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ABSTRACT

Motivation: Multidimensional scaling (MDS) is a well-known
multivariate statistical analysis method used for dimensionality
reduction and visualization of similarities and dissimilarities in
multidimensional data. The advantage of MDS with respect to
singular value decomposition (SVD) based methods such as principal
component analysis is its superior fidelity in representing the distance
between different instances specially for high-dimensional geometric
objects. Here, we investigate the importance of the choice of initial
conditions for MDS, and show that SVD is the best choice to
initiate MDS. Furthermore, we demonstrate that the use of the
first principal components of SVD to initiate the MDS algorithm is
more efficient than an iteration through all the principal components.
Adding stochasticity to the molecular dynamics simulations typically
used for MDS of large datasets, contrary to previous suggestions,
likewise does not increase accuracy. Finally, we introduce a k nearest
neighbor method to analyze the local structure of the geometric
objects and use it to control the quality of the dimensionality
reduction.
Results: We demonstrate here the, to our knowledge, most efficient
and accurate initialization strategy for MDS algorithms, reducing
considerably computational load. SVD-based initialization renders
MDS methodology much more useful in the analysis of high-
dimensional data such as functional genomics datasets.
Contact: arndt@ihes.fr
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1 INTRODUCTION
The appropriate and faithful visualization of high-dimensional data
is often a prerequisite for their analysis as the human visual cortex
is still one of the most powerful tools to detect and conceptualize
structure in data (Holmes, 2006). Furthermore, communication of
numerical and statistical results is greatly aided by the intuition
arising from appropriate representations of data. Different methods

∗To whom correspondence should be addressed.

for the required dimensionality reduction have been developed
(Berthold and Hand, 2003).

An entire family of approaches, such as principal component
analysis (PCA) finds the minimal orthonormal basis using a
mathematical tool called singular value decomposition (SVD).
These methods, using different similarity or dissimilarity measures
such as covariance or correlation, order the ensemble of components
by their statistical deviation, and for visualization only the first
two or three components are retained. Thereby, the statistical
information in the first components are entirely retained, whereas
one of the subsequent components is entirely lost. Today’s high-
dimensional biological datasets can easily contain thousands of
instances (number of measures) with 105–109 variables (number
of parameters measured). The repartition of information is usually
homogeneous over the entire number of variables. In consequence,
considering only the first components given by SVD-based
techniques is not necessarily the best choice.

Multidimensional scaling (MDS) is a methodology that reduces
dimensionality using only the information of similarities or
dissimilarities between instances, hereafter regrouped in the general
term of ‘distance’. The search for an optimal configuration, is
reduced to finding the global minimum of a function evaluating
the loss of distance information. To be sure to find an acceptable
minima (i) an initial state for the optimization algorithm, and (ii) an
optimization algorithm and the appropriate parameters have to be
appropriately chosen. Recently, Andrecut (2009) has shown that the
best choice for the second is a molecular dynamics multidimensional
scaling approach.

We demonstrate here that the choice of the initial position is
paramount to the quality of the representation and its computational
efficiency. By using SVD for providing an initial configuration for
MDS, we obtain a significantly increased computational efficacy.
Interestingly, we also demonstrate that performing an iterative
MDS or adding stochastic energy during the molecular dynamics,
MDS execution do not increase performance or reproducibility
of the algorithm. We also investigate the local structure of the
geometric objects after dimensionality reduction with our different
methodologies, and then evaluate the accuracy of the different
approaches developed here on biological data. These investigations
and the use of SVD to the initial state allow to better define and
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control the dimensionality reduction process for high-dimensional
data.

2 METHODS

2.1 SVD
Given a data matrix X with n rows and p columns and xij its value in row i
and column j, we denote X̄i the p components vector corresponding to row
i of the matrix, and X̄j the n components vector corresponding to column j
of the matrix. A set of vector X̄i is then a set of instances, whereas a set of
vector X̄j is a set of variables. In all the following, we will use this notation
for vectors extracted from X.

It is known (Schmidt and Stewart, 1992) that every rectangular matrix
can be decomposed using its singular values:

X =USVt (1)

where U (left singular vectors) and V (right singular vectors) are both square
orthogonal matrices, and S is a rectangular matrix containing the singular
values (si) which are positive (Sii =si and Sij =0). U,S and V are reorganized
in order to have s1 >s2 > ···>sr , with r being the rank of S. Generally, before
performing SVD X is centered, so the mean of each column is equal to zero.
In this context, rank(X)= rank(S)≤min(n−1,p) if X is n.p.

Singular value decomposition provides three major types of
information:

(i) A new data matrix Xnew, which represent the data points in a new
orthonormal basis with a minimum number of components, and where
distance between the instances is preserved.

(ii) Inertia parameters ci =si/
∑

i si (with
∑

i ci =1) indicate the SD
and relative contribution of the cloud of points on each principal
component.

(iii) The matrix V carrying the individual contributions to each principal
component. These different types of information have already
previously been used in the literature to infer biological knowledge
in various settings [Alter et al. (2000, 2003); Fellenberg et al. (2001);
Wall et al. (2003)]. The simplest way to find SVD, is to search first for
the eigenvalues and the eigenvectors of the inner and outer products.
As finding the eigenvalues of a matrix X with n rows and p columns, is
hard to perform for objects with a high number of variables, this step is
only feasible if either n or p are small (typically inferior to 1000, which
is usually the case in biological datasets). If both n and p are large,
one is obliged to use iterative SVD techniques as shown in Schmidt
and Stewart (1992). One advantage of using SVD is its close link to
classical techniques of dimensionality reduction such as PCA, classical
scaling (cMDS), principal component correlation analysis (PCCA) and
correspondence analysis. The different results of these techniques can
be obtained using SVD and a proper normalization of the data, as
shown below. SVD allows to demonstrate that the inner-product (XXt)
and outer-product (XtX) of a data matrix X have the same eigenvalues
λi, with λi =s2

i . If X =USVt then:

XXt =USVt(VStUt)=USStUt (2)

XtX = (VStUt)USVt =VStSVt (3)

Note also that missing values in data can be imputed using SVD [Brock
et al. (2008); Candes and Recht (2008); Troyanskaya et al. (2001)]. If the
number of missing values is relatively low, the Eckart Young theorem (Eckart
and Young, 1936), which is the most commonly used theorem for matrix
approximation, assures that the result of the SVD will change only in the
value of the last singular values. Hence, for a rapid imputation, the row
average method (Troyanskaya et al., 2001) can be used which is generally
sufficiently precise in most cases. Also, PCA is a very good choice for
the initial state for K-means clustering (Ding and He, 2004). In the new
representation given by SVD, cluster structure of the data will then naturally
appear, and thus provide a natural interpretation of clusters.

2.2 SVD and classical techniques of dimensionality
reduction

PCA relies on the search of the eigenvectors’ covariance matrix. Hence,
performing PCA reduces to finding the outer-product’s eigenvectors. The
singular values of X are the square root of the outer-product’s eigenvalues.
The link between PCA and SVD then becomes obvious (Wall et al.,
2003). Classical scaling (cMDS for classical Multidimensional Scaling) was
invented to embed a set of instances in the simplest space possible, with
the constraint of preserving the Euclidean distance between data points.
Euclidean distance can be written as a sum of inner-products X̄i.X̄j , one
can pass from an Euclidean distance matrix to an inner product matrix by
a simple matrix manipulation called double centering (Torgerson, 1952).
Consequently, classical scaling consists in finding eigenvalue factorization
of the inner-product matrix, so it can be performed using SVD. The link
given by SVD between inner and outer product matrices implies that PCA
and classical scaling give the same results, a fact reflected by classical
scaling sometimes being referred to principal coordinate analysis. Principal
component correlation analysis (PCCA) uses correlation between variables
to find a minimal orthonormal basis. After a proper normalization of

the data with their SD: X̃ =
(

xij

σ(X̄j )

)
, PCCA is performed by eigenvalue

factorization of the outer-product matrix. Hence, after normalization of the
data PCCA results are given by SVD. Correspondence analysis is used in the
dimensionality reduction of contingency tables obtained after an operation
of counting on categorical data (Berthold and Hand, 2003). This method
can be used for microarray data analyses (Fellenberg et al., 2001) as each
value of gene expression is, in fact, a count of the number of RNAs produced.
Generally speaking, this technique is used to compare two vectors in terms of
their distribution profiles using the chi-square distance. When the distance
is equal to zero, both vectors have the same statistical distribution. It can
be shown (Cuadras and Fortiana, 1995) that χ2 distance can be reduced to

an Euclidean distance after normalization of the data X̃ik = xik
√

W

(
√∑

l xlk )(
∑

l xil )

Thus, to find the minimal space which embeds the data and conserves the
information of χ2 distance one performs a cMDS or PCA on the rescaled
data matrix using SVD results.

2.3 MDS
MDS is a class of techniques to represent instances in an r dimensional
space given an initial state and a similarity or dissimilarity matrix (Cox and
Cox, 2000; Kruskal and Wish, 1978). Recently, molecular dynamics (MD)
approaches have been used to perform MDS for high-dimensional objects
drastically increasing quality of the dimensionality reduction (Andrecut,
2009). We have also developed a similar approach based on a spring analogy.
Data points are connected to all other instances with virtual springs. The
springs will tend to return to their equilibrium length during molecular
dynamics simulation. The equilibrium length for the spring between point i
and point j will be defined as the Euclidean distance d(X̄i,X̄j) in the initial
state. For each instance X̄i , a force is defined F(X̄i), which is the sum of all
spring interactions Fspr (X̄i,X̄j) with the other instances X̄j , minus a friction
term to avoid oscillation of the spring network:

Fspr (X̄i,X̄j)=−kij(δ(X̄i,X̄j)−d(X̄i,X̄j))(X̄j −X̄i) (4)

F(X̄i)=
∑
j �=i

Fspr (X̄i,X̄j)−γmi
˙̄Xi (5)

with δ(X̄i,X̄j) being the distance between instances in the r dimensional
space, kij the strength of spring ij, γ the friction parameter and mi the mass
given to each point. We consider that every spring and all instances are equal
in strength and weight so kij and mi are the same for every i and j (kij =k and
mi =m). It is, however, possible to use different parameters—for instance,
according to experimental precision—if different weights shall be considered
for the different instances. A molecular simulation using the force vector is

then executed. Following Newton’s law it follows: mi
¨̄Xi =F(X̄i), with ¨̄Xi the

double temporal derivation of vector X̄i(t). In order to find the new position
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Table 1. The different datasets used in this study

ID Dataset name No. of instances No. of variables

d1 96Cell 96 32878
d2 96Cell_T 96 1553
d3 Iris 150 4
d4 Wine 178 13
d5 Stochast 200 200 50
d6 CCYier 516 12
d7 Pima 768 9
d8 96Cell_T transposed 1553 96
d9 Secom 1567 590
d10 Ozone 2565 72
d11 Stochast 3000 3000 300
d12 Ecoli 4288 7
d13 Wave 5000 22

and velocity of and instance at the next time step, a Verlet integration is used:

X̄i(t+�t)=2X̄i(t)−X̄i(t−�t)+A�t2 (6)

˙̄Xi(t)= X̄i(t+�t)−X̄i(t−�t)

2�t
(7)

with ˙̄Xi(t) the temporal derivation of vector X̄i(t). The algorithm is run with
simulation time t increasing. To avoid divergence of the Verlet algorithm
parameters of the simulation k, m, γ �t have to be well chosen. Here we
used: k =1, m=5, γ =0.1 �t =0.02 (cf. Fig. 2A). For the initial state, the
data provided to the MDS algorithm were rescaled to fit in a hypercube
with a diameter of 6 by multiplying the initial state matrix by a scalar α. To
control the minimization process at each time step, a cost function termed
the Kruskal stress is calculated according to Cox and Cox (2000):

e=
√√√√

∑
i

∑
j(δ(i,j)−d(i,j))2

∑
i

∑
j d(i,j)2

(8)

this global parameter is a direct evaluation of the amount of energy in the
system and hence the loss of distance information.

2.4 Datasets used in this study
To test and illustrate the algorithm discussed here, we have used several
publicly available datasets of different origin. We have used two different
transcriptome datasets. Briefly, the cellular transcriptome is defined as the
ensemble of RNA molecules resulting from gene expression in a cell.
Using microarray technology, in the human case, some 30 000 different
RNA species can be quantified simultaneously. The dataset here referred
to ‘d1—96Cell’ includes 96 transcriptome measurements generated from 32
individual human tissues under non-pathological conditions. This dataset
was initially published by Dezso et al. (2008), and is available for
download from: http://mace.ihes.fr using accession number: 2914508814.
The dataset here called ‘d6—CCYier’ [(Iyer et al., 1999); mace access.
no.: 2960354318] is composed of 12 human fibroblast transcriptome data
points generated over 24 h during the cell cycle. Note that we eliminated
1 (Interleukin 8, IL8) of the 517 genes as an outlier from this dataset.
The dataset ‘d2—96Cell_T’ (cf. Table 1) is a derivative of the initial
dataset d1—96Cell’, where only genes were retained that are specific
to one and only one human tissue as provided in (Dezso et al., 2008),
and removing again one outlier gene (Probe_ID: 162105). The dataset
‘d8—96Cell_T’ (cf. Table 1) is the transposed (Instances, Variables) dataset
‘d2—96Cell_T’. All transcriptome datasets were median normalized in log2-
space and processed according to standard procedures (Benecke, 2008; Noth
et al., 2006). Seven additional datasets with no relation to biology were
used. Both originate from the Machine Learning Repository (Frank and

Asuncion, 2010): http://archive.ics.uci.edu/ml (i) ‘Iris’ here ‘d3—Iris’, (ii)
‘Wine’ here ‘d4—Wine’, (iii) ‘Pima Indians Diabetes’ here ‘d7—Pima’,
(iv) ‘SECOM’ here ‘d9—Secom’, (v) ‘Ozone Level Detection’ here
‘d10—Ozone’, (vi) ‘E.Coli Genes’ here ‘d12—Ecoli’ and (vii) ‘Waveform
Database Generator (Version 1)’ here: ‘d13—Wave’. Please refer to the
ML repository for details on these data. Finally, we generated two random
datasets: (i) one with 200 instances and 50 variables between −6 and 6 here
‘d5—Stochast 200’, (ii) the other with 3000 instances and 300 variables
between −6 and 6 here ‘d11—Stochast 3000’. The number of instances and
the number of variables for all 13 datasets is given in Table 1.

3 RESULTS

3.1 Comparison of different initialization methods for
MDS

We postulated that the inconveniences associated with the combined
molecular dynamics MDS techniques (hereafter simply: MDS)
related to the dependence on the choice of the initial condition for
the simulation leading to insufficient control and being trapped in
local minima on the one hand, as well as the large information loss
when SVD techniques are used for dimensionality reduction on the
other hand, can be overcome when both methods are combined.
We therefore created an SVD–MDS algorithm which uses SVD
to compute the initial state of a molecular dynamics simulated
MDS. This SVD–MDS approach was then compared to SVD and
MDS on 13 different datasets (Table 1). Figure 1 well illustrates
the shortcomings of SVD and MDS alone and how SVD–MDS
overcomes those. The dataset ‘d1—96Cell’ containing 96 different
instances was used to compute a 2D representation using SVD
(Fig. 1A), our combined SVD–MDS approach (Fig. 1B) and two
examples of MDS initialized by random positions defining a 12
unit hypercube (Fig. 1C and D). According to the Kruskal stress e,
MDS techniques (Fig. 1B–D) better preserve the distances between
the instances and their relationship. The data cloud is better resolved
(see also blow ups) and the global distance information loss is lower
than for SVD.

In order to demonstrate generality of our approach, we next
analyzed the 12 remaining datasets (Table 1) using four different
approaches: (i) SVD only, (ii) SVD–MDS, (iii) MDS initialized with
all data points placed at zero with minimal random noise (zeroMDS),
and (iv) MDS initialized with random positions (stochastMDS).
The results are reported in Table 2. In all cases, we reduced the
dimensions to two. It becomes again apparent from the Kruskal
stress that the MDS-based techniques systematically outperform the
SVD. While stochastMDS, zeroMDS and SVD–MDS give similar
results in terms of the final information loss, the number of time-
steps needed to identify a minimum stress is greatly reduced using
SVD–MDS (Table 2 and for four examples Fig. 2). Therefore,
SVD–MDS approaches the final state (here defined as a Kruskal
stress value) faster than either of the MDS methods. We show
an example of stress evolution in Figure 3A where stochastMDS
and zeroMDS are slow due to the existence of local minima, and
SVD–MDS clearly outperform them.

3.2 Iterative dimensionality reduction using
iSVD–MDS

We next wondered whether the dimensionality reduction could be
further improved by a step-wise reduction of one dimension after
another. To this end, we compared again the performance of the three
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(a) (c)

(b) (d)

Fig. 1. Comparison of the results of different dimensionality reduction techniques on the same dataset. The dataset ‘d1—96Cell’, composed of 96 individual
transcriptome profiles generated from 32 different human tissues (cf. Table 1 and Section 2.4) was represented in 2D space using: (a) SVD based on covariance,
(b) SVD-initialized multidimensional scaling; (c) random initialized multidimensional scaling, and (d) as in (c) using the same algorithm and leading to a
different random position matrix. The peripheral data points were color coded and labeled according to the human tissue analyzed. For (a) and (b) the central
cloud of points has been zoomed into at the same scaling factor. The resulting Kruskal Stress e for each of the dimensionality reductions is indicated. Similar
computations were used to generate Table 2.

techniques SVD–MDS, MDS and iterative SVD–MDS (iSVD–
MDS) on the different datasets. In iSVD–MDS, for each successive
round a SVD followed by a subsequent molecular dynamics
MDS is performed. As can be seen in Figure 3A, SVD–MDS
rapidly approaches a minimal Kruskal stress configuration over the
simulation time. The previously described MDS procedure which
uses stochastic initiation for the molecular dynamics simulation
requires much more simulation time to find the same minimal
stress configuration as the SVD–MDS algorithm. Finally, the
iterative iSVD–MDS approach will also converge to the identical
minimum obtained by the other methods; however, as for each
component a separate simulation is performed the convergence
time is greatly increased. Albeit many different simulations on the
different datasets, we have never obtained a final configuration using
iSVD–MDS where the Kruskal stress would allow to conclude
on an improved performance when compared to SVD–MDS.
Therefore, the iterative method does not allow for improved
accuracy, but rather prolongs simulation time with no immediate
gain (Table 3 summarizes the results). We next compared iSVD
and iSVD–MDS methods to determine how the loss of information
is distributed during iterative dimensionality reduction. As can be

seen in Figure 3B for both procedures, the amount of stress or
lost information increases both relatively and absolutely with the
number of components removed. Note also, that the iSVD–MDS
method better preserves at every consecutive iteration the distance
information of the object (Fig. 3B).

3.3 Molecular dynamics dimensionality reduction with
added stochasticity

In Andrecut (2009), an approach reminiscent of simulated annealing
was used to avoid getting trapped in local minima during the
molecular dynamics simulation. This combination of methods
is equivalent to adding a stochastic force to all data points
Fstochastic(X̄i)=−T ∗s(t) where s(t) is a random number given
by a generalized Gaussian stochastic distribution, and T is
the temperature of the system. By decreasing T exponentially
during the simulation, one expects to reach the global minimum.
Adding stochasticity to the molecular dynamics-driven MDS is,
after Andrecut (2009), required to insure reproducibility of the
algorithmic performance.
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Table 2. Results from the different MDS algorithms applied to the various datasets (c.f. Table 1)

ID Dataset name Metric SVD SVD–MDS zeroMDS stochastMDS

e e t e t e t

d1 96Cell R2 0.6472 0.3409 2500 0.352 2500 0.3478 2500
d2 96Cell_T Cov 0.5001 0.1401 4500 0.146 4500 0.1503 4500
d3 Iris Cov 0.0421 0.0344 509 0.0343 3554 0.0344 4059
d4 Wine Cov 0.0010 0.0010 0 0.0064 4500 0.0061 4500
d5 Stochast 200 Cov 0.7513 0.4088 1500 0.4169 1500 0.4157 1500
d6 CCYier Cov 0.1634 0.0765 400 0.0932 3500 0.1079 4500
d7 Pima Cov 0.0964 0.0708 700 0.105 3500 0.1098 3500
d8 96Cell_T transposed R2 0.6954 0.1498 4500 0.1572 4500 0.1715 4500
d9 Secom Cov 0.1801 0.1168 750 0.1217 4499 0.1283 4375
d10 Ozone Cov 0.1223 0.0935 712 0.0935 2587 0.0951 2143
d11 Stochast 3000 Cov 0.9067 0.4353 130 0.4382 130 0.438 130
d12 Ecoli Cov 0.1634 0.000 0 0.0202 4500 0.2484 4500
d13 Wave Cov 0.2922 0.2132 324 0.2132 2252 0.2132 1998

CoV, covariance; R2, correlation; e, Kruskal stress; t, time steps for MD simulation.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Parameter optimization and Kruskal stress (e) evolution over the
number of simulation iterations (t). Optimizing the choice of parameters k (a)
and γ (b) using the dataset ‘d6—CCYier’ in covariance space. Comparison
of the SVD–MDS, MDS initialized with all points in the center (zeroMDS),
and MDS initialized by stochastic positions (stochastMDS) methods on
different datasets (c) ‘d1—96Cell’ in correlation basis, (d) ‘d2—96Cell_T’
in covariance basis, (e) ‘d3—Iris’ in correlation basis, (f) ‘d10—Ozone’ in
covariance basis.

(a) (b)

(c) (d)

Fig. 3. Iterative SVD–MDS and robustness of SVD–MDS. (a) Comparison
of the SVD–MDS, zeroMDS, stochastMDS and iterative SVD–MDS
(iSVD–MDS) methods on dataset ‘d13—Wave’ in covariance basis. (b)
Comparison of the iterative SVD (iSVD) and iSVD–MDS methods on
dataset ‘d1—96Cell’ in correlation basis. Evolution of stress over number
of simulation iterations with injection of energy, on different datasets (c)
‘d2—96Cell_T’ in covariance basis and (d) ‘d5—Iris’ in covariance basis.

To compare MD–MDS with our SVD–MDS algorithm, we have
implemented different MD–MDS algorithms with stochastic energy.
We used two types of temperature decrease, the first linear, beginning
with a temperature of 100 J and decreasing linearly to 0 J during
3000 steps of simulation; we call this method MD–MDS linear.
The second includes an exponential decrease from 100 J to below
0.1 J during 3000 steps of simulation; we call this method MD–
MDS exponential. The function s(t) uses random numbers generated
uniformly between −0.5 and 0.5.

As seen in Table 3, SVD–MDS as well as the two
MD–MDS algorithms ‘linear’and ‘exponential’always identify final
configurations with the same amount of residual energy. It can also
be seen that SVD–MDS converges faster for these four examples
than the MD–MDS methods. In conclusion, the two MD–MDS
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Table 3. Results from SVD–MDS, iSVD–MDS and both MD–MDS algorithms applied to the various datasets (cf. Table 1)

ID Dataset Name Metric SVD–MDS iMDS MDMDSlinear MDMDSexpo

e t e t e t e t

d1 96Cell R2 0.3409 2500 0.3381 232097 0.3453 5500 0.3421 2500
d2 96Cell_T Cov 0.1401 4500 0.1494 92536 0.1465 4500 0.1542 4500
d3 Iris Cov 0.0344 509 0.0344 3008 0.0359 4500 0.0343 4000
d4 Wine Cov 0.0010 0 9.0E-4 10003 0.0089 4500 0.0067 4500
d5 Stochast 200 Cov 0.4088 1500 – −− 0.4092 4500 0.4089 4500
d6 CCYier Cov 0.0765 400 0.0753 22508 0.1346 5500 0.1162 5500
d7 Pima Cov 0.0708 700 0.0692 27005 0.1128 5500 0.0986 5500
d8 96Cell_T transposed R2 0.1498 4500 0.1525 122059 0.1832 4224 0.1822 4500
d9 Secom Cov 0.1168 750 – −− 0.1511 5500 0.1396 4500
d10 Ozone Cov 0.0935 712 0.0935 66031 0.0944 4500 0.0951 3500
d11 Stochast 3000 Cov 0.4353 130 – −− 0.4353 200 0.4353 200
d12 Ecoli Cov 0.0 0 – −− 0.312 5500 0.2273 5500
d13 Wave Cov 0.2132 324 – −− 0.2132 3671 0.2132 2203

CoV, covariance; R2, correlation; e, Kruskal stress; t, time steps for MD simulation.

algorithms do not improve MDS, on the contrary they converge
slower.

We next asked whether or not similarly adding stochasticity to the
SVD–MDS algorithm would improve its performance. Figure 3C
and D illustrates that indeed adding different amounts of energy
at different times of the simulation (arrows) does not lead to
lower energy minima. The SVD–MDS algorithm, similarly as the
MD–MDS algorithms (Table 3), always converges to the same
energy state. This has also been confirmed using other datasets (data
not shown). Taken together, the results using MD–MDS-lin and
MD–MDS-exp and SVD–MDS strongly suggest that only a single
ground state is present. While we do not have any formal proof,
we believe that the detailed analysis of the geometric structure of
the data objects presented below also strongly argues in favor of a
global energy minimum.

3.4 Geometric structure
Kruskal stress directly evaluates the distance information
deformation. Graef et al. demonstrated in 1979 (Graef and Spence,
1979), that it rather evaluates global deformation of the cloud
of instances. To gain information on local distances deformation,
we define a new parameter, Entourage. For any one instance X̄i
in the reference distribution obtained through SVD (undistorted
representation), we consider its k nearest neighbors: N ref

i . In the
new distribution obtained after dimensionality reduction, we also
compute the k nearest neighbors for the same instance X̄i, and obtain
a list: Nnew

i . We then search for Gi =card(N ref
i

⋂
Nnew

i ), which
will be the number of instances common to both. This operation is
repeated for all instances i, and one obtains the Entourage parameter:

Entk =
∑n

i=1Gi

G
(9)

with G=nk a normalization parameter (Ent ∈ (0,1)).
If Gi =card(N ref

i
⋂

Nnew
i )≈0.01card(N ref

i )=0.01k for every i

then Entk ≈ 0.01
∑n

i=1 k
nk =0.01, a difference of 1% between two

values of Entourage corresponds to an average deformation of 1%
in the local organization. This parameter has more signification for

a small number of neighbors k compared to the total number of
points n.

The geometric properties of the data objects are analyzed using the
Entourage parameter. We have plotted the relationship of Entourage
and k for six different methodologies: zeroMDS, stochastMDS,
SVD–MDS, iSVDMDS, MD–MDS-lin, MD–MDS-exp in Figure 4
for eight different datasets. From the selected examples, it becomes
clear that again the SVD–MDS method outperforms the different
types of MDS over a wide array of structures analyzed as the
Entourage value is consistently higher no matter how many different
k nearest neighbors are considered. The iterative iSVD–MDS
method, due to the accumulation of small residual errors during the
molecular dynamics simulation, and the MDS method give similar
results. At the cost of increasing computational load, the iSVD–
MDS better and better approximates the SVD–MDS method. In
conclusion, the SVD–MDS method, under all conditions tested,
better represents the geometric structure of the datasets in low-
dimensional space when compared to the input object with rank(S)
components (given by SVD). Note that this holds even for objects
with equal stress.

Figure 1 illustrates the problem of rotational variance when
using stochastically initiated molecular dynamics simulations for
MDS. When comparing Figure 1C and D as well as comparing
them to Figure 1A and B that stochastMDS results produces
near-optimal solutions (with respect to the Kruskal stress), the
resulting orientation of the instances, however, is different (focus,
for instance, on the relationship between ‘skeletal muscle’ and ‘fetal
liver’). SVD–MDS on the contrary only produces a single result.
This observation, taken together with the results on the relevance
of stochasticity in the simulation obtained above, argues for the
existence of different equivalent energy minima that only differ in
the rotational orientation of the object and (at best) only minimally in
the Kruskal-stress; a fact predicted by mathematical consideration.
Hence, SVD–MDS not only reduces significantly the computational
load, but also insures uniqueness of the resulting representation. The
quality of this final and unique representation can be demonstrated
using the Entourage parameter. The increase in fidelity in the
representation of data should not be underestimated (see also Fig. 5).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Relative changes in k nearest neighbors (Entourage) are local, structural measures of dimensionality reduction and thus assess quality of the procedure.
As a function of the number of nearest neighbors k considered, the relative change in kNN between the initial high-dimensional space and 2D space is plotted
for the methods: SVD–MDS, zeroMDS, stochastMDS, iSVD–MDS, MD–MDS linear and MD–MDS exponential. The datasets used are in: (a) ‘d1—96Cell’ in
correlation basis, (b) ‘d2—96Cell_T’ in covariance basis, (c) ‘d4—Wine’ in covariance basis, (d) ‘d5—Stochast 200’ in covariance basis, (e) ‘d6—CCYier’
in covariance basis, (f) ‘d7—Pima’ in covariance basis, (g) ‘d11—Stochast 3000’ in covariance basis and (h) ‘d13—Wave’ in covariance basis.

This is reminiscent to techniques of principal manifold searches
(Gorban et al., 2008) where parameters describing topology, local
organization or other geometric characteristics are used.

A major advantage of using SVD to define the initial state is that
it provides the inertia of each principal component. The comparison
of the different internal structures of the studied datasets showed a
vast variety of profiles. A good dimensionality reduction technique
would ideally account for these differences. Taking into account the
inertia, the stress and the Entourage during the MDS process will
help to have an even more accurate representation of the data matrix
in low-dimensional space.

3.5 Data analysis
In order to demonstrate the applicability of the SVD–MDS
methodology and its superior performance, we reanalyzed a
previously published biological dataset not yet used here (Prakash
et al., 2006). The datasets consists of quantitative measures for
10 selected cytokines in a cohort of human malaria patients from
central India displaying different severeness of disease as well as
endemic and non-endemic control subjects. A total of 98 patients
were included in the original study by Prakash et al. (2006). The
main objective is to determine whether individual or combinations
of cytokine measurements can be used to determine whether an
individual is affected by cerebral malaria (CM), the most severe
form of the disease, and how to distinguish CM from severe
malaria (SM). Both forms of the disease require early detection
and prognosis which are pressing matters for health caretakers.
We have computed from the entire dataset [including the controls
and patients with mild malaria (MM)] SVD-based and SVD–MDS-
based representations of the cytokine activity measurements in
covariance space (Fig. 5A and B). It becomes immediate evident

that whereas the representation by SVD–MDS identifies TNFα

as having a major contribution to one of the higher principal
components, SVD alone does not reveal this prominent role for
TNFα leading to the conclusion that the main variability in the
patient samples is due to IL2, IL6 and TGFβ [Fig. 5C as opposed to
5D (SVD–MDS)]. The combination of IL2 and TNFα measurements
alone suffices, however, to separate SM (red) from CM (blue)
patients in single linkage hierarchical clustering based on Euclidean
distances (Fig. 5E). The combination of IL2 and TNFα would
unlikely have been identified as effective by SVD alone (Fig. 5A).
The role of TNFα in CM has been also clarified when investigating
the auto-immune component of CM in Bansal et al. (2009).

4 CONCLUSION
Dimensionality reduction of complex, high-dimensional data is an
important problem which becomes ever more complicated due to the
increase of data concomitant with an increase in their dimensionality.
This is particularly true for data from modern genomics analyses
where more and more data with thousands of instances each over
millions of variables are generated. We demonstrate here how a
combined molecular dynamics simulation multidimensional scaling
approach for dimensionality reduction of high-dimensional data can
be improved by better defining the initial conditions. We have shown
that singular value decomposition is most effective to create an initial
condition for MDS. Using links between SVD and different standard
data analysis methods, we demonstrate how our combined SVD–
MDS method can be used to improve geometric representation in
low-dimensional space that are generally obtained with standard
analysis methods (PCA, classical scaling, PCCA, correspondence
analysis). We also show that the use of iterative reduction or
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(a)

(e)

(b) (c)

(d)

Fig. 5. Comparative analysis of cytokine activity measurements in an Indian malaria human patient cohort. The cytokine dataset from Prakash et al. (2006) was
represented in covariance space using SVD (a) and SVD–MDS (b). A simplified representation for SVD and SVD–MDS is shown in (c) and (d), respectively.
(e) Single linkage hierarchical clustering based on Euclidean distance of the severe malaria (SM, red) and cerebral malaria (CM, blue) patients according to
IL2 and TNFα activity.

stochastic energy does not increase performance of the algorithms
in terms of finding a optimal solution. Finally, we have investigated
the local structure deformation induced by dimensionality reduction,
and confirmed the superior accuracy of the SVD–MDS. Overall, the
methodology developed here should further advance our capacity
to analyze high-dimensional data such as the ones produced by
functional genomics approaches.
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