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(Fig. 1a, steps 4 and 5) and have been used previously in the  
context of 3C experiments1,10,11.

An important step in MDS-based methods of chromosome 
reconstruction is therefore the derivation of a complete set of dis-
tances from a (possibly sparse) contact map (Fig. 1a, step 6). We 
introduce a weighted graph whose nodes are the N loci detected in 
the experiment. The length of a link is determined as the inverse 
contact frequency between its end nodes15. We then take for the 
distance between any two nodes the length of the shortest path 
relating them on the graph, computed using the Floyd-Warshall 
algorithm. Our method accommodates binary contact maps (for 
example, single-cell Hi-C data)7 by taking link lengths equal to 
1 between contacting points, or else infinite (no link). Although 
it is approximate and gives distances in a dimensionless unit, 
this shortest-path metric assigns a sound distance (symmetric 
and satisfying the triangular inequality) to all pairs of points, as 
required for the application of MDS results (Online Methods). 
It offers a way to achieve the preprocessing step common to all 
3C-based techniques of converting observed contact frequencies 
into a complete set of distances, independently of the downstream 
reconstruction method.

This algorithm, which we call ‘shortest-path reconstruction in 
3D’ (ShRec3D), combines this shortest-path distance with MDS 
to achieve chromosome reconstruction (Fig. 1a, steps 4–6).

We tested the efficiency of ShRec3D in a controlled in silico 
case. We generated a yeast genome 3D structure16 represented 
as N = 26,538 beads (each corresponding to approximately three 
nucleosomes) linked by springs accounting for intrachromosomal 
DNA connectivity. The 16 yeast chromosomes were confined into 
a nucleus of radius 1.6 µm (Fig. 1b). From the bead coordinates we 
computed the associated Gram and distance matrices (Fig. 1c,d) 
and a binary contact map (Fig.1a, steps 1 and 2 and Fig. 1e) and 
the distance matrix was then obtained by applying step 6 to this 
contact map (Fig. 1f). The consecutive application of steps 5 and 4  
(Fig. 1a) reconstructs the coordinates up to a global transforma-
tion (some rotation, dilation and possibly mirror symmetry).  
To quantitatively assess the original structure recovery, we com-
pared in a scatter plot the actual (Fig. 1d) and reconstructed  
(Fig. 1g) distances and computed their Spearman rank correlation11  
(Fig. 1h). A spectral analysis supported the dimensional reduction 
of step 4 (Supplementary Fig. 1a).

We compared, for data sets of various sizes, both the reconstruc-
tion accuracy and the speed of ShRec3D and two other methods, 
BACH6 and ChromSDE11. All gave satisfactory results in terms 
of accuracy (Fig. 2a); however, on a personal computer, the run 
time for our script ranged from tens of seconds for small data 
sets (~1,000 points) to 50 h for the largest one (26,538 points), 
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A computational challenge raised by chromosome conformation 
capture (3C) experiments is to reconstruct spatial distances and 
three-dimensional genome structures from observed contacts 
between genomic loci. We propose a two-step algorithm, 
ShRec3D, and assess its accuracy using both in silico data and 
human genome-wide 3C (Hi-C) data. This algorithm avoids 
convergence issues, accommodates sparse and noisy contact 
maps, and is orders of magnitude faster than existing methods.

Chromosomal conformation capture (3C) has been developed for 
identifying DNA segments in close proximity within a cell nucleus1. 
It involves in vivo formaldehyde cross-linking of protein-mediated 
DNA-DNA contacts and sonication and re-ligation of cross-linked 
fragments, followed by sequencing. Next-generation sequencing 
techniques brought this protocol to the whole-genome scale (Hi-C) 
in cell populations2. Hi-C experiments provide genome-wide maps 
of contact frequencies between genomic loci, presumably reflecting 
the average spatial organization of their chromosomes.

Several methods have been developed to derive three-dimensional 
(3D) chromosomal structures from Hi-C contact maps3. Most 
involve optimization of loci coordinates4–11 until experimentally 
measured contacts are satisfactorily reproduced. These methods 
perform well, but convergence issues may arise owing to algorithm 
trapping in local optima, and computation time is often prohibitive 
for large data sets. Therefore, they resort to data binning at the cost 
of lowering genomic resolution. We propose a two-step alternative: 
a method adapted from network analysis for translating contact 
maps into distances, followed by a 3D reconstruction.

It is straightforward to get all the distances between a set of  
N points given their 3D coordinates (Fig. 1a, step 1). From this 
matrix, one can also infer easily the binary contact matrix given 
a contact threshold ε (Fig. 1a, step 2). Our goal was to infer the  
optimal 3D coordinates knowing only the contact matrix. The 
mathematical problem of reconstructing a spatial structure  
from the distances between its elements is solved by distance 
geometry12 or classical multidimensional scaling13 (MDS; Online 
Methods). These methods involve the computation of the first  
three eigenvectors in intermediary matrix14, the Gram matrix  

1Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France.  
2Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Université de Montpellier, Montpellier, France. 3Institut Pasteur, Group Spatial Regulation of 
Genomes, Department of Genomes and Genetics, Paris, France. Correspondence should be addressed to J.M. (mozziconacci@lptmc.jussieu.fr).
Received 12 March; accepted 6 August; published online 21 september 2014; doi:10.1038/nmeth.3104

http://www.nature.com/doifinder/10.1038/nmeth.3104


©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�  |  ADVANCE ONLINE PUBLICATION  |  nature methods

brief communications

several orders of magnitude faster than other methods (Fig. 2b). 
The limiting step for ShRec3D computation time is the Floyd-
Warshall algorithm computing shortest paths on the contact map, 
whose worst-case performance scales as O(N3). We also found 
that the accuracy of the MDS reconstruction applied directly to 
inverse-frequency distances was poor (Fig. 2 and Supplementary  
Fig. 1b–d), demonstrating the importance of using our shortest-
path metric before MDS reconstruction.

We tested and compared ShRec3D to the above-mentioned 
alternative methods in conditions closer to those of real Hi-C 
experiments. The robustness of the ShRec3D reconstruction with 
respect to experimental noise (mimicked by misplaced contacts, 
Online Methods) was insured for noise levels lower than 1% 
(maximal level in typical Hi-C experiments (Fig. 2c), see Online 
Methods). The probabilistic nature of BACH6 makes it efficient 
in the presence of high levels of noise; however, it remains slower 
than ShRec3D reconstruction by several orders of magnitude and 
is thus limited to small-size structures (Fig. 2b). We then repro-
duced the superposition of single-cell contact maps reflecting the 

genome fold variations over a cell population that is characteristic 
of Hi-C maps; accordingly, one could reach only an average 3D 
structure. From a Langevin dynamic simulation16 of our in silico 
genome, we extracted a variable number k of independent struc-
tures and computed the average of their contact maps (Online 
Methods). The distances reconstructed with ShRec3D from this 
simulated average Hi-C contact map quantitatively matched the 
average distances in the superposition of structures (Fig. 2d). This 
was also achieved by the alternative methods for a large number of 
structures; however, the comparison had to be limited to coarse-
grained structures with 480 points, the largest size manageable in 
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Figure 1 | Application of ShRec3D to a simulated data set. (a) Algorithm flowchart; steps 1–6 are detailed in the text and Online Methods. (b) 3D 
structure of in silico yeast genome generated using polymer dynamics for a chain of N = 26,538 beads (each chromosome is shown in a different color). 
(c) Gram matrix. (d) Distance matrix (s.u.). (e) Contact map (binary map, threshold ε = 60 nm). (f) Distance matrix derived from contacts. (g) Distance 
matrix of the reconstructed structure (dimensionless). (h) Scatter plot of original and reconstructed distances; heat map colors indicate the local density 
of points; Spearman rank correlation coefficient R is indicated. Inset, reconstructed 3D structure. s.u., simulation unit.
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Figure 2 | Quantitative assessment of ShRec3D performance and 
reliability. (a,b) Comparison of ShRec3D with BACH6, ChromSDE11 and MDS 
applied to inverse-frequency distances for simulated data of increasing 
size N (number of beads) in terms of reconstruction accuracy (Spearman 
rank correlation between original and reconstructed distances) (a) and 
computation time (b). (c) Robustness to a controlled amount of randomly 
misplaced contacts mimicking experimental noise (semilog plot).  
(d) Comparison of average distances in a population of an increasing 
number k of simulated structures (up to k = 500 independent snapshots of a 
Langevin dynamics of structure in Fig. 1b coarse-grained to N = 480 points) 
and distances reconstructed from the corresponding average contact map.



©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature methods  |  ADVANCE ONLINE PUBLICATION  |  �

brief communications

a reasonable time using BACH11 and ChromSDE11. The increase 
in quality of MDS applied to inverse-frequency distances with 
the number of structures was expected, as the inverse-frequency 
expression becomes closer to the shortest-path distance when the 
average contact map becomes denser.

We implemented ShRec3D on experimental Hi-C data obtained 
in human embryonic stem cells17 and lymphoblastoids18, exploit-
ing both the very sparse Hi-C data obtained at the best available 
genomic resolution (restriction fragments) and coarse-grained 
data sets (where loci correspond to many restriction fragments). 
ShRec3D’s ability to visualize average structures at different scales 
is illustrated by reconstructing a 30-Mbp region of chromosome 1  
at 3-kb resolution (Fig. 3a), the chromosome average structure  
at 150-kb resolution (Fig. 3b) and the average arrangement of 
autosomal chromosomes within nuclear space at 3-Mbp resolu-
tion (Fig. 3c). The genome connectivity and chromosome par-
titioning achieved by ShRec3D (Fig. 3d–f and Supplementary 
Figs. 2 and 3) would make it an efficient tool for genome scaf-
folding from Hi-C data19,20. Alternative methods (BACH6, MDS 
applied to inverse frequency distances and ChromSDE11) did not 
manage to properly reconstruct fine-resolution structures in rea-
sonable amounts of time. The potential of ShRec3D to devise 3D 
genome browsers is illustrated with the coloring of a 3D structure 
of chromosome 1 at resolution 30-kb according to the chromatin 
partition in two compartments2 (Supplementary Fig. 4a). Any 
chemical, structural or functional annotation available on linear 
genomes can be similarly overlaid on chromosome 3D struc-
tures (for example, two histone H3 modifications, H3K9Ac and 
H3K9me3 (GEO GSM409308)) (Supplementary Fig. 4b).

ShRec3D involves no ad hoc constraints or tunable parameters 
and is free from convergence issues and misleading transient out-
comes. Its speed makes it applicable to both 3C or carbon-copy 
3C (5C) data sets, which typically involve tens of loci, and high-
resolution Hi-C data sets, comprising sparse contacts between 
hundreds of thousands of points. Its accurate reconstruction of 
average distances between genomic loci and visualization of a 
consensus structure enable a meaningful use of cell-population 
Hi-C data, especially when extended into 3D genome browsers.

URLs. The ShRec3D algorithm is available at https://sites.google.
com/site/julienmozziconacci/#TOC-Downloads.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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from Hi-C data. (a–f) Experimental contact maps (a–c) and corresponding 
3D reconstructions (d–f) at genomic resolutions, from the scale of 
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(SRX128221) (a) to that of bins containing 50 (b) or 1,000 (c) 
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(Supplementary Fig. 3). Color gradients in d–f indicate the position 
along the genome.
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ONLINE METHODS
Matrix definitions: coordinate, Gram, distance and contact 
matrices. Various matrices can be associated with a structure 
comprising N points Pi (i = 1,…, N) in an n-dimensional space, 
having here in mind application to experimental structures with 
n = 3. The origin O of the coordinate system (point with null 
coordinates) is taken to be the barycenter of the set of points; 
barycentric coordinates are indeed geometrically more suit-
able for structure visualization. The coordinate matrix V is a  
n × N matrix comprising the Euclidean coordinates of the points, 
namely the element Vαi is the coordinate of the point Pi along 
the α-axis (α = 1,…, n). The Gram matrix G is an N × N positive 
semidefinite matrix whose element Gij is the scalar product of the 
coordinate vectors associated with points Pi and Pj. The distance 
matrix D is an N × N matrix whose element Dij is the Euclidean 
distance between the points Pi and Pj. A binary contact matrix 
A can be defined for a given threshold ε: its element Aij equals 1 
if the distance Dij between the points Pi and Pj is smaller than ε, 
otherwise it equals 0.

In practice, a contact is said to occur between two genomic 
loci Pi and Pj if their distance within the cell nucleus is smaller 
than a given threshold ε, prescribed by the experimental tech-
nique (cross-linking step in chromosome conformation capture  
experiments) and its sensitivity. The experimental results are 
expressed either in a binary way (presence or absence of a con-
tact), which yields a binary contact map (typically the case for 
single-cell Hi-C experiments), or in terms of contact counts cij 
(typically the case for Hi-C experiments performed in a cell popu-
lation) then normalized into contact frequencies fij during the 
data processing21.

Explicit and reciprocal relationships (Fig. 1a) can be established 
between the above matrix representations of an N-point struc-
ture. As detailed below, steps 1–3 (numbering as in Fig. 1a) are 
straightforward. They will be used in the generation of benchmark 
in silico Hi-C data, starting from simulated chromosome struc-
tures. Our algorithm ShRec3D (for ‘shortest-path reconstruction 
in 3D’) involves first the translation of a contact map into a dis-
tance matrix using a graph-theoretic method (Fig. 1a, step 6; see 
below) then the reconstruction of a 3D structure using standard 
results from distance geometry and classical multidimensional 
scaling (MDS) (Fig. 1a, step 5 followed by step 4; see below).

Step 1 from coordinates to distances (V to D). The Euclidean dis-
tance between the points Pi and Pj straightforwardly is expressed 
as a function of the coordinates, i.e., 

D V Vij
n

i j= −
=

∑ | |
a

a a
1

2 

Step 2 from distances to contacts (D to A). Given a threshold ε, a 
binary contact matrix is obtained by setting to 1 the elements Aij 
such that Dij is smaller than ε and the others to 0.

Step 3 from coordinates to Gram matrix (V to G). The Gram 
matrix of the set of points is obtained by computing the scalar 
product of their coordinate vectors (columns of V): G = VTV 
where VT is the transpose of V, i.e., 

G V Vij i
n

j=
=

∑ a
a

a
1

 

Multidimensional scaling: from distance matrix to 3D struc-
ture. Distance geometry has been developed to solve the issue of 
recovering coordinates from the sole knowledge of distances12,14,22. 
Multidimensional scaling brings in another notion, here central, 
of dimensional reduction: given a dimension n (currently small, 
n = 3 in our case), find the n-dimensional structure optimally 
approximating a given distance matrix. This goal is often achieved 
by minimizing a cost function involving the (possibly weighted) 
differences between the given features and the reconstructed 
coordinates. To avoid a time-consuming optimization, we instead 
followed the original line of multidimensional scaling, today called 
classical MDS13,23; as explained below, it is based on algebra and 
explicit (analytical) formulas. It should be noted that the scope of 
MDS rapidly extended beyond distance matrices to the treatment 
of ordinal information (nonmetric MDS), where the involvement 
of a cost function is then mandatory (see ref. 24 for an overview 
and ref. 10 for an application to chromosome reconstruction).

Step 4 from Gram matrix to coordinates (G to V). One of the 
most powerful theorems of distance geometry states that, pro-
vided the Gram matrix is positive semidefinite, the coordinates 
of the N points Pi (i = 1,…,N) in an n-dimensional space can be 
recovered from the first n eigenvectors Eα (α = 1,…,n) of the 
Gram matrix, normalized to 1 then rescaled by the square root 
of their associated eigenvalue λα , namely 

V E i E ii
i

N
a a a al= × =

=
∑( ) ( )with

1

2 1
 

where Eα(i) is the i-th component of the eigenvector Eα and 
Vαi is defined above (α-coordinate of the point Pi). This result 
is presented clearly and demonstrated in an accessible way in  
ref. 14 (part of theorem 3.1); however, this result is older and pro-
gressively established during the parallel development of distance 
geometry and multidimensional scaling. The rank of the Gram 
matrix G determines the minimum embedding dimension n. 
Geometrically, the first n eigenvectors of G are the principal axes 
of the N-point structure, and the eigenvalues are the correspond-
ing moments. It should be noted that there is an alternative way 
for passing from a Gram matrix G to the coordinates V, relying 
on Cholesky decomposition of G (namely, writing G = LLT where  
L is a lower triangular matrix with real positive or vanishing diag-
onal elements)1. However, the Cholesky decomposition does not 
exist if G has vanishing diagonal elements and is unstable if these 
elements are small12. The constructive result used in our step 4, 
although basically similar, is conceptually and practically simpler, 
as it involves only the diagonalization of G.

Importantly, if the rank of the Gram matrix G is larger than the 
desired dimension n, the above formula give the coordinates of the 
n-dimensional structure best approximating the underlying one14.

Step 5 from distances to Gram matrix (D to G). The mathemati-
cal derivation of a Gram matrix from the knowledge of distances 
is presented in ref. 14, theorems 3.1 and 3.3. We reformulate these 
theorems in a form more tractable for our algorithmic purposes. 
The first step is to express for any i = 1,…, N the distance d0i 
between the barycenter O and the point Pi

d
N

D
N

Di ij
j

N
jk

k j

N

j

N
0
2 2

1
2

2

1

1 1= −
= >=
∑ ∑∑  

(1)(1)

(2)(2)
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The argument introduces an auxiliary matrix, the metric matrix 
M, whose elements are 

M d d Dij i j ij= + −1
2 0

2
0
2 2[ ]

 

It is shown in ref. 22 that the condition that D is a distance 
matrix associated with a N-point Euclidean structure in a space 
of dimension n, is that M be positive semidefinite of rank n. 
Then M coincides with the Gram matrix G of the N points, and  
step 4 applies.

In practice, small errors in the distances may cause some eigen-
values of M to be negative (though small). This means that an 
exact 3D Euclidean embedding does not exist. This problem has 
been mentioned in the context of 3C data1 and solved by replac-
ing all but the largest three eigenvalues of M by 0. It is a central 
result of MDS that this procedure yields the best 3D Euclidean 
approximation of the original matrix. Choosing the barycenter 
(center of mass) of the N points to be the reference point O in the 
matrix M minimizes the ensuing approximation14. Importantly, 
this reconstruction, step 5 above, requires that the full set of  
distances, i.e., Dij for any pair (i,j), is known. This requires a  
preprocessing step of the contact map, converting contact  
frequencies into distances. Filling this gap is an important advance 
provided by step 6 (see below).

MDS reconstruction truncates the metric matrix M, equation (3),  
into the rank-3 Gram matrix G of what will be the reconstructed 
3D structure by considering only the dominant three eigenvalues 
and associated eigenvectors, which yields the optimal 3D approxi-
mation of the original structure (i.e., the approximation minimiz-
ing the sum of squared errors). This dimensional reduction (from 
M to G) and subsequent step of coordinate reconstruction (from 
G to V) are more valid when the neglected eigenvalues are small 
and more separated by a large spectral gap from the three retained 
eigenvalues (Supplementary Fig. 1a).

Shortest-path method: from contact map to distance matrix. 
We introduce a way to derive the full set of distances from the 
knowledge of a (possibly sparse) contact map, using the con-
cept of shortest path in graph theory. In the case of a single 
underlying structure, the graph is defined by the binary contact 
map A (presence or absence of a contact) seen as its adjacency 
matrix. This graph, whose nodes are the points Pi (i = 1,…, N), 
has to be connected, as it would not be possible to assign a dis-
tance between points belonging to two distinct components. 
Connectedness means that for any pair of points Pi and Pj, one 
can find a path (i0, i1,., ik) with i = i0 and j = ik, such that 

Aiqiq + =1 1

or, in practice, find a strictly positive integer k such that Aij
k > 0. In 

mathematical terms, this means that A has to be irreducible (which 
is the case in the experimental situations considered here). The 
path with the minimal number of steps is termed the shortest path 
between the points Pi and Pj. This path is not necessarily unique.

In the case of Hi-C experiments, performed over a cell popula-
tion and hence over an accumulation of structures, each pair (i,j) 
of nodes is associated with a normalized contact frequency fij, 
although it may be vanishing or very small. A current method, 

(3)(3)

henceforth termed the inverse-frequency method, is to assign 
the value 1/fij to the distance between points Pi and Pj (ref. 15). 
Vanishing contact frequencies are replaced by pseudo-counts to 
avoid ill-defined (infinite) distance values, which introduces the 
arbitrary choice of a pseudo-count value in the distance matrix 
derivation. This simple method, however, gives unreliable or even 
meaningless distance values for small fij. Moreover, it does not 
define a true distance, as it does not satisfy triangular inequal-
ity. To circumvent these shortcomings, we considered a weighted 
adjacency matrix, where the link (i,j) between nodes i and j is 
endowed with a length equal to the value 1/fij. The shortest path 
between Pi and Pj is now a path (i0, i1,., ik) with i = i0 and j = ik, 
such that the path length is minimal over all the paths relating Pi 
and Pj. Although the shortest path is not necessarily unique, its 
length takes a unique value. We propose to define the distance 
between two points by the length of the shortest path relating 
them. Other choices are possible for relating link length and con-
tact frequency, for example, 1/f  α. Basically, the exponent modifies 
the relative weight of rare contacts (decreasing for α > 1, increas-
ing for α < 1). The value of this exponent α appeared to have 
little effect on the reconstruction quality, owing to the fact that 
low contact frequencies do not contribute to our shortest-path 
distance, hence we kept the original choice, α = 1.

We use the Floyd-Warshall algorithm for computing shortest 
paths and their lengths. Interestingly, by construction, weak or 
vanishing contact frequencies do not contribute to the distances, 
as the shortest paths will bypass the corresponding links (of 
large or infinite lengths). This method thus makes it possible to 
both reconstruct the whole set of distances and filter some of the 
experimental noise (low contact frequencies that may correspond 
to noise are not used). Importantly, this method defines a true 
distance. First, it is obviously symmetrical and vanishes only if 
the points are identical. Second, by construction, the minimal 
path length to go from node i to node j is always smaller or equal 
to the sum of the minimal path length to go from node i to some 
node k and the minimal path length to go from node k to node j.  
Accordingly, the shortest-path distance satisfies the triangular 
inequality (with equality when a shortest path from i to j passes 
through k).

For pairs of loci with high contact frequency, our shortest-
path distance recovers the simple inverse-frequency expression 
described previously15. The shortest-path method improves the 
distance assigned to pairs of loci with low or vanishing contact 
frequencies, for which the inverse-frequency expression is unsat-
isfactory. It is also beneficial in case of a binary contact map (for 
example, for single-cell Hi-C data)7, where the inverse-frequency 
method yields distance values either equal to 1 or infinite. Finally, 
the distance between neighboring loci along the genome will be 
satisfactorily small, as the closer the loci are along the genome, 
the more they establish contacts; this distance is thus consist-
ent with the polymer-like connectedness of each chromosome 
(Supplementary Fig. 2).

Preparation of the in silico yeast genome structure. The in silico 
yeast genome structure used to test our reconstruction algorithm 
has been generated using a simple polymer model (with excluded 
volume) for a chain of N = 26,538 beads, each corresponding 
approximately to three nucleosomes. The chain is confined in a 
spherical nucleus of radius 1.6 µm. The simulation spatial unit 
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corresponds to 10 nm in a real nucleus. The barycentric coordi-
nates are taken from a snapshot of a simulated Langevin dynamics 
simulation after it has reached thermal equilibrium. The binary 
contact map mimicking single-cell Hi-C data has been obtained  
using steps 1 and 2 above. Considering a regularly spaced  
sampling of the N points allows one to investigate different data 
sizes. In particular, such coarse graining is mandatory in the  
comparison with alternative methods (see below) that cannot 
handle sizes as large as N = 26,538. Finally, we used this Langevin 
simulation to generate an ensemble of structures.

Implementation of the algorithm ShRec3D. By supplement-
ing our shortest-path distance derivation, step 6, with MDS 
reconstruction, steps 5 and 4, we obtained a constructive algo-
rithm, ShRec3D. It allows us to visualize a 3D structure from 
the knowledge of any contact map (either binary, in terms of 
contact presence or absence, or quantitative, in terms of contact 
frequencies). Overall, the 3D coordinates are reconstructed up 
to an arbitrary rotation, dilation and possibly mirror symme-
try. The algorithm presented above was written with MATLAB  
(http://www.mathworks.com/products/matlab/).

As mentioned above, the coordinate reconstruction involves 
only the first three eigenvectors of the metric matrix M (equation 
(3)), as if the other eigenvalues were vanishing (an approximation 
previously proposed1 and quantitatively assessed)14. The valid-
ity of this eigenvalue truncation, approximating M by a positive 
semidefinite matrix G of rank 3, is assessed by investigating the 
spectrum of M and ensuring that the largest three eigenvalues are 
separated by a large spectral gap from the remaining spectrum 
concentrated near 0.

We performed this spectral check for the above-described 
simulated benchmark data (Fig. 1). Supplementary Figure 1a,b 
shows the comparison between the spectrum of the metric matrix 
obtained when using our shortest-path metric and that obtained 
using the simple inverse-frequency distance, both followed by the 
same MDS reconstruction. The presence of small and partly nega-
tive eigenvalues originates from the inaccuracies in the distance 
matrix derived from the data and propagated to the metric matrix. 
Indeed, although the shortest-path distance is a true metric (satis-
fying the triangular inequality), the data from which the distance 
matrix is derived have been discretized in the form of binary con-
tact map (presence or absence). Because of this loss of information 
in the generation of our synthetic data, the reconstructed metric 
matrix differs slightly from that of the original structure.

Implementation of available alternative methods. We com-
pared the performance of our algorithm ShRec3D with alter-
native reconstruction methods in terms of both reconstruction 
accuracy and speed (see below). To make a fair comparison, we 
limited ourselves to methods for which the original codes, opti-
mized by their authors, were available, namely BACH software6 
and ChromSDE11. They all involve an optimization procedure 
and yield a single consensus structure from Hi-C contact maps. 
We ran all the software programs on the same Linux machine. 
We ran BACH for 5,000 iteration steps (default value) and used 
ChromSDE in linear mode. Comparison on real data is limited at 
present, as these alternative methods are unable to deal with full-
size data sets; we have thus favored the use of simulated bench-
mark data, for which the underlying structure is known.

Comparison of shortest-path distance with the inverse- 
frequency distance. We compared the respective performances 
of our shortest-path distance and the simple derivation where the 
distance between two genomic sites is set equal to their inverse 
contact frequency 1/f (ref. 15), both completed by the MDS 3D 
reconstruction described above. Although the inverse-frequency 
method corresponds to a faster procedure, it yields a poor recon-
struction (whatever the choice of the pseudo-count value, here 
chosen equal to a given fraction of the average contact frequency, 
that is, the total number of contacts divided by N2, where N is 
the number of genomic loci considered). A first comparison 
(Supplementary Fig. 1a,b) shows that the dimensional reduc-
tion step in MDS reconstruction is not legitimate when the pre-
processing step 6 converting the contact map into distances uses 
the simple inverse-frequency method. We performed additional 
tests to assess the improvement brought by our shortest-path 
distance (Supplementary Fig. 1c,d shows a scatter plot of the 
reconstructed and original matrix distances and the Spearman 
correlation coefficient R for both methods, applied to the same 
simulated benchmark as in Fig. 1 and Supplementary Fig. 1a,b). 
The poor performance of the simple method originates, presum-
ably, from the fact that it is not a true distance (it does not satisfy 
the triangular inequality) and gives an important weight to less 
reliable low-frequency contacts. Accordingly, some points are 
placed spuriously far from the core of the structure by the simple 
method, and the anti-correlation (Supplementary Fig. 1d) could 
be even stronger when larger structure sizes are considered. An 
alternative improvement to the simple inverse-frequency method 
has been to consider that distances are proportional to 1/f   α, and 
iteratively optimize the value of the exponent α for each data set 
and each description scale11. Although this method is satisfac-
tory in terms of reconstruction quality, the inherent optimization  
procedure makes it very costly in computation time (Fig. 2b).

Performance of the ShRec3D algorithm in terms of  
computation time. We plotted the computation time (in seconds) 
using our method and alternative methods (Fig. 2b) as a func-
tion of N (number of points in the structure to be reconstructed). 
This time scales roughly as O(N3) using both the BACH software 
and our method, whereas it does not scale as any power of N 
for ChromSDE. For a size of 1,000 points, our algorithm runs 
in ~20 s, whereas it takes more than 1 d to converge for BACH. 
For a size >1,000 points, the ChromSDE software did not reach 
convergence. MDS reconstruction applied to inverse-frequency 
distances is obviously faster than ShRec3D, as it skips the Floyd-
Warshall computation of shortest path.

Quantitative assessment of reconstruction quality. The qual-
ity assessment of our reconstruction algorithm has been done 
on synthetic data, obtained from simulated 3D structures as 
described above (real data cannot be used as a benchmark because 
the underlying 3D structures are unknown). Direct comparison 
of coordinates would require a preliminary alignment of the 
coordinates, including the possible mirror symmetry between 
the original and reconstructed structures, and a global rescaling 
of the dimensionless reconstructed distances. We thus favored 
a comparison of the original and the reconstructed distances in 
terms of their Spearman rank correlation coefficient R (used, 
for example, in ref. 11 for the same purpose), which avoids both 

http://www.mathworks.com/products/matlab/
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alignment and rescaling issues. It is satisfactorily equal to 1 for 
identical distance matrices and to 0 between a matrix and a ran-
dom shuffle of its elements. We also confirmed that our recon-
struction ShRec3D preserves polymer connectivity, that is, that 
neighboring loci along the genome are also close neighbors in the 
3D space (Supplementary Fig. 2a).

Robustness of the reconstruction with respect to experimen-
tal noise. Hi-C experiments are intrinsically flawed by spurious 
re-ligations (i.e., re-ligations occurring between different cross-
linked complexes, instead of only within cross-linked complexes) 
falsely interpreted as contacts. To mimic the effect of this noise 
in our in silico benchmark, we modified the original binary  
contact map and generated a controlled amount of disorder by 
moving randomly a given fraction of positive entries. This largely 
preserves the total number of contacts (the moves displacing a 
positive entry toward an already positive entry are very scarce 
for realistic contact densities). The noise strength is controlled 
by the dilution of the cross-linked complexes, which is limited 
by the required concentration of the enzyme used for DNA  
re-ligation; the total number of detected contacts depends on the 
concentrations of both the ligase and the cross-linking factor. 
One way to quantify the noise in Hi-C experiments is to esti-
mate the proportion of random ligation events in the bank. One 
can, for instance, use the fact that organisms such as S. cerevisiae  
have mitochondria outside the nucleus, hence cannot make 
contacts as detected in the cross-linking step of 3C techniques. 
We calculated the proportion of ligations between loci from the 
main genome and loci from mitochondria as a minimum estima-
tion of the random ligation content. From our experiments, we 
found that this proportion was typically smaller than 1%. Such an  
estimate can also be derived from a recently developed analysis 
of metagenomic samples25.

We investigated whether the reconstruction accuracy was 
affected by the presence of a fraction of misplaced contacts rang-
ing from 0.01% (no noise) to 5% (above the upper boundary on 
the experimental noise strength). As in the noiseless case, the 
quantitative assessment was done by plotting the Spearman rank 
correlation coefficient R between the original distance matrix 
and the distances in the structure reconstructed from the noisy 
contact map as a function of noise strength (Fig. 2c). For com-
parison, we also implemented alternative methods (BACH6 
and ChromSDE11) in the same noisy conditions (Fig. 2c). The 
improvement by structural disorder of the convergence of BACH 
software in the considered instance can be explained by the fact 
that noise prevents trapping in local optima26. MDS applied 
to inverse-frequency distances yields a uniformly poor result  
(R close to 0) (Supplementary Fig. 1d).

Accuracy of the average structure reconstructed from a super-
position of contact maps (Hi-C experiments). Hi-C experiments 
are performed over a cell population, hence the experimentally 
obtained contact maps are in fact an accumulation of individual 
contact maps (or an average after normalization), each corre-
sponding to an individual cell. We mimicked a Hi-C experiment 

by considering the superposition of a variable number of simu-
lated structures, reproducing the different chromosome structures 
present in the cell population. The structures were simulated as 
above, with a proper tuning of the parameter dynamics to thor-
oughly explore the conformation space. Up to 500 snapshots, sep-
arated by a sufficiently long run of the dynamical simulation, were 
extracted. Taken together, they yield a realistic Hi-C contact map 
(steps 1–2). We evaluated the accuracy of our treatment of Hi-C 
data by comparing the distance matrix reconstructed from the 
average contact map and the mean (over the different structures) 
of the actual distances (Fig. 2d). Owing to the prohibitive run 
time of BACH and ChromSDE for large structures, we considered 
coarse-grained structures with only N = 480 points.

Normalization and representation of real Hi-C data sets. The 
procedure we used to normalize the data was presented previ-
ously21. The resulting contact maps display relative contact fre-
quencies between genomic loci normalized in such a way that 
the sum of the contact frequencies for each fragment is equal 
to 1. The color code used in the maps (Fig. 3) depends on the 
genomic resolution and associated contact density. At the finest 
resolution (restriction fragments) (Fig. 3a) the contact map is 
very sparse, and the color bar is graded with respect to the contact 
frequency to the power of 0.3 to increase the contrast. At lower 
resolutions the number of contacts is computed between groups 
(‘bins’) of 50 and 1,000 restriction fragments. For these two reso-
lutions (Fig. 3b,c), the color bar is established in log scale. We 
confirmed (Supplementary Fig. 2b) that polymer connectivity 
was preserved by our reconstruction (i.e., that neighboring loci 
along the genome were also spatial neighbors in the 3D space) 
by computing the normalized histogram of the reconstructed  
distances Di,i+1 between neighbors along the genome, compared 
to the normalized histogram of all reconstructed distances. It is 
possible to label the chromosomes and distinguish which chro-
mosome each genomic locus belongs to (Supplementary Fig. 3). 
We normalized intra- and interchromosomal contacts independ-
ently and then added the two normalized matrices to reconstruct 
at the same time the chromosome-folding patterns and their  
relative orientation within the cell nucleus.

3D genome browsers can be obtained by superimposing exist-
ing chemical, structural or chemical annotations onto our recon-
structed chromosome structures. We illustrated this approach 
using the partition of the human chromatin structure in two com-
partments inferred from the spectral analysis of the correlation 
matrix between the lines of the contact map1 (Supplementary 
Fig. 4a) and the linear profiles of acetylation and trimethylation of 
lysine 9 of histone H3 (GSM409308) (Supplementary Fig. 4b).

21.	 Cournac, A. et al. BMC Genomics 13, 436 (2012).
22.	 Schoenberg, I.J. Ann. Math. 36, 724–732 (1935).
23.	 Young, G. & Householder, A.S. Psychometrika 3, 19–22 (1938).
24.	 Kruskal, J.B. & Wish, M. Sage University papers series on quantitative 

applications in the social sciences (no. 07-011) (SAGE Publications, 
Newbury Park, 1978).

25.	 Burton, J.N. et al. G3, 4, 1339–1346 (2014).
26.	 Franzke, B. & Kosko, B. Phys. Rev. E 84, 041112 (2011).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM409308



