmetric on a bipartite lattice. To make this more explicit we consider a slightly modified version
of the particle-hole conjugation defined by:
FCI.UFT =c¢j; on the A sublattice,
I‘cl.LUI‘Jr = —¢;, on the B sublattice.

Check that at g = 0 the Hubbard model is indeed invariant under this new I'. What are the conse-
quences on the spectrum and the eigenstates of Hyyp, 7

For spin 1/2 particles the particle-hole conjugation we have defined is not very satisfactory since it
does not conserve the spin (it is straightforward to check that I' changes S* — —S*). It is more
natural to define particle-hole conjugation as

FCITFT = Cil, FCLFT = —Cit
(homework : does such an operator exist 7 is it unique 7). To understand why this definition is more
natural, compute I'S;T'T.

Putting all this together, we are led to define the following particle-hole conjugation :
fcITfT =c¢; and chfT = —cj on the A sublattice,

FCITFT = —¢;, and chf‘T = c¢;+ on the B sublattice.

We now have

fﬁHub(M)fT = I:IHub(_,U')y TS = 5'“7 INT =2N — N. (3)
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4 Weak coupling and strong coupling regimes

12. Some insights can be gained into the Hubbard model by considering the ¢ = 0 limit, in which the
different sites decouple. Since the system is now a collection of independent sites, one just needs to
solve a single site. What are the eigenstates and energies of a single site 7 What is the partition
function at inverse temperature 5 7 What is the density p = (n;) ? Plot p versus u for various values
of 8. What happens at zero temperature ? How is the particle-hole symmetry manifest 7

13. Solve the non-interacting case (U = 0) on a one dimensional lattice of N sites with periodic boundary
conditions. What is the dispersion relation 7 Is the particle-hole symmetry manifest 7 As a homework
exercice, what would be the dispersion relation on a two-dimensional N x N square lattice ?

5 Exact solution for 2 sites

14. We choose to exactly solve the interacting problem for two sites 1 and 2. What symmetries can one
exploit (i.e. what are the good quantum numbers) ?

15. Determine the spectrum and the eigenstates.

6 Strong-coupling regime at half-filling : effective Hamiltonian

We now focus on the Hubbard model at half-filling (we work with a fixed number of particles N, N being
the number of sites).
Hyu, = —t Z (ch cjo + c;Ucw) + UZ(ni —1)?,
(ij),0 i

In the limit U — oo, this model can be (moderately) simplified, notably into the Heisenberg Hamiltonian :
Hyeis = JZSZ : Sja
(i5)
This effective Hamiltonian can be obtained using perturbation theory (see Appendix).

16. Find the ground state(s) of the Hubbard model for ¢ = 0. What is the ground-state degeneracy ?

17. We now consider the regime U > t at half-filling. We want to compute the effective Hamiltonian of
the Hubbard model (in the subspace of the previous question). Why do we need to go to second order
perturbation theory ? Show that the effective Hamiltonian is the Heisenberg model

2t
Hyeis = - ;Sz -5y,
ij

A Perturbation theory

We recall here some results of degenerate perturbation theory for an Hamiltonian H = Hy+ AV for A — 0.
We denote by Hp the ground state subspace, with energy Ey. To second order in perturbation theory, the
effective Hamiltonian in Hj is

Heg = EgP + \PVP + NPV Q(Ey — QHyQ) 'QV P
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where P is the projector on Hg and Q = 1 — P. This can be reformulated as follow. For two states |¢), |¢')
in Hg, we have
(¢'[Vm)(m|V|g)

EO - Em

(/| Hestl @) = Eo(d|6) + M [V[g) + X >

lm)&Ho

where the sum runs over all eigenvectors |m) (of Hp) not in Hy.

Note : it is a good exercice to derive this formula.
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