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The general scope of this workshop mentions the seminal work of Einstein
about Brownian motion. One century later, the challenge to physicists is no
more to assess the atomic nature of the matter but to extend Einstein theory
to living matter, with a fundamental questioning about the power and limits of
physical modeling for analyzing and understanding intranuclear motions and
transport processes, in particular those involving chromatin and chromosome.

Introduction
Part of the discovery of the biologist R. Brown in 1827, while observing the wriggling motion of
particles suspended in a fluid, was to preclude an explanation invoking the living nature of the
particles : the fact that he used pollen grains intervenes only to fulfill the required (sub)micronic size
necessary to observe this purely random thermal motion. Life is today back in the “investigations
about Brownian movement” [Einstein 1905, 1956], and it is much fruitful to delineate in what
respect Einstein theory and its modern developments are relevant inside the cell nucleus. This
requires a careful analysis of the limits of validity and implicit hypotheses involved in standard
diffusion theory, to be compared with the actual context and features of intracellular motions.

Basics on diffusion theory
Several theoretical approaches of diffusion and Brownian motion have been developped since Ein-
stein work, according to the scale of description : they range from deterministic (and reversible)
Newtonian equations, at the microscopic level of colliding molecules, to different stochastic mo-
delings, at mesoscopic scales, to the phenomenological (deterministic but irreversible) diffusion
equation, at macroscopic scale. They are related bottom-up through well-identified approxima-
tions and projection techniques or coarse-grainings, thus forming one consistent diffusion theory,
involving a unique parameter D (the diffusion coefficient) [Laguës and Lesne 2003]. We recall the
normal diffusion law describing the mean-square displacement R2(t) of a single diffusing object :

in a membrane (dimension d = 2) : R2(t) ∼ 4Dt as t →∞
in a volume (dimension d = 3) : R2(t) ∼ 6Dt as t →∞

(the general formula being R2(t) ∼ 2dDt in dimension d). It is associated with the equation
∂tn = D∆n, called the equation of diffusion at the level of (noninteracting) particle population,
n(~r, t) being then the concentration at position ~r and time t, and the Fokker-Planck equation at the
level of a single diffusing particle, n(~r, t) being then the spatial distribution of probability of this
particle at time t (the straightforward identification of these two equations is supported by the law
of large numbers provided the particles are uncorrelated). D is thus measured in m2/s (or related
unit µm2/s, more relevant for chromatin, since D never exceeds 10−3 µm2/s for chromatin regions
[Spector 2003], whereas D is around 10−10 m2/s for proteins, and around 10−8 m2/s for ions).
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Einstein derived a useful relation D = µkBT (now named after him) relating the characteristic
thermal energy kBT , the diffusion coefficient D and the mobility µ of the diffusing particle. The
inverse µ−1 is the friction coefficient of the particle, which might be computed in the hydrodynamic
regime, e.g. µ−1 = 6πaη (Stokes law) for a spherical particle of radius a in a fluid of dynamic
viscosity η.

Theoretical works more recently extended beyond normal diffusion and also describe correlated,
trapped or otherwise constrained motions, accounting for anomalous diffusion laws R2(t) ∼ tγ with
γ 6= 1. One speaks of sub-diffusion if γ < 1 (trapping with no finite characteristic trapping time,
diffusion on a fractal substrate) and of super-diffusion if γ > 1 (arbitrarily long deterministic
steps, steric hindrance as in self-avoiding walks) [Bouchaud and Georges 1990] [Havlin and Ben
Avraham 2002]. Let us detail more explicitly two instances. Anomalous diffusion might originate
in an anomalous distribution of the size of elementary steps (i.e. steps occuring in a unit time) ; in
case when steps of all sizes might occur, one obtains a super-diffusive motion. More precisely, if the
step-size distribution behaves as p(a) ∼ a−(1+µ)

at large sizes a, then R2(t) ∼ t2/µ. One recovers
normal diffusion for µ > 2. Another origin for anomalous diffusion is an anomalous distribution of
time steps (e.g. in case of a transient trapping). In case when steps of all durations might occur,
while the step-size is fixed or normally distributed (square average a2), one obtains a sub-diffusive
motion. More precisely, if the step-duration distribution behaves as p(τ) ∼ τα

0 τ−(1+α) at large
durations τ then R2(t) ∼ a2(t/τ0)α for α < 1 (where τ0 is some reference time). One recovers
normal diffusion for α > 1, and gets R2(t) ∼ a2(t/τ0)[log(t/τ0)]−1 for the special case α = 1
[Bouchaud and Georges 1990].

At least, a merit of theoretical approaches is to bring out some key features and caveats :
• Diffusion equation and the associated Fick law ~j = −D∇n are statistical expressions : there is no
diffusion force acting on the particles. It is only in a mesoscopic modeling that one can introduce
an effective “Langevin force” accounting for the effect of thermal noise.
• There is no way to define a diffusion velocity ; the naive definition v(t) ≡ R(t)/t yields an
apparent velocity v(t) ∼ 1/

√
t that strongly varies with the time-scale of observation (it is physically

truncated for t → 0 at a value equal to the thermal velocity of the particle).
• The trajectory, at mesoscopic scale where one does not distinguish individual water molecules,
is essentially random : its noisiness is the very core of the phenomenon. Nevertheless, care should
be taken to distinguish fully random motion (independent isotropic elementary steps) and more
general randomness. Stochasticity does not preclude some time correlations, and the whole range
of behaviors from purely random to deterministic can be encountered.

Limitations of standard theory
Intracellular motions are most often out of the scope of standard theory, for various reasons :
• relevant times are finite (in contrast to the asymptotic regime t →∞ of the diffusion laws) ;
• only small numbers of particles are involved and their density is too high to ignore their mutual
interactions (in contrast to the large population of independent particles underlying the Fick law) ;
• intracellular medium exhibits a complicated geometry and motions are likely to be strongly
confined ; moreover there is a possible alternative between 1-dimensional (on filaments or DNA),
2-dimensional (on membranes) and 3-dimensional (in the bulk) motions [Stanford et al. 2000] ;
• another difference with the plain solvent considered in Brownian motion theory is intracellular
(or intranuclear) crowding ; moreover water is presumably partly structured (in contrast to the plain
solvent considered in Brownian motion theory) ;
• diffusing objects are charged, hydrated and able to undergo conformational transitions ;
• competition with chemical reactions is to be taken into account : it might induce an uptake or
a trapping of the diffusing species (“reaction-limited diffusion”) ;
• diffusion is also “positively” coupled with equilibrium chemical reactions (reaction-diffusion
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processes, inducing pattern formation and wave propagation) ;
• thermal diffusion is alternatively coupled with nonequilibrium chemical reactions (ATP-hydrolysis,
translocations), generating what is called active processes. It points out the importance that a cell
and its nucleus are open systems travelled across by various fluxes (energy, matter, charges).

Experimental data analysis
A main point to be underlined is that analysis of experimental data on chromatin and chromo-
some movements requires a prior modeling of these movements, in order to turn observations into
meaningful parameters about the local organization and transport mechanisms. Using fluorescent
probes also requires a model for the interaction between the probe and the investigated medium,
to extract local informations from the motion of the probe. Let us illustrate this point for typi-
cal experimental techniques (not speaking of optical biases in data acquisition, photobleaching,
substrate uptake and spurious complexation of the probes, among other difficulties).

Although invaluable to form a proper intuition on the phenomena, direct visual observation
(e.g. of “painted chromosomes”) has in other respects a limited value : for instance, it appears to
be difficult to distinguish steady states and stable equilibrium states : if fluxes (in and out the
observed region) are not visualized, both cases will correspond to a seemingly fixed image with no
apparent motion.

In FRAP studies (Fluorescence Recovery After Photobleaching, [Misteli 2001]), it is necessary
to evaluate the bounded fraction (contributing to fluorescence but not to fluorescence recovery,
which occurs exclusively thanks to the diffusion of new particles into the photobleached region).
It is also essential to discriminate, in the very procedure of data exploitation, between 1D or
3D diffusion [Stanford et al. 2000], or between plain normal diffusion, possibly with an effective
coefficient (homogenized model, [Siggia et al 2000]), biased diffusion and active motions. This is
done by indirect inference, by determining which model best fits the data.

In SPT studies (Single Particle Tracking), the trajectory ~r(t) of a single particle is observed at
N + 1 discrete times 0, ∆t, . . ., N∆t ; for the sake of simplicity, ∆t will be fixed in what follows
and t will denote the integer label of the recording time.

The mean-square displacement R2(t) is computed as a time average (i.e. by averaging the
squares distances |~r(t + n) − ~r(n)|2 obtained when scanning the trajectory, by varying n [Saxton
and Jacobson 1997]. It is to note that this definition makes sense only when there is no average
motion, i.e. no drift : 〈~r(t) − ~r(0)〉 = 0. More generally, the mean-square displacement is defined
as a variance :

R2(t) ≡ 〈|~r(t)− ~r(0)|2〉 − |〈~r(t)− ~r(0)〉|2 = 〈|~r(t)− ~r(0)− 〈~r(t)− ~r(0)〉|2 (1)

≈ 1
N − t + 1

N−t∑
n=0

|~r(t + n)− ~r(n)|2 (2)

Biased diffusion corresponds to the superimposition of a deterministic drift, with velocity ~v, and
a diffusive motion of diffusion coefficient D. At short times, the diffusive component is overwhelming
(hence the slope of log t → log R2(t) should be equal to 1) whereas the drift is the long-term leading
behavior (hence the slope of log t → log R2(t) should be equal to 2 at long times) ; the crossover
is observed for 2dDt ∼ v2t2, namely around tc ∼ 2dD/v2. More precisely, the drift is evidenced
from the SPT data by computing the average motion ~m(t) ≡ 〈~r(t)− ~r(0)〉, and observing a linear
region, of slope vi in the plot t → mi(t) for each component i = 1, . . . d (the dimension is d = 3 in
case of intranuclear motions).

Confinement (also known as constrained diffusion [Marshall et al. 1997]) reflects in a saturation
of the mean-square displacement as a function of t : R2(t) ≈ R2

∞ = cte for large t. Typically,
one observes a short-time diffusive regime, where the slope of t → R2(t) equals 2dD (in spatial
dimension d) and a crossover towards a long-term saturation to a constant value. If the motion
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is actually a free diffusion in a limited region, the motion at short times corresponds to the same
diffusive motion as in an infinite medium (the particle does not yet experience the presence of
the boundaries), and the crossover should occur around tc = R2

∞/2dD. Moreover, for t � tc, the
distribution of the diffusing particles is uniform in the bounded region ; in case of a spheric region
in dimension d (i.e. a disk in d = 2 or a sphere in d = 3), a simple computation allows to relate its
radius r to the saturation value of the mean-square displacement : r = R∞

√
(d + 2)/d.

Multiscale analysis of the trajectories allows to evidence the superimposition of different diffu-
sion regimes, of possibly different natures, for instance the existence of a confined diffusive motion,
of coefficient Dmicro, in regions that themselves diffuse, with a coefficient Dmacro ; in other cases,
the coefficient Dmacro might arise as an effective coefficient accounting for characteristic (finite)
trapping time when the regions are fixed and the diffusing particles jump randomly across their
boundaries [Fujiwara et al. 2002].

Correlations in the motion can be measured from the SPT recording : at time-scale k (i.e. inves-
tigating correlations between steps of duration k), the time-correlation function can be estimated
as

Ck(t) = 〈[~r(t + k)− ~r(t)].[~r(k)− ~r(0)]〉 − |〈~r(k)− ~r(0)〉|2 (3)

where as above, 〈.〉 is computed in practice as a time-average along the trajectory. Finite-range
correlations reflect in an exponential behavior C(t) ∼ et/τc , defining the correlation time τc, roughly
estimating the range of the correlations. In this case, correlations can be integrated in an effective
diffusion coefficient Deff = D

∑
t C1(t) (larger than D in case of constructive correlations, smaller

than D in case of anti-correlations) [Lesne 1998]. Long-range correlations (with a large or even
diverging correlation time) typically reflect in a power-law behavior for C(t), and the diffusion is
anomalous [Lesne 1998].

More general instances of anomalous diffusion can be evidenced from SPT studies. In this case,
prior clue about diffusion law helps, since the same data can possibly be explained, say, with an
effective coefficient Deff or an anomalous diffusion law with exponent γ < 1 (unless a specially
long recording and error-less measurements are available, allowing to discriminate with certainty
the normal power law R2(t) ∼ 2dDt and an anomalous power law for R2(t)). It is besides to
be underlined that estimating faithfully a power-law behavior is in general a very delicate matter
[Laguës and Lesne 2003].

A prerequisite of all the above statistical estimates is the stationarity of the recorded motion :
it is often valuable to discard the first steps (as a rule of a thumb, for a normal diffusion motion, an
initial segment of the trajectory of duration equal to a few correlation times should be discarded,
since the correlation time coincide with the relaxation time, i.e. the duration required to reach a
stationary statistics). Moreover, stationarity can be checked by computing the averages of relevant
observables in a moving window of duration n � N , and by testing the time-independence of the
local averages thus obtained.

Computing the error bars requires a model for the joint statistics (at multiple-time) . For
independent steps (purely random walk), the relative error in the estimation of averages decreases
as 1/

√
N . If the motion is time-correlated, with a characteristic time Nc (in the time-unit of the

recording), the error now decreases as
√

Nc/N ; the intuitive explanation of this result is that one
now observes only N/Nc independent steps [Bouchaud and Georges 1990].

Let us conclude this section with a wide-scope guideline : general method to the prior (or
rather simultaneous) validation of the diffusion model used to interpret the data is the surrogate
data method : the supposed model is simulated, generating a sample of associated motions ; then
the statistics of various observables describing this motion is compared to the measured data, and
a statistical test is performed to check whether the modeling hypothesis can be accepted or has to
be rejected in favor of another modeling.
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Towards theoretical approaches to intracellular diffusion and transport processes
The above list of intranuclear specificities leading to the failure of standard diffusion theory does
not necessarily preclude all theoretical attempts to describe and even explain intranuclear motions.
On the contrary, it should be taken as a set of specifications, providing guidelines for such an
enterprise. Namely, it delineates biological features to be essentially taken into account. Moreover,
theoretical approaches have to somehow include the biological functions for the realization of which
the involved components have specifically adapted during Evolution.

To cite but one successful example, modeling active processes (e.g. motion of motor proteins)
illustrates such a theoretical achievement. It requires to couple thermal motion in an asymme-
tric energy landscape (scanned by the motor as it moves along its substrate, typically actine or
microtubules) with a nonequilibrium chemical reaction (currently ATP-hydrolysis). It is now ack-
nowledged that both an oriented substrate and nonequilibrium fluctuations are necessary to break
detailed balance and get an oriented motion : ATP hydrolysis fuels the entropy cost of an otherwise
thermally activated motion [Jülicher et al. 1997]. Theoretical investigations then allow to bring out
organization principles, e.g. the collective behavior of an assembly of motor proteins [Jülicher and
Prost 1995].

To summarize, diffusive motion reveals the obstacles encountered, thus might provide an indi-
rect (i.e. requiring an underlying modeling to be interpreted quantitatively) access to the organized
structure of the cell or cell nucleus. Major challenges, both in theoretical investigations and mode-
ling for data analysis purposes, come from the fact that this organization is dynamic (thus requiring
a multiscale modeling, accounting from motions and rearrangements at different space and time
scales) and functional (thus requiring to describe the interplay between diffusive motion, various
binding events and active processes).
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Jülicher, F., Ajdari, A., and Prost, J. (1997). Modeling molecular motors, Rev. Mod. Phys. 69, 1269–1281.
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