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Green’s function, LDOS and Friedel oscillations

In this tutorial we introduce the retarded Green’s function and the local density of states. As an
illustration we study Friedel oscillations for a simple one-dimensional model of non-interacting fermions.

1 Retarded Green’s function in first quantization

Consider a first quantized Hamiltonian H, e.g.

H =
p2

2m
+ V (r)

and let GR(t, t′) be an operator defined as{
(i∂t1−H) GR(t, t′) = δ(t− t′)1,
GR(t, t′) = 0 for t < t′

(1)

We assume that H does not depend on time, and we set ~ = 1.

1. Argue that GR only depends on t− t′ and that the solution of the previous differential equation is:

GR(t, t′) = −iθ(t− t′)e−iH(t−t′) (2)

Interpretation as a propagator

The operator GR(t, t′) can be decomposed in real space: GR(r, t, r′, t′) is the (retarded) Green’s function in
real space and is given by: {

GR(t, t′) =
∫
dr dr′GR(r, t, r′, t′)|r〉〈r′|,

GR(r, t, r′, t′) = 〈r|GR(t, t′)|r′〉 (3)

In mathematics, a Green’s function is the impulse response of an inhomogeneous linear differential equation
defined on a domain, with specified initial conditions or boundary conditions. The Schrödinger equation in
real space is typically a differential equation

i∂tΨ(r) = H(r)Ψ(r)

For instance if H = p2

2m + V (r), then the differential operator H(r) is H(r) = − ∆
2m + V (r).

2. Check that

(i∂t1−H(r)) GR(r, t, r′, t′) = δ(t− t′)δ(r − r′) (4)
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3. Consider the wavefunction at time t, Ψ(r, t), obtained from the initial condition Ψ(r, t′) = δ(r−r′) (i.e.
|Ψ(t′)〉 = |r′〉). Argue that GR(r, t, r′, t′) is the amplitude for a particle at time t > t′ to be measured
at position r knowing that it was at position r′ at time t′.

4. Check that, starting from an arbitrary initial state Ψ(r′, t′) at time t′, the state at time t > t′ is:

Ψ(r, t) = i

∫
dr′GR(r, t, r′, t′)Ψ(r′, t′) as long as t > t′ (5)

Analytic properties of the (Fourier transform of) Green’s function

5. Let |φα〉 be an eigenbasis of H, namely H =
∑

α εα|φα〉〈φα|. We have

GR(r, t, r′, t′) = −iθ(t− t′)
∑
α

φα(r)φ∗α(r′)e−iεα(t−t′) (6)

Let us define the time Fourier transform and its inverse:{
G̃R(r, r′, ω) =

∫∞
−∞ dt e

iωtGR(r, t, r′, 0)

GR(t) = 1
2π

∫∞
−∞ dω e

−iωtG̃R(ω)
(7)

Show that, as long as ω is not in the spectrum of H, we can write

G̃R(ω) = (w1−H)−1 =
∑
α

1

ω − εα
|φα〉〈φα|, ω ∈ C \ {εα, α = 0, 1, · · · } (8)

This equation defines a meromorphic (analytic except for a discrete set of points) function of ω with
simple poles at w = εα.
On the other hand since (ω−H) is not invertible for w = εα, the operator (ω−H) has infinitely many right
inverses, and the equation (ω1−H)G̃R(ω) = 1 does not define G̃R(ω) uniquely. To be more specific, once
we have a particular solution G̃0

R(ω), then a generic solution is of the form

G̃R(ω) = G̃0
R(ω) +

∑
α,β

aα,βδ(ω − εα)|φα〉〈φβ| (9)

In order to fix a unique solution, we must specify the behavior of G̃R(ω) as w → εα. The retarded Green’s
function amounts to the choice GR(t) = 0 for negative t. This choice is motivated by causality, and it lifts
any ambiguity from the definition of the Green’s function. When performing the inverse Fourier transforms
from G̃R(ω), it amounts to avoiding the poles at w = εα by integrating slightly above them in the complex
plane1. This is typically written as

G̃R(ω) = lim
η→0+

(ω + iη −H)−1 = (ω + i0+ −H)−1 (10)

However it is good to keep in mind that taking the limit η → 0 is a rather subtle one2.

1Indeed in that case the poles are εα − iη, i.e. in the lower half plane, and for t < 0 one can close the contour in the upper
half plane, yielding GR(t) = 0

2The relevant formula here being

lim
η→0+

∫ ∞

0

dteit(ω+iη) = i lim
η→0+

1

ω + iη
= iP(1/ω) + πδ(ω)

where P stands for Cauchy principal value.
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2 Single-particle Green’s functions in second quantization

The more generic definition of the retarded Green’s function is

GR(α, t;α′, t′) = −iθ(t− t′)〈[cα(t), c†α′(t
′)]〉 for bosons (11)

= −iθ(t− t′)〈{cα(t), c†α′(t
′)}〉 for fermions (12)

where α index the full one-body Hilbert space. For instance α = (~r, σ) for spin-1/2 particles, in which case
we have

GR(r, σ, t′; r′σ′, t′) = −iθ(t− t′)〈[Ψσ(r, t),Ψ†σ′(r
′, t′)]±〉 (13)

where [·, ·]+ is a commutator and [·, ·]− an anti-commutator. We also have to specify what is meant by the
mean value 〈· · · 〉. Several cases are possible

• for a closed system at zero temperature, 〈X〉 = 〈GS|X|GS〉, where |GS〉 is the many-body ground
state.

• for a closed system at inverse temperature β, we choose

〈X〉 = Z−1Tr
(
Xe−βH

)
= Z−1

∑
n

〈Ψn|X|Ψn〉e−βEn ,

where |Ψn〉 are the many-body eigenstates of the total Hamiltonian H, with energy En.

The zero temperature case is a special case and can be obtained by sending β →∞.

One can also define the so-called greater and lesser Green’s functions, namely

G>(α, t;α′, t′) = −i〈cα(t) c†α′(t
′)〉 (14)

G<(α, t;α′, t′) = ∓i〈c†α′(t
′)cα(t)〉 for bosons/ fermions (15)

so that

GR(α, t;α′, t′) = θ(t− t′)
[
G>(α, t;α′, t′)−G<(α, t;α′, t′)

]
(16)

6. Show that

G̃<(α, α′, ω) = ±e−ωβG̃>(α, α′, ω) (17)

7. Show that in the case of a non-interacting (i.e. quadratic) Hamiltonian

H =
∑
α

εαc
†
αcα (18)

the many-body retarded Green’s function coincides with the one defined in first quantization, namely

G̃R(α, α′, ω) = 〈α| 1

ω + i0+ − h
|α′〉 (19)

where h =
∑

α εα|φα〉〈φα| is the corresponding one-body Hamiltonian.
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The spectral function

We will now focus on the diagonal elements of the Green’s function, and we define the spectral function
as

A(α, ω) = −2 Im G̃R(α, α, ω) (20)

8. Show that

A(α, ω) =

∫ ∞
−∞

dt eiωt 〈[cα(t), c†α(0)]±〉 (21)

and deduce

iG̃>(α, α, ω) =
A(α, ω)

1∓ e−βω
, (22)

±iG̃<(α, α, ω) = e−βω
A(α, ω)

1∓ e−βω
(23)

9. Show that the spectral function A(α, ω) behaves like a probability distribution of the variable ω :

A(α, ω) ≥ 0,

∫ ∞
−∞

dω

2π
A(α, ω) = 1 (24)

provided 〈α|α〉 = 1 (for instance this does not work for the the real space LDOS in the continuum,
since |r〉 is not normalizable.)

10. Argue that the mean occupation 〈nα〉 = 〈c†αcα〉 is given by

〈nα〉 =

∫ ∞
−∞

dω

2π

e−βω

1∓ e−βω
A(α, ω) (25)

2.1 Density of states and local density of states (LDOS)

For a system of non-interacting particles (i.e. for an Hamiltonian of the form H =
∑

n εnc
†
ncn) the density of

states is defined as follow : D(ε)∆ε is the number of one-particle states with an energy between ε and ε+∆ε.
Typically it scales with the volume, so we are led to defined the density of states per volume d(ε) = D(ε)/V .

D(ε) =
∑
n

δ(ε− εn) (26)

11. Show that the density of states is equal to

D(ε) = − 1

π
Im TrGR(ε) (27)

A natural definition for the LDOS is

ρ(α, ε) =
∑
n

|〈α|n〉|2δ(ε− εn) (28)

whose interpretation is the following : ρ(α, ε) ∆ε is the probability to find an electron in state |α〉 and energy
between ε and ε+ ∆ε.
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12. Show that formula (28) is equivalent to

ρ(α, ω) =
1

2π
A(α, ω) = − 1

π
ImGR(α, α, ω) (29)

By extension the LDOS is defined for interacting systems by equation (29). In particular the spatially
resolved density of state is

ρ(r, ω) = − 1

π
ImGR(r, r, ω) (30)

3 Application: a simple one-dimensional model.

Consider a non-interacting, one-dimensional tight-binding model on N sites with periodic-boundary condi-
tions.

H0 = −t
N∑
j=1

(
c†j+1cj + h.c.

)
, cN+j = cj

As we have seen in the tutorial about the Hubbard model, such a quadratic model is straightforward to
solve. We have

H0 =
∑
k

εk c̃
†
k c̃k, εk = −2t cos k

where

c̃†k =
1√
N

∑
j

eikjc†j , k =
2π

N
m, m = 0, 1, · · · , N − 1

13. Compute the retarded Green’s function G0(n,m, ω).

14. We are interested in very large systems, so we take N →∞. The correct Fourier transform is now

c̃†k =
∞∑

j=−∞
eikjc†j , c†j =

∫ 2π

0

dk

2π
e−ikj c̃†k

Argue that the retarded Green’s function is

G0(n,m, ω) =

∫ 2π

0

dk

2π

eik(n−m)

ω + i0+ − εk

15. * Using the residue theorem, show that G0(n,m, ω) is given by

G0(n,m, ω = −2t cos θ) =
ei|n−m|θ

2it sin θ
, for − 2t < ω < 2t (0 < θ < π)

G0(n,m, ω = 2t cosh θ) =
(−1)n−me−|n−m|θ

2t sinh θ
, for ω > 2t (θ > 0)

G0(n,m, ω = −2t cosh θ) = −e
−|n−m|θ

2t sinh θ
, for ω < −2t (θ > 0)

while G0(n,m, ω) diverges for ω = ±2t (why could that be expected ?).
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16. Compute the density of states (per unit volume i.e. per site) directly from the spectrum. Recover this
result using the Green’s function.

17. We add an impurity at position 0

H = H0 + V, V = vc†0c0

Show that

G = (1−G0V )−1G0 = G0 +G0T (ω)G0, T (ω) = V + V G0(ω)V + V G0(ω)V G0(ω)V + · · · (31)

18. Show that T (ω) = v
1−vG0(0,0,ω) |0〉〈0|.

19. Let δρ(n, ω) = ρ(n, ω)−ρ0(n, ω) be the variation of the LDOS due to the impurity. Compute δρ(n, ω)
at zero temperature and half-filling for ω close to the Fermi energy.
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