Tutorials of Theoretical Condensed Matter 2019-2020

Benoît Douçot, Benoît Estienne and Laura Messio

Green's function, LDOS and Friedel oscillations

In this tutorial we introduce the retarded Green's function and the local density of states. As an illustration we study Friedel oscillations for a simple one-dimensional model of non-interacting fermions.

1 Retarded Green's function in first quantization

Consider a first quantized Hamiltonian H, e.g.

$$H = \frac{p^2}{2m} + V(r)$$

and let $G_R(t, t')$ be an operator defined as

$$\begin{cases} (i\partial_t \mathbb{1} - H) \ G_R(t, t') = \delta(t - t')\mathbb{1}, \\ G_R(t, t') = 0 \ \text{for } t < t' \end{cases}$$
(1)

We assume that H does not depend on time, and we set $\hbar = 1$.

1. Argue that G_R only depends on t - t' and that the solution of the previous differential equation is:

$$G_R(t,t') = -i\theta(t-t')e^{-iH(t-t')}$$
(2)

Interpretation as a propagator

The operator $G_R(t, t')$ can be decomposed in real space: $G_R(r, t, r', t')$ is the (retarded) Green's function in real space and is given by:

$$\begin{cases} G_R(t,t') = \int dr \, dr' \, G_R(r,t,r',t') |r\rangle \langle r'|, \\ G_R(r,t,r',t') = \langle r|G_R(t,t')|r'\rangle \end{cases}$$
(3)

In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential equation defined on a domain, with specified initial conditions or boundary conditions. The Schrödinger equation in real space is typically a differential equation

$$i\partial_t \Psi(r) = H(r)\Psi(r)$$

For instance if $H = \frac{p^2}{2m} + V(r)$, then the differential operator H(r) is $H(r) = -\frac{\Delta}{2m} + V(r)$.

2. Check that

$$(i\partial_t \mathbb{1} - H(r)) \ G_R(r, t, r', t') = \delta(t - t')\delta(r - r')$$

$$\tag{4}$$

- 3. Consider the wavefunction at time t, $\Psi(r, t)$, obtained from the initial condition $\Psi(r, t') = \delta(r r')$ (i.e. $|\Psi(t')\rangle = |r'\rangle$). Argue that $G_R(r, t, r', t')$ is the amplitude for a particle at time t > t' to be measured at position r knowing that it was at position r' at time t'.
- 4. Check that, starting from an arbitrary initial state $\Psi(r', t')$ at time t', the state at time t > t' is:

$$\Psi(r,t) = i \int dr' G_R(r,t,r',t') \Psi(r',t') \quad \text{as long as } t > t'$$
(5)

Analytic properties of the (Fourier transform of) Green's function

5. Let $|\phi_{\alpha}\rangle$ be an eigenbasis of H, namely $H = \sum_{\alpha} \epsilon_{\alpha} |\phi_{\alpha}\rangle \langle \phi_{\alpha}|$. We have

$$G_R(r,t,r',t') = -i\theta(t-t')\sum_{\alpha}\phi_{\alpha}(r)\phi_{\alpha}^*(r')e^{-i\epsilon_{\alpha}(t-t')}$$
(6)

Let us define the time Fourier transform and its inverse:

$$\begin{cases} \tilde{G}_R(r,r',\omega) = \int_{-\infty}^{\infty} dt \, e^{i\omega t} \, G_R(r,t,r',0) \\ G_R(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \tilde{G}_R(\omega) \end{cases}$$
(7)

Show that, as long as ω is not in the spectrum of H, we can write

$$\tilde{G}_R(\omega) = (w\mathbb{1} - H)^{-1} = \sum_{\alpha} \frac{1}{\omega - \epsilon_{\alpha}} |\phi_{\alpha}\rangle \langle \phi_{\alpha}|, \qquad \omega \in \mathbb{C} \setminus \{\epsilon_{\alpha}, \alpha = 0, 1, \cdots\}$$
(8)

This equation defines a meromorphic (analytic except for a discrete set of points) function of ω with simple poles at $w = \epsilon_{\alpha}$.

On the other hand since $(\omega - H)$ is not invertible for $w = \epsilon_{\alpha}$, the operator $(\omega - H)$ has infinitely many right inverses, and the equation $(\omega \mathbb{1} - H)\tilde{G}_R(\omega) = \mathbb{1}$ does not define $\tilde{G}_R(\omega)$ uniquely. To be more specific, once we have a particular solution $\tilde{G}_R^0(\omega)$, then a generic solution is of the form

$$\tilde{G}_R(\omega) = \tilde{G}_R^0(\omega) + \sum_{\alpha,\beta} a_{\alpha,\beta} \delta(\omega - \epsilon_\alpha) |\phi_\alpha\rangle \langle \phi_\beta|$$
(9)

In order to fix a unique solution, we must specify the behavior of $\tilde{G}_R(\omega)$ as $w \to \epsilon_{\alpha}$. The retarded Green's function amounts to the choice $G_R(t) = 0$ for negative t. This choice is motivated by causality, and it lifts any ambiguity from the definition of the Green's function. When performing the inverse Fourier transforms from $\tilde{G}_R(\omega)$, it amounts to avoiding the poles at $w = \epsilon_{\alpha}$ by integrating slightly above them in the complex plane¹. This is typically written as

$$\tilde{G}_R(\omega) = \lim_{\eta \to 0^+} (\omega + i\eta - H)^{-1} = (\omega + i0^+ - H)^{-1}$$
(10)

However it is good to keep in mind that taking the limit $\eta \to 0$ is a rather subtle one².

$$\lim_{\eta \to 0^+} \int_0^\infty dt e^{it(\omega + i\eta)} = i \lim_{\eta \to 0^+} \frac{1}{\omega + i\eta} = i\mathcal{P}(1/\omega) + \pi\delta(\omega)$$

where \mathcal{P} stands for Cauchy principal value.

¹Indeed in that case the poles are $\epsilon_{\alpha} - i\eta$, i.e. in the lower half plane, and for t < 0 one can close the contour in the upper half plane, yielding $G_R(t) = 0$

²The relevant formula here being

2 Single-particle Green's functions in second quantization

The more generic definition of the retarded Green's function is

$$G_R(\alpha, t; \alpha', t') = -i\theta(t - t') \langle [c_\alpha(t), c_{\alpha'}^{\dagger}(t')] \rangle \quad \text{for bosons}$$
(11)

$$= -i\theta(t - t')\langle \{c_{\alpha}(t), c_{\alpha'}^{\dagger}(t')\}\rangle \quad \text{for fermions}$$
(12)

where α index the full one-body Hilbert space. For instance $\alpha = (\vec{r}, \sigma)$ for spin-1/2 particles, in which case we have

$$G_R(r,\sigma,t';r'\sigma',t') = -i\theta(t-t')\langle [\Psi_\sigma(r,t),\Psi_{\sigma'}^{\dagger}(r',t')]_{\pm}\rangle$$
(13)

where $[\cdot, \cdot]_+$ is a commutator and $[\cdot, \cdot]_-$ an anti-commutator. We also have to specify what is meant by the mean value $\langle \cdots \rangle$. Several cases are possible

- for a closed system at zero temperature, $\langle X \rangle = \langle GS | X | GS \rangle$, where $|GS \rangle$ is the many-body ground state.
- for a closed system at inverse temperature β , we choose

$$\langle X \rangle = Z^{-1} \operatorname{Tr} \left(X e^{-\beta H} \right) = Z^{-1} \sum_{n} \langle \Psi_n | X | \Psi_n \rangle e^{-\beta E_n},$$

where $|\Psi_n\rangle$ are the many-body eigenstates of the total Hamiltonian H, with energy E_n .

The zero temperature case is a special case and can be obtained by sending $\beta \to \infty$.

One can also define the so-called greater and lesser Green's functions, namely

$$G_{>}(\alpha, t; \alpha', t') = -i\langle c_{\alpha}(t) c^{\dagger}_{\alpha'}(t') \rangle$$
(14)

$$G_{<}(\alpha, t; \alpha', t') = \mp i \langle c_{\alpha'}^{\dagger}(t') c_{\alpha}(t) \rangle \quad \text{for bosons/ fermions}$$
(15)

so that

$$G_R(\alpha, t; \alpha', t') = \theta(t - t') \left[G_{>}(\alpha, t; \alpha', t') - G_{<}(\alpha, t; \alpha', t') \right]$$
(16)

6. Show that

$$\tilde{G}_{<}(\alpha, \alpha', \omega) = \pm e^{-\omega\beta} \tilde{G}_{>}(\alpha, \alpha', \omega)$$
(17)

7. Show that in the case of a non-interacting (i.e. quadratic) Hamiltonian

$$H = \sum_{\alpha} \epsilon_{\alpha} c_{\alpha}^{\dagger} c_{\alpha} \tag{18}$$

the many-body retarded Green's function coincides with the one defined in first quantization, namely

$$\tilde{G}_R(\alpha, \alpha', \omega) = \langle \alpha | \frac{1}{\omega + i0^+ - h} | \alpha' \rangle$$
(19)

where $h = \sum_{\alpha} \epsilon_{\alpha} |\phi_{\alpha}\rangle \langle \phi_{\alpha}|$ is the corresponding one-body Hamiltonian.

The spectral function

We will now focus on the diagonal elements of the Green's function, and we define the **spectral function** as

$$A(\alpha,\omega) = -2\operatorname{Im}\tilde{G}_R(\alpha,\alpha,\omega)$$
(20)

8. Show that

$$A(\alpha,\omega) = \int_{-\infty}^{\infty} dt \, e^{i\omega t} \, \langle [c_{\alpha}(t), c_{\alpha}^{\dagger}(0)]_{\pm} \rangle \tag{21}$$

and deduce

$$i\tilde{G}_{>}(\alpha,\alpha,\omega) = \frac{A(\alpha,\omega)}{1 \mp e^{-\beta\omega}},\tag{22}$$

$$\pm i\tilde{G}_{<}(\alpha,\alpha,\omega) = e^{-\beta\omega} \frac{A(\alpha,\omega)}{1 \mp e^{-\beta\omega}}$$
(23)

9. Show that the spectral function $A(\alpha, \omega)$ behaves like a probability distribution of the variable ω :

$$A(\alpha,\omega) \ge 0, \qquad \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} A(\alpha,\omega) = 1$$
 (24)

provided $\langle \alpha | \alpha \rangle = 1$ (for instance this does not work for the real space LDOS in the continuum, since $|r\rangle$ is not normalizable.)

10. Argue that the mean occupation $\langle n_{\alpha} \rangle = \langle c_{\alpha}^{\dagger} c_{\alpha} \rangle$ is given by

$$\langle n_{\alpha} \rangle = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{e^{-\beta\omega}}{1 \mp e^{-\beta\omega}} A(\alpha, \omega)$$
(25)

2.1 Density of states and local density of states (LDOS)

For a system of non-interacting particles (*i.e.* for an Hamiltonian of the form $H = \sum_{n} \epsilon_n c_n^{\dagger} c_n$) the density of states is defined as follow : $D(\epsilon)\Delta\epsilon$ is the number of one-particle states with an energy between ϵ and $\epsilon + \Delta\epsilon$. Typically it scales with the volume, so we are led to defined the density of states per volume $d(\epsilon) = D(\epsilon)/V$.

$$D(\epsilon) = \sum_{n} \delta(\epsilon - \epsilon_n) \tag{26}$$

11. Show that the density of states is equal to

$$D(\epsilon) = -\frac{1}{\pi} \operatorname{Im} \operatorname{Tr} G_R(\epsilon)$$
(27)

A natural definition for the LDOS is

$$\rho(\alpha, \epsilon) = \sum_{n} |\langle \alpha | n \rangle|^2 \delta(\epsilon - \epsilon_n)$$
(28)

whose interpretation is the following : $\rho(\alpha, \epsilon) \Delta \epsilon$ is the probability to find an electron in state $|\alpha\rangle$ and energy between ϵ and $\epsilon + \Delta \epsilon$.

Theoretical Condensed Matter

12. Show that formula (28) is equivalent to

$$\rho(\alpha,\omega) = \frac{1}{2\pi}A(\alpha,\omega) = -\frac{1}{\pi}\operatorname{Im} G_R(\alpha,\alpha,\omega)$$
(29)

By extension the LDOS is defined for interacting systems by equation (29). In particular the spatially resolved density of state is

$$\rho(r,\omega) = -\frac{1}{\pi} \operatorname{Im} G_R(r,r,\omega)$$
(30)

3 Application: a simple one-dimensional model.

Consider a non-interacting, one-dimensional tight-binding model on N sites with periodic-boundary conditions.

$$H_0 = -t \sum_{j=1}^{N} \left(c_{j+1}^{\dagger} c_j + \text{h.c.} \right), \qquad c_{N+j} = c_j$$

As we have seen in the tutorial about the Hubbard model, such a quadratic model is straightforward to solve. We have

$$H_0 = \sum_k \epsilon_k \tilde{c}_k^{\dagger} \tilde{c}_k, \qquad \epsilon_k = -2t \cos k$$

where

$$\tilde{c}_k^{\dagger} = \frac{1}{\sqrt{N}} \sum_j e^{ikj} c_j^{\dagger}, \qquad k = \frac{2\pi}{N} m, \quad m = 0, 1, \cdots, N-1$$

- 13. Compute the retarded Green's function $G_0(n, m, \omega)$.
- 14. We are interested in very large systems, so we take $N \to \infty$. The correct Fourier transform is now

$$\tilde{c}_k^{\dagger} = \sum_{j=-\infty}^{\infty} e^{ikj} c_j^{\dagger}, \qquad c_j^{\dagger} = \int_0^{2\pi} \frac{dk}{2\pi} e^{-ikj} \tilde{c}_k^{\dagger}$$

Argue that the retarded Green's function is

$$G_0(n,m,\omega) = \int_0^{2\pi} \frac{dk}{2\pi} \frac{e^{ik(n-m)}}{\omega + i0^+ - \epsilon_k}$$

15. * Using the residue theorem, show that $G_0(n,m,\omega)$ is given by

$$G_0(n,m,\omega = -2t\cos\theta) = \frac{e^{i(n-m|\theta)}}{2it\sin\theta}, \quad \text{for} \quad -2t < \omega < 2t \quad (0 < \theta < \pi)$$

$$G_0(n,m,\omega = 2t\cosh\theta) = \frac{(-1)^{n-m}e^{-|n-m|\theta}}{2t\sinh\theta}, \quad \text{for} \quad \omega > 2t \quad (\theta > 0)$$

$$G_0(n,m,\omega = -2t\cosh\theta) = -\frac{e^{-|n-m|\theta}}{2t\sinh\theta}, \quad \text{for} \quad \omega < -2t \quad (\theta > 0)$$

while $G_0(n, m, \omega)$ diverges for $\omega = \pm 2t$ (why could that be expected ?).

- 16. Compute the density of states (per unit volume *i.e.* per site) directly from the spectrum. Recover this result using the Green's function.
- 17. We add an impurity at position 0

$$H = H_0 + V, \qquad V = v c_0^{\dagger} c_0$$

Show that

$$G = (1 - G_0 V)^{-1} G_0 = G_0 + G_0 T(\omega) G_0, \qquad T(\omega) = V + V G_0(\omega) V + V G_0(\omega) V G_0(\omega) V + \cdots$$
(31)

- 18. Show that $T(\omega) = \frac{v}{1 vG_0(0, 0, \omega)} |0\rangle \langle 0|.$
- 19. Let $\delta \rho(n, \omega) = \rho(n, \omega) \rho_0(n, \omega)$ be the variation of the LDOS due to the impurity. Compute $\delta \rho(n, \omega)$ at zero temperature and half-filling for ω close to the Fermi energy.