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The Hubbard model

The Hubbard model describes spin 1/2 fermions hopping on a lattice according to the following tight-
binding Hamiltonian:

ĤHub = −t
∑

σ∈{↑,↓}

∑
〈i,j〉

(c†iσcjσ + c†jσciσ) + U
∑
i

(n̂i − 1)2 − µ
∑
i

(n̂i − 1), n̂i = n̂i↑ + n̂i↓ (1)

where U > 0 is the repulsive interaction, t the hopping and µ the chemical potential. The sum 〈i, j〉 stands
for a sum over i, j nearest neighbor sites on some lattice (in two dimensions this could be a square lattice
for instance). As usual for fermions we have:{

ciσ, c
†
jσ′

}
= δi,j δσ,σ′{

ciσ, cjσ′
}

= 0 (2){
c†iσ, c

†
jσ′

}
= 0

1 Particle conservation and U(1) symmetry

1. Let N̂ =
∑

i n̂i be the total number of particles. Show without any calculation that [N̂ , ĤHub] = 0 (as
a homework exercice, this can be checked by working through the algebra).

2. Thus N̂ is a conserved quantity. Give the local conservation equation. What is the expression for the
corresponding current ?

3. What would be an exemple of a (physical) tight-binding Hamiltonian without particle conservation ?

4. Check that the Hamiltonian is invariant under

cjσ → e−iθcjσ, c†jσ → eiθc†jσ

Is such a transformation allowed ? Such a symmetry is called a global U(1) symmetry. Why is it
called a U(1) symmetry ? And why global ?

5. Let U be the unitary operator U = eiθN̂ . What are UcjσU
† and Uc†jσU

† ? Show the equivalence
between the global U(1) symmetry of question 2. and the particle conservation of question 1.

2 SU(2) symmetry

6. What are the (global) SU(2) spin rotation generators in second quantized form ?
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7. Is the Hubbard model SU(2) symmetric ?

Note that the U(1) and SU(2) symmetries can be combined into a U(2) symmetry

c†jσ →
∑
σ′

Vσσ′c†jσ′ , V ∈ U(2)

Indeed a generic matrix V in U(2) can be decomposed as

V = eiθW, W ∈ SU(2)

and is therefore the product of U(1) and a SU(2) unitary transformation.

3 Particle-hole conjugation

8. For spinless particles, particle-hole conjugation can be defined as a linear, unitary operator Γ such
that

Γc†iΓ
† = ci

(homework : does such an operator exist ? is it unique ? What is Γ|0〉 ?)

If we ignore the SU(2) symmetry of the Hubbard model, we can define particle-hole conjugation as

Γc†iσΓ† = ciσ

Is the µ = 0 Hubbard model invariant under Γ ?

9. We focus on the Hubbard model on a bipartite lattice, i.e. a lattice which can be partitioned into two
sublattices A and B, where are all the nearest neighbors of A are members of B. Show that the sign
of t is unphysical (i.e. one can find a unitary transformation that changes the sign of t).

10. It follows from the previous two questions that the Hubbard model (at µ = 0) is in fact particle-hole
symmetric on a bipartite lattice. To make this more explicit we consider a slightly modified version
of the particle-hole conjugation defined by:

Γc†iσΓ† = ciσ on the A sublattice,

Γc†iσΓ† = −ciσ on the B sublattice.

Check that at µ = 0 the Hubbard model is indeed invariant under this new Γ. What are the conse-
quences on the spectrum and the eigenstates of ĤHub ?

11. For spin 1/2 particles the particle-hole conjugation we have defined is not very satisfactory since it
does not conserve the spin (it is straightforward to check that Γ changes Ŝµ → −Ŝµ). It is more
natural to define particle-hole conjugation as

Γc†i↑Γ
† = ci↓, Γc†i↓Γ

† = −ci↑

(homework : does such an operator exist ? is it unique ?). To understand why this definition is more
natural, compute ΓŜiΓ

†.

Putting all this together, we are led to define the following particle-hole conjugation :

Γ̃c†i↑Γ̃
† = ci↓ and Γ̃c†i↓Γ̃

† = −ci↑ on the A sublattice,

Γ̃c†i↑Γ̃
† = −ci↓ and Γ̃c†i↓Γ̃

† = ci↑ on the B sublattice.

We now have

Γ̃ĤHub(µ)Γ̃† = ĤHub(−µ), Γ̃ŜµΓ̃† = Ŝµ, Γ̃N̂ Γ̃ = 2N − N̂ . (3)
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4 Weak coupling and strong coupling regimes

12. Some insights can be gained into the Hubbard model by considering the t = 0 limit, in which the
different sites decouple. Since the system is now a collection of independent sites, one just needs to
solve a single site. What are the eigenstates and energies of a single site ? What is the partition
function at inverse temperature β ? What is the density ρ = 〈n̂i〉 ? Plot ρ versus µ for various values
of β. What happens at zero temperature ? How is the particle-hole symmetry manifest ?

13. Solve the non-interacting case (U = 0) on a one dimensional lattice of N sites with periodic boundary
conditions. What is the dispersion relation ? Is the particle-hole symmetry manifest ? As a homework
exercice, what would be the dispersion relation on a two-dimensional N ×N square lattice ?

5 Exact solution for 2 sites

14. We choose to exactly solve the interacting problem for two sites 1 and 2. What symmetries can one
exploit (i.e. what are the good quantum numbers) ?

15. Determine the spectrum and the eigenstates.

6 Strong-coupling regime at half-filling : effective Hamiltonian

We now focus on the Hubbard model at half-filling (we work with a fixed number of particles N , N being
the number of sites).

HHub = −t
∑
〈ij〉,σ

(c†iσcjσ + c†jσciσ) + U
∑
i

(ni − 1)2,

In the limit U →∞, this model can be (moderately) simplified, notably into the Heisenberg Hamiltonian :

HHeis = J
∑
〈ij〉

Si · Sj ,

This effective Hamiltonian can be obtained using perturbation theory (see Appendix).

16. Find the ground state(s) of the Hubbard model for t = 0. What is the ground-state degeneracy ?

17. We now consider the regime U � t at half-filling. We want to compute the effective Hamiltonian of
the Hubbard model (in the subspace of the previous question). Why do we need to go to second order
perturbation theory ? Show that the effective Hamiltonian is the Heisenberg model

HHeis =
2t2

U

∑
〈ij〉

Si · Sj ,

A Perturbation theory

We recall here some results of degenerate perturbation theory for an Hamiltonian Ĥ = Ĥ0 + λV̂ for λ→ 0.
We denote by H0 the ground state subspace, with energy E0. To second order in perturbation theory, the
effective Hamiltonian in H0 is

Ĥeff = E0P + λP̂ V̂ P̂ + λ2PV Q(E0 −QH0Q)−1QV P
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where P is the projector on H0 and Q = 1−P . This can be reformulated as follow. For two states |φ〉, |φ′〉
in H0, we have

〈φ′|Ĥeff|φ〉 = E0〈φ′|φ〉+ λ〈φ′|V̂ |φ〉+ λ2
∑
|m〉/∈H0

〈φ′|V |m〉〈m|V |φ〉
E0 − Em

where the sum runs over all eigenvectors |m〉 (of H0) not in H0.

Note : it is a good exercice to derive this formula.
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