
ICFP Master Program
Condensed Matter Theory (B. Douçot, B. Estienne, L. Messio)

Monday January 9th 2017, 14:00 to 18:00.

You are allowed to use your lecture notes. There are many questions, but most of them
involve only mimimal calculations, so don’t be scared! The conventions for Fourier transforms
are the same as in the lecture notes, namely:

Ψη(x) =
1√
L

∑
k

cη(k)eikx, cη(k) =
1√
L

∫ L

0
dx e−ikxΨη(x)

and the fermionic fields Ψη(x) are periodic and normalized as {Ψ†η(x),Ψη′(x
′)} = δηη′δ(x− x′).

1 The model and its symmetries

The subject of the problem is the famous Gross-Neveu model. It has been studied a lot in
the 1970’s in the high energy physics community, as a theoretical laboratory to investigate
non-perturbative phenomena in strongly interacting quantum field theories. From a solid-state
physics standpoint, it appears as a rather natural generalization of the Luttinger model with spin,
where the global symmetry group SU(2) is replaced by SU(N), N arbitrary positive integer. A
lot of attention has been dedicated to the large N limit, for which a rather appealing physical
picture has been proposed by E. Witten in 1978, using an approach based on path-integrals.
The following problem aims at presenting this physics from the viewpoint and methods used in
the course. With our favorite notations, the Gross-Neveu Hamiltonian reads:

HGN =
∑
k

N∑
σ=1

k(:c†Rσ(k)cRσ(k) : − :c†Lσ(k)cLσ(k) :)+Ng1

∫ L

0
dx :O(x)O†(x) : +

g2
N

∫ L

0
dx :nR(x)nL(x) :

We use units in which h̄ = 1, vF=1. We consider periodic boundary conditions and we have set
kF = 0 here. This is mostly to simplify the notation, without altering the physics. Indeed, we
still have two Fermi points, both at k = 0, one for each sign of the group velocity. As usual, ::
stands for normal-ordering, R for right-moving fermions and L for left-moving fermions. The
generalized spin index σ runs now from 1 to N . The operator O(x) is defined by:

O(x) =
1

N

N∑
σ=1

Ψ†Rσ(x)ΨLσ(x)

The local charge densities are nR(x) =
∑N
σ=1 Ψ†Rσ(x)ΨRσ(x) and nL(x) =

∑N
σ=1 Ψ†Lσ(x)ΨLσ(x).

The total charges are NR =
∫ L
0 dx :nR(x) :, NL =

∫ L
0 dx :nL(x) :. In the sequel, it will be often

made use of G = NR −NL.

1) What kind of more physical model could motivate the Hamiltonian HGN ?

2) What are the commutators [G,O(x)] and [G,O†(x)] ?

3) Check that G commutes with HGN. The associated symmetry is often called chiral symmetry
in the high energy physics literature.

1



4) It is interesting to see how this symmetry acts on basic operators. Let us introduce U(φ) =

ei
φ
2
G. Evaluate then U(φ)Ψ†Rσ(x)U(φ)−1, U(φ)Ψ†Lσ(x)U(φ)−1, U(φ)nR(x)U(φ)−1, U(φ)nL(x)U(φ)−1,

U(φ)O(x)U(φ)−1, and U(φ)O†(x)U(φ)−1.

5) Another symmetry of HGN is particle-hole symmetry. It is implemented by the linear oper-
ator C defined by:

C2 = 1, CΨ†Rσ(x)C = ΨRσ(x), CΨ†Lσ(x)C = −ΨLσ(x)

What are the operators CO(x)C and CO†(x)C ?

6) Finally, we will also need reflection symmetry P. It is defined by:

P2 = 1, PΨ†Rσ(x)P = Ψ†Lσ(−x), PΨ†Lσ(x)P = Ψ†Rσ(−x)

What are the operators PO(x)P and PO†(x)P ?

2 Renormalization group analysis

It is possible to derive the renormalization group equations for the effective couplings g1 and g2.
At the one loop approximation, these equations are:

dg1
d log Λ

=
g21
2π
,

dg2
d log Λ

=
g21

2πN

7) Draw the corresponding renormalization trajectories in the g1, g2 plane. What are the pos-
sible phases suggested by such diagram ?

8) What happens in the N →∞ limit ?

3 Mean-field approximation

The rest of the problem attempts to understand better the strong coupling phase whose existence
is suggested by the previous renormalization group analysis. In this part, we take g2 = 0 to
simplify the discussion, and we write g for g1 The mean-field approximation amounts, as usual,

to replace the quartic operator :OO† : by the combination
〈
O†
〉
O + 〈O〉O†.

9) What could be the role of the parameter N in this problem ?

10) Introducing ∆ = g 〈O〉 = |∆|eiφ, check that the mean-field Hamiltonian HMF is diagonal-
ized in the quasiparticle basis whose associated creation operators are given by:

d†+σ(k) = sin(
θk
2

)e−iφ/2c†Rσ(k) + cos(
θk
2

)eiφ/2c†Lσ(k)

d†−σ(k) = cos(
θk
2

)e−iφ/2c†Rσ(k)− sin(
θk
2

)eiφ/2c†Lσ(k)

Here, we have introduced the angle θk defined by:

cos θk = − k√
k2 + |∆|2

, sin θk =
|∆|√

k2 + |∆|2
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11) What is the energy spectrum of HMF ?

12) Write explicitely the self-consistency equation for the parameter ∆. Does the phase φ enter
in this equation ? Explain why.

13) Building from the previous question, do you think that these mean-field solutions can be
taken literally ? What could be a physical argument against them ?

14) For which values of g is there a non-trivial solution, i.e. with ∆ 6= 0 ? Evaluate |∆| as
a function of g. For this, it is necessary to introduce an ultra-violet cut-off on allowed
momenta, i.e. to impose |k| ≤ Λ. We assume that the coupling is not too large, so that
|∆| � Λ.

15) To which extent can this simple mean-field picture be connected with the renormalization
group flow of the previous section ?

4 Collective modes (I)

In this section, we shall consider the collective excitations of the system in the vicinity of the
self-consistent mean-field ground-state with φ = 0. This means that 〈O〉 is real. In the sequel,
it will be useful to distinguish between amplitude and phase fluctuations of the order-parameter
〈O〉. For this, we define two hermitian components:

Oa(x) =
1

2
(O(x) +O†(x)), Ob(x) =

i

2
(O†(x)−O(x))

The a-direction in order parameter plane is then associated to amplitude fluctuations and the
b-direction to phase fluctuations. Note that the interaction term in HGN now reads:

Hint = Ng

∫ L

0
dx

(
:Oa(x)2 : + :Ob(x)2 :

)
The mean-field Hamiltonian, with these notations, becomes:

HMF = H0 + 2Ng

∫ L

0
dx (〈Oa(x)〉Oa(x) + 〈Ob(x)〉Ob(x))

We will study collective modes in the spirit of the Random Phase Approximation (RPA).
For this, we impose to the system, initially in a mean-field ground-state of HGN, an external
perturbation:

δH(t) =

∫ L

0
dx (hext,a(x, t)Oa(x) + hext,b(x, t)Ob(x))

The perturbation will modify the expectations values of Oa and Ob. As usual in the RPA, we
take interactions into account by a space and time dependent deformation of the self-consistent
field acting on the underlying particles. The RPA assumes then that the fermions respond as if
they followed the mean-field Hamiltonian HMF, in the presence of local fields hloc,a, hloc,b, where:

hloc,a = hext,a + 2Ngδ 〈Oa(x)〉
hloc,b = hext,b + 2Ngδ 〈Ob(x)〉

In order to relate δ 〈Oa(x)〉 and δ 〈Oa(x)〉 to local fields, we use response functions Rij(q, ω) ≡
ROi,Oj (q, ω), (i, j = a or b), evaluated in the ground-state of the spinless version of HMF. This
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choice allows a simple tracking of the N -dependency of the order-parameter dynamics. In clear,
we assume:

δ 〈Oi(x)〉 (q, ω) =
1

N

∑
j=a,b

Rij(q, ω)hloc,j(q, ω)

16) Explain the 1/N factor in the previous equation.

17) Give general expressions for the local fields hloc,i(q, ω) and the order parameter fluctuations
δ 〈Oi(x)〉 (q, ω) in terms of the external fields hext,j(q, ω). In particular, the latter relations
will serve to define dressed response functions RRPA

ij (q, ω) in the RPA.

18) What happens to RRPA
ij (q, ω) in the N →∞ limit ? Does this sound reasonable ?

19) Now, a rather remarkable fact happens, explained in section 5 below, that Rab(q, ω) = 0.
What are the resulting dressed response functions RRPA

ij (q, ω) ?

20) Another very interesting phenomenon appears: there is a pole in RRPA
bb (q, ω) at (q, ω) =

(0, 0). Show that this is not a coincidence and that the existence of this pole can be
predicted.

5 Symmetries and response functions

This results of this part will be used in section 6 below. For a system with an unperturbed
Hamiltonian H0 and a time dependent perturbation δH(t) = λ(t)B(t), the response function
RAB(t− t′) is defined by:

δ 〈A〉 (t) =

∫
dt′ RAB(t− t′)λ(t′)

where δ 〈A〉 (t) denotes the change in the expectation value of the observable A at time t induced
by the perturbation. We recall that if the system is initially in its ground-state |Ψ0〉, we have:

RAB(t− t′) = − i
h̄

〈
Ψ0|[A(t), B(t′)]|Ψ0

〉
θ(t− t′)

where A(t) and B(t′) are in the interaction picture with respect to H0. We suppose that there
is a symmetry operation, described by the unitary operator U , which leaves both H0 and |Ψ0〉
invariant, i.e. UH0 = H0U and U |Ψ0〉 = |Ψ0〉. We may also assume that A and B depend on
a spatial coordinate, in which case we will write A(x) and B(x). Then, it is possible to expand
these operators in Fourier modes:

A(x) =
∑
q

eiqxA−q, B(x) =
∑
q

eiqxB−q

Here Aq and Bq carry momentum q. This means that the action of Aq or Bq on any state with
momentum k produces a state with momentum k + q.

21) If we denote A′ = UAU−1, and B′ = UBU−1, then show that RAB(t− t′) = RA′B′(t− t′).

22) Write down a spectral decomposition of the Fourier transform (with respect to both space
and time) of RA(x)A(0).

23) We suppose that the unitary symmetry operator U satisfies UAqU
−1 = τA−q, with τ = ±1.

Show that RAA(q, ω) is even in q, that =RAA(q, ω) is odd in ω and that <RAA(q, ω) is
even in ω.
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6 Collective modes (II)

24) What are the operators COa(x)C and COb(x)C ?

25) Show that HMF for φ = 0 commutes with the particle-hole symmetry operator C and that
its ground-state is invariant under C.

26) What can we infer from this for Rab(q, ω) ?

27) Show that HMF for φ = 0 commutes with the reflection symmetry operator P and that its
ground-state is invariant under P.

28) Use this to show that Raa(q, ω) and Rbb(q, ω) are even functions of q.

29) Show also that <Raa(q, ω) and <Rbb(q, ω) are even functions of ω.

30) Show that =Raa(q, ω) and =Rbb(q, ω) are identically zero for ω not too large.

31) The previous remarks show that the Taylor expansion of Raa(q, ω) and Rbb(q, ω) near
(q, ω) = (0, 0) has then the form:

Rii(q, ω) = Rii(0, 0)− λiω2 + µiq
2 + ..., i = a, b

The coefficients Rii(0, 0), λi, µi are real numbers. Show that λi > 0. We will assume that
µi > 0. Give some argument supporting this assumption.

32) Deduce from these informations the generic form of the dressed responses RRPA
aa (q, ω) and

RRPA
bb (q, ω) near (q, ω) = (0, 0). You can use the fact that a complete calculation shows

that Rbb(0, 0) < Raa(0, 0) < 0.

33) We define the symmetrized correlation function Cii(x, t)s by:

Cii(x, t)s ≡
1

2
(〈Oi(x, t)Oi(0, 0)〉+ 〈Oi(0, 0)Oi(x, t)〉) .

The fluctuation-dissipation relation at zero temperature states that the Fourier transform
of this correlation function is related to the corresponding response function by:

Cii(q, ω)s = −=Rii(q, ω)sign(ω).

Use it to estimate the qualitative behavior of the correlation functions Cii(x, t = 0)s. How
these results precise the physical picture for the low energy dynamics in the large N limit
?

7 A glimpse of Bosonization

34) Show that the Gross-Neveu Hamiltonian can be expressed as a generalized Sine-Gordon
model involving N coupled scalar bosonic fields φσ and their canonically conjugate fields
Πσ, 1 ≤ σ ≤ N . Show also that the linear combination φc = 1

N

∑
σ φσ and its canonically

conjugate Πc =
∑
σ Πσ decouple and remain gapless.

35) How does this fit with the conclusion drawn from the RPA analysis ?

36) What could be the analogues, in the Sine-Gordon description, of the gapful fermionic quasi-
particles present in the mean-field approximation ?
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8 Closing remarks

It turns out that the Gross-Neveu model is exactly solvable by Bethe Ansatz! This was shown by
Andrei and Lowenstein in 1980. They noticed soon afterwards that a rather simple modification
of the model maps it into the Kondo model (when N = 2), which was then solved as well!

37) Can you guess the relation between the two models ?
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