
Chapter 4

Time Variable and Time Scales in Natural

Systems and Their Modeling

Annick Lesne

Abstract In this chapter, I discuss the status of time when modeling natural

systems. In such an operational perspective, time is defined and measured by a

clock, i.e. the comparison with a given physical phenomenon. A central notion is

that of time scales. I argue that the representation of time (e.g. discrete

vs. continuous) is essentially a modeling choice, depending on the time scale of

the observation or description compared to the characteristic times of the system. In

integrated approaches developed for investigating systems presenting several levels

of organization, it may be fruitful to consider several independent time variables

describing evolution at different nested time scales (“multiple scale method”). This

would solve some puzzling but recurrent statements, such as an evolution com-

posed of a succession of equilibrium states, and leads to a practical understanding of

diverse systems, from combustion and kinetic theory of gases in physics to enzy-

matic catalysis in biochemistry to adaptive dynamics in ecology. At a more

fundamental level, the confrontation of descriptions performed at different scales

and within different frameworks, from molecular dynamics to statistical mechanics

to thermodynamics, is essential to delineate the limits of each of them, and overall

reach a more informative understanding of reality. In particular, such a multi-scale

confrontation offers a simple answer to the long-lasting opposition between micro-

scopic reversibility and macroscopic irreversibility of isolated systems (the cele-

brated Second Principle of the thermodynamics). In biology, time scales are also

essential in discussing the robustness of living systems and their evolutionary

strategies.

Foreword

As a classical physicist (i.e. not involved in quantum mechanics, cosmology, and

general relativity) I do not feel in a position to address the question of the nature of

time. I will rather focus on the representation of time when modeling natural
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systems and the notion of time scales. In this perspective, time is a relative and

flexible notion. I will challenge philosophical discussions with a pragmatic view, as

a physicist dealing with phenomena, meaning the observable and measurable

appearance and not the nature of objects and processes.

4.1 Clocks and Time Measurement

The statement attributed to Poincaré (Poincaré 1898; Barbour 2008): “Time is what

a clock measures” underlines that the measure of time, and even its everyday

definition, rely on the joint observation of two phenomena: that of interest, and a

given well-calibrated one, called a clock. In other words, clocks provide a time unit

based not on an absolute reference but on a controlled (usually physical) process.

Moreover, it indicates that for all practical purposes, the notion of time can be

identified with the measure of time. Thus time has been originally defined with

respect to the (apparent) motion of sun, thought to be an absolute reference. In

parallel to sundials (not always functional nor very accurate), time has been defined

using as a reference a process of externally bounded duration: how water flows in a

water clock (clepsydra), how sand flows in an hourglass. Time has then been

defined with reference to a characteristic time of a system taken as clock. This

time unit is shown or assumed to be a constant, invariant as long as the clock is

unchanged. The emblematic example is the period of a pendulum, which remains

constant when friction damps the pendulum motion, provided the pendulum mass

and length remain unchanged. More recently, clocks have been based on more

intrinsic characteristic times, thought to provide an absolute unit: the period

(inverse frequency) of vibration in a quartz clock, based on the sustained vibrations

of an electrically excited crystal of quartz (piezo-electric effect), or the inverse

frequency of the photon emitted by an electron when passing from an excited

energy level to the ground one, in atomic clocks. In all these cases, time is a

phenomenological notion. In classical physics, there is no time without a physical

phenomenon, whose course allows measuring and in a way defining time. This

operational view, ignoring any preexisting concept that could be formulated inde-

pendently of the material world, is all the more accepted that it is supplemented

with our own intuitive perception, considered as a matter of cognitive science or

psychology that does not interfere with common physicists’ practice.

4.2 The Concept of Time Scale

Turning to the concept of time scale, a first obvious distinction arises between

epistemic scales and intrinsic scales. The first ones are the scales at which the

system is observed or described. The latter are related to the characteristic times of

the system, independently of the presence of an observer, for instance: the mean
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free time between two molecular collisions, the period of vibrations or oscillations,

the quantity 1/ν where the frequency ν is related to the energy difference between

two atomic levels, the correlation time τc of a time-dependent quantity X as defined

by the exponential decay of the correlation function C(t) ¼ < Xt X0 > � < Xt >

< X0> ~ A exp.(�t/τc) or the relaxation time τr defined by the exponential decay of

a time-dependent observable xt towards its equilibrium value x0, namely xt � x0 ~ A

exp.(�t/τr). Generally a characteristic time is obtained according to a relation:

time ¼ length / velocity when a characteristic length and a characteristic velocity

are known. In living systems, the replication time of the genome, the division time

of a cell or the lifetime of an organism complete the previous enumeration (see in

particular the Chap. 15 by Nicoglou in the this volume).

4.3 Time Scales: Epistemic vs Systemic Issues

Concurrently with the above two kinds of time scales, we distinguish two issues. A

first, epistemic, issue is to appreciate how our understanding and description of a

system depends on the scale at which it is observed. For instance, as explained in

any textbook of statistical mechanics, the impact of air molecules on the wall of a

container can be described, at small scale, as a succession of collisions of molecules

against the wall, occurring at random times due to the randomness of the thermal

motion of the molecules. At a coarser resolution, only the average effect of these

collisions is perceptible, corresponding to a time-constant pressure.

A second issue, intrinsic to the system of interest, is to understand how the

different processes taking place at different time scales are coupled. In plain

physical situations, microscopic and macroscopic processes are weakly coupled.

This means that it is possible to consider separately microscopic elements and

macroscopic behaviors. The latter can be obtained by a mere averaging of the

microscopic processes (over the system and over intermediary durations): the

microscopic fluctuations average out, and what remains is the macroscopic evolu-

tion (this is sometimes technically more difficult in practice than in principle). In

the above example, the issue is now to describe how the microscopic dynamics

ruling the collisions of the molecules on the wall of the container and their kinetic

energy will generate at the macroscopic scale the time-variations of pressure and

temperature, described autonomously in the framework of classical thermodynam-

ics, with no reference to the microscopic level.

Some situations, termed “critical phenomena”, do not obey the rule of separa-

tion of scales: details and events at all scales are strongly coupled and microscopic

fluctuations have macroscopic repercussions. The hallmarks of such situations are

the divergence of the range of temporal and spatial correlations, and singularities in

the system’s response to perturbations. The latter are typically revealed by a

divergence to infinity of the system susceptibilities, meaning that a microscopic

(spatially localized or small-amplitude) event is capable of triggering a macro-

scopic consequence, spreading in the whole system and over long durations
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(Laguës and Lesne 2011). For instance, a very localized magnetic perturbation

(single spin flip) or the application of a very small magnetic field have observable

repercussions at all spatial and temporal scales in a ferromagnet at the critical point,

whereas they have no macroscopically observable effect far from the critical point.

Although a critical phenomenon occurs in a precisely defined situation (a single

specific point in the parameter space), temporally long and spatially extended

transients are observed around the critical point. More complicated phenomena,

typically slow relaxation dynamics and long-range correlations in an extended

domain of the parameter space, may arise in disordered systems in which the

control parameter is no longer homogeneous in space (Griffiths’ phases) (see

e.g. Moretti and Mu~noz 2013).

While in plain systems, fast microscopic events accumulate and produce collec-

tively a slow macroscopic evolution, the converse may also occur in some systems

displaying what has been called “self-organized criticality”: a slow accumulation

of elementary events relaxes into a sudden and fast collective event, characterized

by power-law distributions of the various observables (e.g. the size and duration of

the macroscopic events). This concept has been introduced to summarize the

complex behavior of avalanches observed in continuously fed sand piles, earth-

quakes, species extinctions and cascading failures in a network (Bak 1996). Despite

all the work and interest it has attracted, the concept of self-organized criticality is

still lacking operational power beyond that of an elegant description, and some

macroscopic power-law behaviors could have a different origin.

However, the study of criticality and self-organized criticality has underlined the

importance of investigating the time scales of the observed phenomenon, in both

describing its characteristic features and understanding the underlying mechanisms.

For instance, the response of a systemmay differ according to the frequency f at which

its parameters or the applied forces are varied, compared to the (inverse) characteristic

times of the system (Yordanov et al. 2011). A system with a reaction time τ does not

react if a control parameter changes periodically with a frequency f >> 2π/τ; on the

contrary, it smoothly follows the changes occuring at a frequency f << 2π/τ. An

oscillator with natural frequency f0, displays a huge amplification, called a resonance,

if f ~ f0. Scales also matter in any interaction: the scale at which the interaction takes

place determines the range of the integration over microscopic structures and pro-

cesses, which occurs during the interaction. Think e.g. of the interaction between two

molecules (integration over the atoms constituting the molecules), the solid friction of

a sliding object along a slope (integration of the details of the two contacting surfaces,

from the molecular scale to the scale of the object), or the attraction between two

planets. This interaction range determines the relevant variables of the simplest

effective description. For instance, in first approximation, the interacting planets are

described as point particles fully characterized by their mass, and not by their

countless components.

Up to now, we have considered scales, which have a clear-cut definition (as seen

above). In living systems, the relevant decomposition of the system in nested layers

has to follow the different levels of organization, rather than scales: one distin-

guishes an enzyme, a cell, an organ, an organism, even if some organisms
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(e.g. bacteria) may be smaller than some cells (e.g. human cells). Although these

levels somehow follow the scales, their delineation is more qualitative and is

associated with a functional or physiological description of the system. Here

again, the duality between epistemic decomposition and intrinsic decomposition

into nested levels of organization is a delicate issue, which has to be clarified to

avoid misinterpretations.

4.4 Relation Between Temporal and Spatial Scales

In the above examples, the systems also display a space dimension, hence not only

time scales but also spatial scales are relevant. In physics, fast processes generally

correspond to spatially microscopic processes, and slow ones to spatially macro-

scopic ones. For instance, atomic vibrations are very fast compared to the oscilla-

tions of a rope. This intuitive thought is quantitatively supported for linear systems

(e.g. wave propagation) by dispersion relations, which express the wavelength of

the phenomenon as a monotonously increasing (and currently simple) function of

its period. (Linear systems are rare, but actually, many systems can be locally

linearized, i.e. approximated by a close linear system, exactly as a curve can be

locally approximated by its tangent line).

This correspondence between temporal and spatial scales does not hold in living

systems. For instance, a spike (elementary activity event) in a neuron involves the

transfer of only a few ions in a region of nanometric scale in space, however it

extends over about a millisecond in time, far above the usual molecular time scales.

Moreover, phenomena like neural coordination or synchronization yield macro-

scopic events having the same time scale as elementary ones.

4.5 Time Scales, Time Representation and Modeling

Choices

The relevant representation of time depends on the observation/description time

scale compared to the intrinsic scales of the system. It is actually a modeling choice.

Currently three representations of the time variable are encountered:

1. An integer label qualitatively describing the qualitative ordering of a sequence

of events. An example of such a “qualitative time” is provided by generations, in

population dynamics, whatever the duration separating an individual and its

offsprings. Another example is a cell, which has a priori its own clock for growth

and division. In some cases, e.g. behavioral sequences, only the ordering is kept

and the duration of events is eliminated. Due to individual variability and

context dependence, what is relevant to understand the behavioral processes is

indeed the qualitative succession of events.
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2. An integer variable n measuring a number of time steps. This amounts to

describe the evolution of the system by considering the succession of its states

at discrete times nΔt, where Δt is a fixed unit of reference. If the time step Δt is

much smaller than the characteristic time(s) of the system, the discretization is

valid with no significant loss of information. If on the contrary the time step is

much larger than some characteristic time of the system, the associated pro-

cesses are not well captured and the discretized dynamics will only reflect

properly the slow trends. For instance, a description of the climate dynamics

with a step equal or larger than a year will ignore seasonal variations. A more

intrinsic (hence more robust) way to discretize the evolution of a system, known

as the “Poincaré section method”, is possible when the dynamics is close to a

periodic regime (limit cycle). One considers an hypersurface of codimension

1 in the state space (e.g. a plane if the state space is of dimension 3), and replaces

the study of a trajectory by the study of the sequence of its intersections with the

hypersurface; for example, this hypersurface can be defined as the set of points

where an observable quantity takes a given value. The time step is now irregular,

of duration vaying from one to another, and the discretization amounts to

consider a sequence of events. Adaptive time-steps are also encountered in

discrete mechanics, where this flexibility is required to preserve both the geo-

metric properties and energy conservation in the use of a discrete variational

principle (see Chap. 9 by Ardourel and Barberousse in this volume).

3. A real time variable t varying continuously. One should however remember that

using a continuous time variable t in a physical model is in fact a mathematical

idealization: indeed, the model and associated equations have been derived

under some assumptions on the time resolution (the lower time scale of the

description), meaning that faster processes have been neglected. Contrary to the

mathematical notion, the so-called infinitesimal time increment dt has a physical

meaning and should rather be denoted Δt. Similarly the notion of time derivative

dx/dt is an idealization (hence an approximation) of a finite rate Δx/Δt.

Also the choice of the framework used to describe the dynamics (i.e. the

evolution rules) depends on the relative magnitudes of intrinsic and description

scales. They condition for instance the choice of a deterministic or a stochastic

dynamic model. The evolution will be described as deterministic if dt is far larger

than the correlation time, so that fluctuations average out, or at the opposite

(reversible molecular dynamics) if dt is far smaller than the typical time between

two successive collisions experienced by a molecule with the other ones (mean free

time). In between, fluctuations cannot be ignored and a stochastic model would be

more relevant. An important issue is to establish inter-relations between these

representations of time and modeling choices (Lesne 2007).
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4.6 The Notion of Equilibrium

Seemingly intuitive and commonsense, the notion of equilibrium is in fact complex.

An operational definition would be: a system is in equilibrium if its characteristics

do not evolve along time. In practice, this formulation shows that equilibrium is a

relative notion. The definition has to be refined by the prescription of scales.

Namely, a system in equilibrum experiences no perceptible changes at a given

resolution (lower bound on the time scale) over a given duration (upper bound on

the time scale). In plain words, fast processes have evened out and slow ones have

not yet begun. Also the resolution on the observable characteristics has to be

defined, namely, what is the value of a significant change that can be detected by

the observer. The notion of equilibrium is thus deeply related to space and time

scales.

The notion of equilibrium involves time in a dual way. Its above definition

implicitely refers to the absence of significant dynamic processes; for instance the

equilibrium of a (mechanical) scales means that it no longer oscillates unless an

additional weight is introduced. However, the very notion of time is related to a rate

of change (see above our ways of measuring time); time would be an irrelevant

notion for a system in perfect equilibrium. Luckily, this paradox vanishes on its

own since there is no such thing as a perfect equilibrium: relaxation becomes

infinitely slow near the equilibrium point; surrounding noise unavoidably disturbs

the equilibrium; slowly evolving environment modifies what is the equilibrium

state; thermal motion implies that equilibrium is an irrelevant notion at molecular

scales. In practice, it is safer to speak of “stationary state”, possibly defined on

statistical quantities, and always in reference to prescribed scales and resolutions.

A puzzling statement remains: what is the meaning of the usual definition of an

adiabatic evolution in thermodynamics (also encountered under the name of quasi-

stationary approximation in numerous studies of complex dynamics) as being “a

succession of equilibrium states”. Answering this question requires a mathematical

formulation of time scale separation (Lesne 2006).

4.7 Multiple Time Scales and Quasi-stationary

Approximation

A clue to recognize whether a model captures the coexistence of processes at

different time scales is the presence of a small parameter ε in the equations of

evolution, hinting at the presence of contributions acting on a longer term than the

others. Then, the main step is to identify fast and slow variables. Typically, the fast

variables describe the microscopic events while the emerging macroscopic trends,

corresponding to average or aggregated behaviors, are generally described by

slowly varying quantities.
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Let us denote x the fast variables reflecting the system micro-evolution, and Y the

slowly varying observables accounting for the system macro-evolution. The equa-

tions of evolution can be written [dx/dt ¼ f(x, Y), dY/dt ¼ ε g(x, Y)] where ε is the

small parameter measuring the scale separation between the characteristic times at

which x and Y evolve. At a fine temporal resolution, for ε small enough, the quantity

x evolves significantly during one time step Δt ¼ 1, while Y remains constant. This

justifies to invoke a quasi-static approximation (for Y ) in which the second equation

of evolution reduces to dY/dt¼ 0 and what remains is an equation for x where Y is a

constant parameter – one also speaks of parametric approximation (for x).

At a coarser temporal resolution, the time variable becomes T ¼ εt. The

equations of evolution are now written [ε dx/dT ¼ f(x, Y), dY/dT ¼ g(x, Y)]. During

one macro-step ΔT ¼ 1, x completes its evolution at fixed Y ¼ Y(T) and reaches the

asymptotic state x*[Y(T)] satisfying f(x*(Y),Y) ¼ 0. Plugging this asymptotic value

turns the equation of evolution of Y(T) into the closed equation dY/dT¼ g(x*(Y), Y),

where the variation of x* is slaved to Y (Haken 1996). This procedure is termed

quasi-stationary approximation (for x) since it amounts to replace the full equation

of evolution ε dx/dT¼ f(x, Y) by f(x,Y)¼ 0. Illustrations are given in (Nayfeh 1973;

Lesne 2006).

If the evolution is a sustained oscillation, the fast variable x self-averages into a

quantity x[Y(T)] during one time macro-step ΔT ¼ 1, and the quasi-stationary

approximation amounts to replacing x by x[Y(T)] in the evolution of Y, yielding a

closed equation dY/dT ¼ g(x(Y), Y). This reflects the fact that the macroscopic

features are not influenced by all the microscopic fluctuations, but are only sensitive

to their average and emerging trends.

The quasi-stationary approximation means that the fast processes reach their

stationary state before the slower processes begin to evolve, and so on in a nested

way from fast small-scale processes to slow macroscopic contributions. In this

respect, the slow evolution is described as a succession of equilibria of the fast

degrees of freedom, and the above quasi-stationary approximation is the opera-

tional way to formulate this idea. A useful spin-off is the derivation of macroscopic

evolutions, i.e. closed equations of evolution for a (usually small) number of

macroscopic variables, from the knowledge of the microscopic dynamics (Givon

et al. 2004; Castiglione et al. 2008).

4.8 The Multiple-Scale Method: Several Independent

Times

Let us mention a thought-provoking method to simplify the above decoupling

procedure. The idea is to introduce jointly several time variables t0 ¼ t, t1 ¼ εt

(slower by a factor of ε since Δt1 ¼ 1 for Δt ¼ 1/ε), t2 ¼ ε
2t (slower by a factor of ε2

since Δt2 ¼ 1 for Δt ¼ 1/ε2), and to treat them as independent time

variables to dissect the processes at different scales. The time derivative becomes
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d/dt¼ ∂/∂t0 + ε∂/∂t1 + ε
2
∂/∂t2 and the solution x(t) is searched as a function of the

form X(t0, t1, t2). Scale-decoupling approximation here amounts to consider t0, t1,

and t2 as formally independent variables, with fast variations captured with time

variable t0, slow variations captured with time variable t1, and slower trends

captured with time variable t2. However, considering independent time variables

is only a computational trick, equivalent to (but more concise than) nested

quasi-stationary approximations. Ultimately, the solution is obtained under the

form x(t) ¼ X(t, εt, ε2t) depending on the single original time variable t. This

method has been successfully applied to complex evolutions with superimposed

time scales, depending on a small parameter ε in a singular way (“singular” insofar

as the solution for ε ¼ 0 is qualitatively different from the solution for ε > 0

(whatever small) hence displays a singularity as a function of ε in ε ¼ 0). An

example is the treatment of the so-called secular terms in the 3-body problem in

astronomy: these terms arise when investigating e.g. the motion of a planet under

both the (dominant) influence of the Sun and the (seemingly marginal) influence of

other planets. They induce slow variations perceptible only over centuries (hence

the name “secular”) and cannot be accounted for in a perturbative way starting from

the easy case where only the Sun influences the planet motion (Nayfeh 1973; Lesne

2006; Castiglione et al. 2008).

4.9 Time’s Arrow

The long debated issue of time’s arrow and the apparent inconsistency between the

Second Principle of the thermodynamics and the micro-reversibility of molecular

dynamics is also a matter of scales. The Second Principle, presented in any textbook

of basic thermodynamics, is a macroscopic feature rooted in a statistical argument

for a large number of molecules. It is not expected to – and does not – hold for a

system of a few molecules (this is rarely underlined in textbooks, which deal with

thermodynamic properties, observed in macroscopic systems). There is no such

time’s arrow in small microscopic systems. For a macroscopic system like a gas in a

compartment, the explanation of the time’s arrow runs as follows. Considering the

expansion of a gas initially confined in a small compartment, the number of reverse

trajectories, starting from an expanded gas configuration and leading back to a

confined one (i.e. belonging to a very constrained subset of the configuration space),

is infinitely small compared to the number of plain trajectories, starting from the

expanded gas configuration and leading to another expanded configuration (see

e.g. Castiglione et al. 2008). There is thus an (almost) infinitely small probability to

observe the spontaneous confinement of an expanded configuration, the smaller the

larger the number of molecules in the considered system. Similarly, there is an

(almost) infinitely small number of trajectories leading from the confined configu-

ration to another confined configuration, compared to the number of trajectories

leading from the confined configuration to an expanded configuration: in practice,

at our macroscopic scale, we always observe an expansion of the gas. However, we

here see that the Second Principle describes an improbability to observe backward
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evolutions, not their impossibility. The reasoning relies on the large size of the

system, and fails for a microscopic system composed of a few molecules.

This argument solves the time’s arrow issue for the spontaneous evolution of a

closed system, that is, the relaxation from a prepared state to an equilibrium state. It

does not answer the deeper issue of time’s arrow in open non-equilibrium systems

(non-equilibrium meaning here “externally driven in a steady state with

non-vanishing fluxes”). Fluctuation theorems have established the probability distri-

bution of the time-averaged irreversible entropy production (Kurchan 1998; Cohen

and Gallavotti 1999; Evans and Searles 2002) but many questions are still open,

motivating on-going studies in the non-equilibrium statistical physics community.

In this context, the question of the “nature of time” is mostly irrelevant for

(classical) physicists. They handle time as an effective and operational notion, like

the scientists of the nineteenth century handled the notion of temperature: they

devised several kinds of thermometers and made efficient thermodynamic

machines without understanding the “nature” of temperature.

4.10 Time Scales and Evolution Theory

We have seen that the response of a dynamic system to a perturbation depends on

the time scale of this perturbation, compared to characteristic times of the system.

This feature is highly relevant not only in the physical world but also in the living

world. Typically, living systems evolve robustness to fast transient changes

(homeostasis), and adaptation to sustained (directional) changes. Evolutionary

strategies are thus to be examined according to the time scale of environmental

variation.

More generally, a scale-decoupling argument is invoked in the very notion of

genetic equilibrium, assuming that the changes in allelic frequencies from one

generation to another are faster than the occurrence of novel mutations, itself faster

than the modification of the surrounding ecosystem. If this decoupling applies, the

evolution of a species can be seen as a succession of genetic equilibria, each

equilibrium corresponding to the local result of natural selection, that is, an

optimized distribution of genotypes in the environment present at that time, while

the passage from one equilibrium to another is due to mutations, i.e. a change in the

set of possible genotypes or/and changes in the environment. Actually, it has been

presumed for a long time that populational, ecological and evolutionary processes

occur at very different time scales. However, it has recently been realized that

ecological and (macro)evolutionary processes can be fast, and scale decoupling is

not necessarily valid. If environmental changes or mutations rates are too fast, the

above quasi-stationary approximation fails and what is observed for a species is a

succession of transient and unpredictable allelic distributions. The decoupling

approximation remains most often useful in a first step to identify the different

processes and clarify their consequences (see Chap. 14 by Huneman in this

volume).
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The discussion about quasi-stationary approximation could also enlighten an

operational notion of species. I would suggest that considering a species as a quasi-

equilibrium and evolution of species as an adiabatic evolution would reconcile the

existence of separate species at a given moment and the gradual phenomenon of

speciation. Here again nothing relevant could be said without explicitly mentioning

the time scale(s) at which processes are discussed.

4.11 Conclusion

In classical physics and natural sciences, time is not a unique absolute concept, but

rather a relative and operational one. A physicist has no access to the nature of

systems and phenomena, in particular the nature of time. The relevant issues are

rather time representation and the choice of a proper time variable. In this opera-

tional perspective, I have argued that a central notion is that of time scales. It allows

clarifying paradoxical issues like the notion of equilibrium, scale separation,

decoupling slow and fast processes or even the time’s arrow predicted by the

Second Principle of the thermodynamics. In a biological context, time scales are

especially important in evolutionary studies and the very definition of a species or

the fitness of an individual in a population.
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