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• We illustrate our results on AR(1) processes and fractional Gaussian noise.
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a b s t r a c t

We investigate the statistical properties of recurrence plots (RPs) of data generated by discrete-time
stationary Gaussian random processes. We analytically derive the theoretical values of the probabilities
of occurrence of recurrence points and consecutive recurrence points forming diagonals in the RP, with
an embedding dimension equal to 1. These results allow us to obtain theoretical values of threemeasures:
(i) the recurrence rate (REC) (ii) the percent determinism (DET ) and (iii) RP-based estimation of the
ε-entropy κ(ε) in the sense of correlation entropy. We apply these results to two Gaussian processes,
namely first order autoregressive processes and fractional Gaussian noise. For these processes, we
simulate a number of realizations and compare the RP-based estimations of the three selectedmeasures to
their theoretical values. These comparisons provide useful information on the quality of the estimations,
such as the minimum required data length and threshold radius used to construct the RP.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Recurrence plots (RPs) were originally introduced by Eckmann,
Kamphorst and Ruelle [1] to extract information on dynamical sys-
tems from time series. The authors showed that such plots reveal
subtle structures, directly related to the dynamics generating the
analyzed data. Different chaotic systemswere used to illustrate the
results, including systems showing non-stationary time evolution
but with adiabatically varying parameters.

Few years later, Zbilut and Webber [2,3] proposed to quan-
tify the structures displayed by recurrence plots and introduced
the so-called Recurrence Quantification Analysis (RQA). Their con-
tribution motivated many works aiming to understand the rela-
tionships between the structure of recurrence plots and different
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dynamical invariants. For instance, it has been shown that mea-
sures based on diagonal lines of the recurrence plot can be used
to estimate correlation entropy (Renyi entropy of order 2) [4–7].
More recently, Robinson and Thiel proved a theorem which states
that the recurrences of a dynamical systemdetermine the topology
of its attractor in phase space [8]. Detailed and extensive reviews
on recurrence plots and RQA, including various applications, are
available in [7,9].

Although RPs and RQA were first designed to investigate
deterministic nonlinear dynamics, recurrences are also related
to the correlations of the analyzed data, even if they are not
generated by purely deterministic processes. Indeed, it has been
already reported that correlated stochastic time series can produce
long diagonals in their recurrence plots [7,10,11]. Note that an
observation regarding correlations in recurrence plots was first
made in the original paper by Eckmann, Kamphorst and Ruelle [1],
who stated that ‘‘recurrence plot describes natural (but subtle) time
correlation information’’.
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Rohde et al. [12] performed a stochastic analysis of the features
of unthresholded squared recurrence plots (USRPs) for stationary
random processes. The authors showed that the expectation value
of the squared distances used to define the USRP is dependent
on the variance and the covariance of the process. To illustrate
their findings, they performed numerical experiments on data
generated by autoregressive models, harmonic processes and a
Duffing system. In this work, generic Gaussian processes were
not specifically addressed, despite their omnipresence, and the
statistical properties of standard thresholded RPswere not studied.
In a related paper [13], Zbilut andMarwan showed that recurrence
quantification can be used to derive one formof the autocovariance
function and that the recurrence-based autocorrelation is naturally
able to integrate dynamics in higher-dimensional phase spaces.

In the context of RP-based analysis of stochastic processes,
the seminal paper by Faure and Korn [4] presented numerical
experiments performed on a first order autoregressive process,
confirming in this case the link between the distribution of
diagonal structures and the estimation of correlation entropy.
In another work, Faure and Lesne [14] analyzed Markov chains
by means of an extension of RPs to symbolic sequences. More
recently, Sipers, Borm and Peeters [15] explored the information
contained in unthresholded recurrence plots (URPs). They showed
that the information that can be extracted from an URP of a
trajectory generated from a scalar signal depends on the choice of
the embedding parameters (dimension and time delay) used for
phase space reconstruction. The authors also established that an
URP always determines the power spectrum of the original signal
and that for some optimal choices of the embedding parameters, it
is possible to retrieve the signal itself up to a sign. In another recent
work, Grendár, Majerová and Špitalský [16] focused on some RQA
outputs (recurrence rate, determinism and mean diagonal line
length) and derived, in the framework of ergodic processes, their
strong laws of large numbers through the concept of correlation
integral. In this theoretical contribution, the authors obtained
generic results and applied them to i.i.d. processes, Markov chains
and autoregressive processes. They also demonstrated that the
evolution of the asymptotic determinism with respect to the
embedding dimension is related to the order of the analyzed
Markov process. From a computational point of view, Schultz
et al. [17] showed that RQAmeasures based on diagonal lines such
as determinism can be approximated with improved algorithmic
complexity. Numerical experiments included data generated by
autoregressive models, the logistic map and the Lorenz attractor.

In [18], Zou et al. investigated bymeans of recurrence networks
(RN) a class of long-term correlated stochastic processes, namely
fractional Brownian motions. The authors demonstrated that
the non-stationarity of such processes can lead to spurious
results of RN-based analysis [19]. More specifically, using the
autocorrelation function and the false nearest-neighbors method,
they showed that the choice of the embedding dimension is
a crucial issue for non-stationary processes. The authors also
explored fractional Gaussian noise and suggested that RN analysis
can provide relevant results for these stationary stochastic
processes if the intrinsic parameters are properly selected.

In the present work, we explore the statistical properties of
the RPs of time series generated by discrete-time stationary and
correlated Gaussian stochastic processes. More specifically, we
derive the probability of occurrence of recurrence points of the
RP and the probability of occurrence of diagonals of a given
length when no embedding is used to construct the RP. These
results allow us to estimate the theoretical values of three RP-
basedmeasures: the recurrence rate, percent determinism and the
ε-entropy in the sense of correlation entropy. We illustrate these
results for two stationary Gaussian random processes, namely the
autoregressive AR(1) process and fractional Gaussian noise. The
numerical experiments performed on the simulations of these
processes and the comparison of the theoretical values of the RP-
basedmeasures to their empirical estimations provide information
on theminimal length of the data and input parameters to improve
the reliability of these estimations.

2. Recurrence plots and recurrence quantification analysis

The construction of a RP is originally based on phase
space reconstruction obtained through time delay embedding
[20–22]. Suppose that (xi) is a simulated or experimental time
series of length N . The first step of the procedure consists in the
construction of theNv = [N−(d−1)τ ] time delay vectors defined
by

xi = (xi, xi+τ , xi+2τ , . . . , xi+(d−1)τ )
T (1)

where d is the embedding dimension and τ the time delay. Note
that τ is an integer which corresponds to a physical time lag when
multiplied by the sampling period in the case of real-world data.

The second step is to estimate the distances between all the
couples of vectors xi and xj. Given a threshold ε, it is possible to
define a bidimensional binary plot: the recurrence plot, in which
the point (i, j) is represented by a ‘‘black’’ dot if the distance
between xi and xj is smaller than ε. xi and xj are then called
neighbors. The point (i, j) is called a recurrence point. In the
opposite case, no dot is plotted (see [7,9] for more details).

This can be formalized by the following binary function

ωi,j(ε) = Θ(ε − ∥xi − xj∥) (2)

for (i, j) ∈ {1, 2, . . . ,Nv}
2, using the Heaviside function Θ and a

norm ∥ ·∥ (in general, the Euclidean or maximum norms are used).
Several measures can be extracted from the structure of a RP

[7,23].Wewill focus here on three specific quantifications. The first
one is the recurrence rate, denoted REC , which is simply obtained
by counting the number of recurrence points and quantifying it
as a rate with respect to the total number of available points on
the RP [7,23]. The second commonly used measure is the fraction
of recurrence points belonging to diagonal lines (i.e. segments
parallel to the principal diagonal given by i = j) of length at least
n. This second key measure, denoted DET , was introduced as the
percent determinism. Denoting Jk(ε) the number of diagonal lines of
length exactly k, the DET measure for diagonals of length at least n
can be defined by [7,23]

DET (ε, n) =

Nv
k=n

kJk(ε)

Nv
k=1

kJk(ε)
. (3)

We should underline that DET is not a measure of determinism
in the mathematical sense [10]. In the case of stochastic processes,
it has been reported that DET is related to the correlations within
the data [10].

Remark 1. In the present work, we numerically define the RQA
measures of a stochastic process by constructing the RP of each
individual sample path, performing the RQA, and then averaging
the resulting quantities. This choice allows us to compare empirical
estimations to theoretical values of RQA measures. It should
be noted that potential alternative approaches could be the
construction of a single RP defined as the average of the RPs of
different realizations of the process (this would yield a matrix of
recurrence frequencies) or constructing the RP from the average
distances ∥xi − xj∥.
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Another important measure that is related to the diagonals
within the RP is an entropy measure. Indeed, it has been shown
that correlation entropy can be estimated from the RP through the
distribution of the lengths of the diagonals [4–7,23]. Unlike the
classical Grassberger and Procaccia approach, the RP-based esti-
mation can be performed using only one embedding dimension
[4,24]. More specifically, denoting κ(ε) the corresponding
ε-entropy, one can show that the number φ(ε, n) of diagonal lines
of total length at least n asymptotically obeys the following scal-
ing [4,24]

φ(ε, n) ∝ e−n κ(ε). (4)

Although only approximate in a finite RP, this scaling relation-
ship provides an estimation method of the ε-entropy, computed
as the slope of the semi-log representation of φ(ε, n) as a function
of the length n in its linear region. We denote κe(ε) this RP-based
estimation. It a priori depends on the RP-size.

3. Statistical analysis of the RPs of discrete-time Gaussian
processes

Weconsider a real-valued, discrete time,wide-sense stationary,
centered Gaussian stochastic process x described by a sequence of
random variables x1, x2, . . . , xk, . . . . In order to simplify notations,
we denote the random variables and their realizations using the
same letters and symbols.

Within this context, the time delay vector xi defined by
Eq. (1) can be considered as a d-dimensional random vector.
Its probability density function (pdf) is a multivariate Gaussian
function [25–29] given by

pi(x) =
1

(2π)d/2|6i
|1/2

exp


−
1
2
xT

6i−1 x


(5)

where |6i
| is the determinant of the (d×d)matrix6i, which is the

covariance matrix of the process defined by

Σ i
k,l = ⟨xi+(k−1)τ xi+(l−1)τ ⟩ (6)

for (k, l) ∈ {1, 2, . . . , d}2. The angular brackets ⟨.⟩ denote expec-
tation or ensemble averaging.

In order to analyze the statistical properties of the RP defined
by Eq. (2), we consider the random vector yi,j = xi − xj. This new
d-dimensional Gaussian vector has the covariance matrix 1i,j

defined by

1
i,j
k,l = ⟨(xi+(k−1)τ − xj+(k−1)τ )(xi+(l−1)τ − xj+(l−1)τ )⟩ (7)

for (k, l) ∈ {1, 2, . . . , d}2. Note that the random vector yi,j is
Gaussian because it is composed of differences of components of
a Gaussian process x, which are by definition joint normal [27,29].

Hence, defining the matrix 6i,j by the elements

Σ
i,j
k,l = ⟨xi+(k−1)τ xj+(l−1)τ ⟩ (8)

we can rewrite the elements of 1i,j

∆
i,j
k,l = Σ i

k,l − Σ
i,j
k,l − Σ

j,i
k,l + Σ

j
k,l. (9)

This last equation leads to the matrix relationship

1i,j
= 6i

− 6i,j
− 6j,i

+ 6j. (10)

The pdf associated to yi,j is then given by

pi,j(y) =
1

(2π)d/2|1i,j
|1/2

exp


−
1
2
yT

1i,j−1 y


. (11)

This pdf allows us to compute the probability Pi,j of the
occurrence of a recurrence point at the location (i, j) on the RP
constructed with a d-dimensional embedding.
3.1. Computation of the probability Pi,j of the occurrence of a
recurrence point

The probability to have xj within a distance ε from xi in the
reconstructed phase space can be obtained through the estimation
of the d-dimensional integral defined by

Pi,j(ε) =


D(ε)

pi,j(y)dy (12)

where the domainD(ε) is defined byD(ε) = {y : y ∈ Rd, ∥y∥ 6 ε}.
In the general case (d > 2), this integral can be estimated

numerically using the algorithms proposed by Genz [30] or
Sheil and O’Muircheartaigh [31], depending on the norm used
(maximum or Euclidean norm respectively).

If we consider the one-dimensional case (d = 1 and τ = 1), the
matrix 1i,j is reduced to a scalar αi,j given by

αi,j = ⟨x2i ⟩ − 2⟨xixj⟩ + ⟨x2j ⟩. (13)
Note that, in the case of a wide-sense stationary and centered

process x, we can express αi,j in terms of its variance σ 2
x and

covariance function Cx:

αi,j = 2

σ 2
x − Cx(i − j)


. (14)

A similar result was obtained in [12] for the computation of
the expected value of the squared distance between two variables
of a stochastic process (for d = 1). This expression was also
reported in [13] as the average of the squared distances between
two samples of a time series (also in the case d = 1).

According to Eq. (12), in the one-dimensional case, the
probability Pi,j(ε) reads

Pi,j(ε) =
1

2παi,j


+ε

−ε

exp


−
y2

2αi,j


dy. (15)

Simple manipulations lead to an expression involving the error
function

Pi,j(ε) = erf


ε
2αi,j


(16)

which holds when i ≠ j. Obviously, if i = j we always have
Pi,j(ε) = 1.

In the case of a centeredwhite Gaussian noise with variance σ 2,
we have αi,j = 2σ 2 and we get Pi,j(ε) = erf


ε
2σ


, for any location

(i, j) on the RP. This specific result was reported by Thiel et al. [32]
in a study dedicated to the influence of observational white noise
on RQA outcomes.

As previously underlined, due to the stationarity of the consid-
ered Gaussian process, αi,j only depends on the difference |i − j|
in the general case (see Eq. (14)). Thus, as justified by Eq. (16), this
observation also holds for the probability Pi,j(ε) through its depen-
dence on the covariance of the process. It should be noted that it is
possible to make the assumption that Pi,j(ε) is approximately in-
dependent of (i, j) for |i − j| ≫ 1, that is for points (i, j) that are
not too close to the main diagonal. According to Eqs. (11) and (12),
it amounts to assume that the covariance of the process is weakly
dependent on the difference |i − j|, for |i − j| ≫ 1. The numer-
ical experiments will confirm this assumption for the simulated
processes. When |i − j| ≫ 1, the probability Pi,j(ε) provides an
estimation of the theoretical recurrence rate REC th(ε). The numer-
ical experiments presented belowwill show that this result already
holds for |i− j| larger than a few tens. Note that in [12], a similar re-
markwasmade concerning the effect of the difference |i− j| on the
estimation of the expected value of the squared distances ∥xi−xj∥2

to analyze USRPs, using an Euclidean norm.
Concerning the theoretical recurrence rate REC th(ε), it may be

noted that the correspondingmeasure in the context of recurrence
networks is the so-called edge density [33–35].
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3.2. Computation of the probability Pn
i,j of the occurrence of a diagonal

of length n starting from point (i, j)

Here, we consider the probability Pn
i,j(ε) to have n consecutive

recurrence points forming a diagonal starting from point (i, j) on
the recurrence plot constructed without embedding (d = 1) from
data generated by the discrete-time Gaussian process x.

In the one-dimensional case, this probability corresponds to the
joint events defined by the inequalities |xi − xj| 6 ε, |xi+1 − xj+1| 6
ε, . . . , |xi+n−1 − xj+n−1| 6 ε. Hence, if we define a new random
vector zni,j by

zni,j = (xi − xj, xi+1 − xj+1, . . . , xi+n−1 − xj+n−1)
T (17)

it is straightforward to see that Pn
i,j(ε) is the probability to have

∥zni,j∥∞ 6 ε, where ∥ · ∥∞ is the maximum norm.
The covariance matrix �i,j of the n-dimensional random

Gaussian vector zni,j is defined by

Ω
i,j
k,l = ⟨(xi+k−1 − xj+k−1)(xi+l−1 − xj+l−1)⟩ (18)

for (k, l) ∈ {1, 2, . . . , n}2.
This covariance matrix can be decomposed as done for 1i,j

in the previous subsection. Indeed, if we denote for (k, l) ∈

{1, 2, . . . , n}2

Λi
k,l = ⟨xi+k−1xi+l−1⟩ (19)

and

Λ
i,j
k,l = ⟨xi+k−1xj+l−1⟩ (20)

we can write the matrix relationship

�i,j
= 3i

− 3i,j
− 3j,i

+ 3j. (21)

Hence, the pdf associated to the random vector zni,j is given by

pni,j(z) =
1

(2π)n/2|�i,j
|1/2

exp


−
1
2
zT

�i,j−1 z


. (22)

Finally, the probability Pn
i,j(ε) to have n consecutive recurrence

points starting from a point (i, j) on the RP can be written

Pn
i,j(ε) =


M(ε)

pni,j(z)dz (23)

with M(ε) = {z : z ∈ Rn, ∥z∥∞ 6 ε}.
If we set n = 1, we obtain the case of a single recurrence

point as we have Pn=1
i,j (ε) = Pi,j(ε). For n > 2, Pn

i,j(ε) can be
estimated numerically using the approach described by Genz [30].
The computation is based on a Cholesky decomposition of the
matrix �i,j and a classical Monte-Carlo estimation method. The
details of this approach are described in the Appendix.

In the case of a centeredwhite Gaussian noise with variance σ 2,
it is clear that Pn

i,j(ε) =

erf


ε
2σ

n, for i ≠ j. This result was also
reported in [32].

3.3. Computation of the probability Q n
i,j of the occurrence of a diagonal

of length exactly n

The computation of this probability is motivated by the DET
measure and RP-based entropy estimations, whichwill be detailed
below. The probability Q n

i,j(ε) to have exactly n consecutive
recurrence points forming a diagonal of length exactly n, starting
from a point (i, j) on the one-dimensional embedding recurrence
plot, can be deducted from the knowledge of Pn

i,j(ε).
In the generic case and without any assumption on the nature
of the pdf of the stochastic process, it reads as follows

Q n
i,j(ε) = [Pn

i,j(ε) − Pn+1
i,j (ε)] − [Pn+1

i−1,j−1(ε) − Pn+2
i−1,j−1(ε)] (24)

where Pn
i,j(ε) is given by Eq. (23).

In the right-hand side of Eq. (24), the first term ensures that
the diagonal is not longer than n beyond (i, j), and removing the
second term ensures that it actually starts in (i, j). By removing
the brackets, one can also see that the probability Pn+1

i,j (ε) is
subtracted from Pn

i,j(ε) to ensure that the point (i + n, j + n) is not
a recurrence point. Then, the probability Pn+1

i−1,j−1(ε) is subtracted
so that the point (i − 1, j − 1) is also a non-recurrence point.
Finally, the probability Pn+2

i−1,j−1(ε) is added because it is associated
to an event, which is included in the two events corresponding
to the probabilities Pn+1

i,j (ε) and Pn+1
i−1,j−1(ε). Note that Q n

i,j(ε) is the
probability that (i, j) is the starting point of a diagonal line of length
exactly n, that is, precluding the possibility of a backward diagonal
fragment starting from (i, j). The space of possible states is binary
(‘‘is the starting point’’ or ‘‘is not the starting point’’). Presumably,
this quantity decreases when n increases.

In the case of a centeredwhite Gaussian noise with variance σ 2,
we have Pn

i,j(ε) =

erf


ε
2σ

n and the expression of the probability
Q n
i,j(ε) given by Eq. (24) is simplified and can be written

Q n
i,j(ε) =


erf
 ε

2σ

n 
1 − erf

 ε

2σ

2
. (25)

This result confirms the findings reported in [32] for the analysis
of the RP of white Gaussian noise.

3.4. Computation of the probability Rn
i,j that (i, j) is the starting point

of a diagonal of length at least n and the theoretical ε-entropy κ(ε)

As previously described in Section 2, the RP-based estimation of
the ε-entropy κe(ε) (in the sense of correlation entropy) is obtained
through the distribution of the diagonal of length at least n. Here,
we derive the probability Rn

i,j(ε) to find a diagonal of length at least
n starting from point (i, j).

Since Q k
i,j(ε) is the probability to have exactly k consecutive

recurrence points forming a diagonal of length exactly k, starting
from a point (i, j), we can write

Rn
i,j(ε) =


k>n

Q k
i,j(ε). (26)

Here again, the space of possible states is binary. This quantity
obviously decreases when n increases (besides, whatever the
behavior of Q k

i,j(ε)). It is to note that Rn=1
i,j (ε) is not the probability

that (i, j) is recurrence point, due to the condition of being the
starting point of a line, which amounts to the condition that (i −
1, j − 1) is not a recurrence point.

The probability Q n
i,j(ε) being calculated through the probability

Pn
i,j(ε) (see Eq. (24)), the computation of Rn

i,j(ε) can be simplified by
making an assumption, which is similar to the assumption made
in Section 3.1 for the computation of the probability Pi,j(ε). The as-
sumption is that Pn

i,j(ε) is approximately independent of (i, j) for
|i − j| ≫ 1, which corresponds to locations on the RP that are not
too close to the main diagonal. It amounts to assume that the di-
vergence of trajectories (here originating from (i, j)) is statistically
homogeneous in the phase space. Pn

i,j(ε) is the probability that (i, j)
is the origin of a forwarddiagonal fragment of lengthn, without any
assumption on the points (i − 1, j − 1), (i − 2, j − 2), . . . , at the
previous time steps. In other words, the complete diagonal line to
which (i, j) belongs could be longer than n.

Practically and for the processes included in the numerical
experiments, we will see in the next section that this assumption
always holds for |i − j| larger than a few tens.
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Going back to the result of Eq. (24), and assuming that Pn
i,j(ε) =

Pn(ε) is independent of (i, j), we get a simplified expression of the
probability Q n(ε) of the occurrence of a diagonal of length exactly
n

Q n(ε) ≃ Pn(ε) − 2Pn+1(ε) + Pn+2(ε). (27)

Note that a similar relationship holds also for the so-called
cumulative and noncumulative distributions of diagonal lines in
the context of chaotic dynamics [36]. Starting from this result,
we can write an approximation Rn(ε) of Rn

i,j(ε), for which we also
assume an independence with respect to (i, j). The probability
Rn(ε) of the occurrence of a diagonal of length at least n starting
from a given point, can be obtained by cumulatively summing for
k > n the probabilities Q k(ε) to have diagonals of length exactly k
starting from this given point

Rn(ε) =


k>n

Q k(ε). (28)

Then, by replacing Q k(ε) according to Eq. (27), we obtain

Rn(ε) ≃


k>n

Pk(ε) − 2Pk+1(ε) + Pk+2(ε). (29)

It is then straightforward to see that an approximation of Rn(ε)
reads

Rn(ε) ≃ Pn(ε) − Pn+1(ε). (30)

Theoretically, as it is the case for φ(ε, n), Rn(ε) has an
exponential scaling with respect to the length n of the diagonal
lines [14]. We may note that an equivalent relationship can be
derived for the quantities corresponding to number of diagonals in
the case of RPs of symbolic sequences [14,24]. Thus, Rn(ε) provides
a theoretical approach for the computation of the ε-entropy κ(ε)
through its semi-log representation as a function of n, as we have

Rn(ε) ∝ e−n κ(ε). (31)

This scaling relationship provides a way to compute the
ε-entropy κ(ε) from the analytically derived expression of Rn(ϵ).
In Section 4, the value of κ(ε) obtained by this theoretical approach
will be compared for two Gaussian processes to the RP-based
estimation κe(ε) described in Section 2. In both cases, the result is
approximate due to the estimation of the exponent from a limited
number of values of n. In the theoretical approach, an additional
approximation is involved in the analytical computation of Rn(ϵ)
(see Eqs. (29) and (30)). In the RP-based case, additional sampling
effects are involved due to the finite-size of the RP (i.e. finite length
of the observation) and finite number of realizations.

3.5. Computation of the theoretical percent determinism DET th

The theoretical percent determinismDET th(ε, n) can be derived
from the probabilityQ n(ε) of the occurrence of a diagonal of length
exactly n. Here, we estimate Q n(ε) from the probability Q n

i,j(ε)
given by Eq. (24), by assuming once again that this quantity is
independent from (i, j) when |i − j| is large enough.

According to the definition of the percent determinism given
by Eq. (3) and after a normalization of the numerator and
denominator of the right-hand side of this equation, we can write

DET th(ε, n) =


k>n

kQ k(ε)
k>1

kQ k(ε)
. (32)

In the following section, the theoretical values DET th(ε, n) will
be compared to the estimatedpercents determinismobtained from
simulated series of the considered Gaussian processes.
4. Numerical experiments

In this section, we take as a basis the analytical expressions
derived above for the recurrence rate, the percent determinismand
the ε-entropy to investigate the practical use and quality of the
RP-based estimates of these quantities. In particular, we explore
the sampling effects (finite duration N), taking as a benchmark
two Gaussian processes: the AR(1) process and fractional Gaussian
noise (fGn).

4.1. General numerical procedure

For each of the considered processes, AR(1) and fGn, we
numerically estimate the quantities Pi,j(ε), Pn

i,j(ε), Q
n
i,j(ε) involved

in the computation of the theoretical recurrence rate REC th(ε),
percent determinism DET th(ε, n) and ε-entropy κ(ε). For each
process, we analyze two cases corresponding to different values of
the process parameters. All the theoretical probabilities involved in
the estimations of REC th(ε), DET th(ε, n) and κ(ε) were computed
for |i−j| = 100. The choice of this value is justified by a preliminary
study of the dependence of Pi,j(ε)with respect to |i−j| for different
values of the threshold ε, as well as a similar study for Pn

i,j(ε) with
n = 2 and 4.

Then, we compare the theoretical recurrence rates REC th(ε) to
the statistics of recurrence rates numerically obtained from the
simulated processes by using 50 realizations of 3 different lengths:
N = 1000, 500 and 250 time points, and ε values ranging from 0.2
to 1.2, with a step of 0.2. As mentioned in Remark 1, the RP-based
estimations are obtained in the same way for all RQA measures,
by constructing the RP of each individual sample path and then
averaging the resulting quantities over the sample paths.

The theoretical percent determinism DET th(ε, n) is then
compared for n = 2, 3 and 4 to its empirical counterpart for
each process, using the same numbers of realizations, data lengths
and ε values as those considered for the recurrence rate. For the
computation ofDET th(ε, n) fromEq. (32),we set themaximal value
of k to 10 (k 6 10), which was an appropriate choice for the range
of explored ε values (0.2 to 1.2).

Finally, according to the results of Section 3.4, we compare
the RP-based estimation κe(ε) to theoretical value κ(ε) derived
from the analytically computed expression of Rn(ε), for ε values
ranging from 0.1 to 2.0 with a step of 0.1. The computation of the
theoretical ε-entropy κ(ε) was performed through the semi-log
representation of Rn(ε) (see Eq. (30)) in its linear region. The RP-
based estimations κe(ε) were obtained for 50 realizations of AR(1)
and fGn processes, using 4 different lengths N = 500, 250, 125
and 75. In this case, we used the semi-log representation of the
RP-based histogram φ(ε, n) (see Eq. (4)) in its linear region.

To compute RQA measures of the simulated data, we used the
Cross Recurrence Plot Toolbox developed by N. Marwan [37]. No
Theiler window [22,7] was used for the computations performed
on these data.

4.2. First order autoregressive process AR(1)

We consider the centered and stationary Gaussian stochastic
process AR(1) [38] defined by

xi = ϕxi−1 + ηi (33)

where |ϕ| < 1 and η is a zero-mean white Gaussian noise
with variance σ 2. Note that the AR(1) process can be seen as the
discrete-time counterpart to the Ornstein–Uhlenbeck process.

The variance of this process is given by

⟨x2i ⟩ =
σ 2

1 − ϕ2
. (34)
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The covariance of the process is given by

⟨xixj⟩ =
σ 2

1 − ϕ2
ϕ|i−j|. (35)

Thus, we can express the quantity αi,j given by Eq. (14) as
follows

αi,j = 2
σ 2

1 − ϕ2
(1 − ϕ|i−j|). (36)

The probability Pi,j(ε) of the occurrence of a recurrence point
can then be obtained according to Eq. (16)

Pi,j(ε) = erf

 ε

2σ


1 − ϕ2

1 − ϕ|i−j|

 . (37)

According to the results of Section 3.2, the probability Pn
i,j(ε) to

have a diagonal of n consecutive recurrence points starting from
a point (i, j) can be obtained through the integration of the n-
variate Gaussian pdf pni,j(z), given by Eq. (22), over the domain
M(ε) = {z : z ∈ Rn, ∥z∥∞ 6 ε}. We recall that the associated
covariancematrix�i,j is defined by�i,j

= 3i
−3i,j

−3j,i
+3j (see

Eq. (21)). For an AR(1) process with covariance given by Eq. (35),
we obtain

Λi
k,l = ⟨xi+k−1xi+l−1⟩ =

σ 2

1 − ϕ2
ϕ|k−l| (38)

which is independent of i, and

Λ
i,j
k,l = ⟨xi+k−1xj+l−1⟩ =

σ 2

1 − ϕ2
ϕ|i−j+k−l| (39)

for (k, l) ∈ {1, 2, . . . , n}2.
Using these two expressions and for fixed parameters ϕ and σ

and a given diagonal length n, it is possible, through Eq. (23), to
compute Pn

i,j(ε) for different values of the absolute difference |i− j|.
We will show below that Pn

i,j(ε) is almost independent of |i− j| for
|i − j| large enough. After selecting a sufficiently large value for
|i − j|, we can compute Rn(ε) and κ(ε) from the results given by
Eqs. (30) and (31). Using expression (32), we can also obtain the
value of DET th(ε, n). These computations and the comparison to
the RP-based estimationswere performed for AR(1) processeswith
ϕ = 0.1 and ϕ = 0.9 (and σ = 1, see Eq. (33)).

4.3. Fractional Gaussian noise (fGn)

Fractional Gaussian noise (fGn) is often defined as the
increment process of fractional Brownian motion (fBm) [39,40],
which is a Gaussian and self-similar process with stationary
increments. fGn is a centered, stationary and Gaussian process. We
consider here the discrete-time case, for which the autocovariance
function is given by

γ (k) =
σ 2

2


|k + 1|2H − 2|k|2H + |k − 1|2H


(40)

where H is the Hurst exponent (0 < H < 1) and σ 2 is the variance
of the process. We will set σ 2

= 1 for the simulations.
To simulate sample paths of fGn, we used the classical

approach based on the Cholesky decomposition of the covariance
matrix [40], which (i, j) entry is given by Cf (i − j) = γ (|i − j|).

From Eq. (14), the quantity αi,j reads

αi,j = 2

1 − Cf (i − j)


. (41)
For fGn, the probability Pi,j(ε) can thus be obtained fromEq. (16)

Pi,j(ε) = erf


ε

2

1 − Cf (i − j)


(42)

In the case of fGn, the covariance matrix �i,j involved in the
computation of Pn

i,j(ε) is also defined by�i,j
= 3i

−3i,j
−3j,i

+3j

(see Eq. (21)), where

Λi
k,l = ⟨xi+k−1xi+l−1⟩ = Cf (k − l) (43)

which is independent of i, and

Λ
i,j
k,l = ⟨xi+k−1xj+l−1⟩ = Cf (i − j + k − l) (44)

for (k, l) ∈ {1, 2, . . . , n}2.
As for the AR(1) process, the numerical results will show that

Pn
i,j(ε) is almost independent of |i − j| for |i − j| large enough,

allowing the analytic computation of the theoretical values of κ(ε)
andDET th(ε, n). These numerical experiments and the comparison
with the RP-based estimations were performed for fGn with Hurst
exponents H = 0.3 and H = 0.7.

Remark 2. Due to the stochastic nature of the algorithm used
to compute multivariate normal integrals (see Appendix), it was
relevant to quantify the variability of the theoretical values of
Pn
i,j(ε) given by Eq. (23) in order to evaluate the quality of these

computations. The statistics of Pn
i,j(ε) were computed over 50 runs

of the algorithm, for |i − j| = 100 and for both AR(1) and
fGn processes. We observed that the relative variability of Pn

i,j(ε)
(coefficient of variation CVP ) was dependent on both ε and n. The
coefficient of variation CVP was found to be increasing with ε and
also when n was increased from 2 to 4. The maximal value of
CVP over ε values ranging from 0.1 to 2.0 (with a step of 0.1) was
obtained in the case of AR(1) process with φ = 0.9 and n = 4. Its
value was CVP = 3.6517 × 10−4. This result ensured an efficient
estimation of the theoretical values of Pn

i,j(ε) (for |i − j| = 100),
from its analytical expression obtained in Section 3.2 (Eq. (23)).

4.4. Dependence of Pi,j and Pn
i,j on |i − j|

We show here that Pi,j(ε) and Pn
i,j(ε) are veryweakly dependent

on |i − j| when |i − j| is large enough. The evolution of Pi,j(ε) for
|i − j| increasing from 0 to 100 is depicted in Fig. 1 for 5 different
values of ε. In all cases, Pi,j(ε) starts form the maximal value 1 for
i = j and then is stabilized for |i − j| large enough.

Figs. 2 and 3 show the equivalent result for probability Pn
i,j(ε),

respectively for n = 2 and n = 4. These curves confirm that these
probabilities also are very weakly dependent on |i − j| when this
difference is larger than few tens. These observations justify the
choice |i − j| = 100 reported in Section 4.1.

4.5. Comparison of the theoretical and empirical recurrence rates

We present here the comparison between the statistics of
recurrence rates REC computed from the RPs of 50 simulated
series of eachprocess and the theoretical recurrence ratesREC th(ε),
which are computed from Pi,j(ε) for |i − j| = 100. Figs. 4 and 5
show these results for 3 different lengths of the simulated series:
N = 1000, 500 and 250.

The results depicted in Figs. 4 and 5 show a very good accuracy
of the RP-based estimation of the recurrence rates REC for AR(1)
process with ϕ = 0.1 and both fGn processes, for all lengths of the
simulated series. A moderate increase of the variability of REC is
observed when the length N of the series is reduced, especially for
the largest values of the threshold ε.
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Fig. 1. The theoretical probabilities Pi,j(ε) as a function of |i− j| for ε = 0.1, 0.5, 1.0, 1.5 and 2.0, from lower to upper curves. (A) AR(1) with ϕ = 0.1, (B) AR(1) with ϕ = 0.9,
(C) fGn with H = 0.3, (D) fGn with H = 0.7.
Fig. 2. The theoretical probabilities Pn
i,j(ε) as a function of |i − j| for n = 2 and ε = 0.1, 0.5, 1.0, 1.5 and 2.0, from lower to upper curves. (A) AR(1) with ϕ = 0.1, (B) AR(1)

with ϕ = 0.9, (C) fGn with H = 0.3, (D) fGn with H = 0.7. For ε = 0.1, the curves are very close to zero when |i − j| > 2.
In the case of AR(1) process with ϕ = 0.9 (Fig. 4, panels (D),
(E) and (F)), the REC values are lower than in other cases and the
increase of the variability is more important with the decrease of
N . In addition, we observe a bias of the estimation forN = 500 and
250, which increases with the threshold ε. In these cases, there is
a systematic overestimation of REC .

4.6. Comparison of the theoretical and empirical percents determin-
ism

In this subsection, we show the results of the comparison
between the statistics of percents determinismDET estimated over
50 simulated series of each process and the theoretical percents
determinism DET th(ε, n), which are computed from Pn
i,j(ε) for |i −

j| = 100. Figs. 6 and 7 show these results for n = 2, 3, 4 and for 3
different lengths of the simulated series: N = 1000, 500 and 250.

In all cases, we globally observe an expected increase of the
variability of the estimation of percent determinism when the
length of the series is decreased. The results depicted in panels
(A), (B) and (C) of Fig. 6 indicate that, for the AR(1) process with
ϕ = 0.1, the estimation of DET is accurate for diagonal lines of
length at least n for all the considered values of n (n = 2, 3 and 4),
for the three considered lengths N = 1000, 500 and 250 points,
and for ε > 0.4. For ε = 0.2, the quality of the estimation is still
good for N = 1000 and 500 (see panels (A), (B) of Fig. 6). However,
for this lowest value of ε and when N = 250 (panel (C) of Fig. 6),
an overestimation is observed and it increases when n is increased.
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Fig. 3. Same as Fig. 2 for n = 4. For ε = 0.1 and ε = 0.5, the curves are very close to zero when |i − j| > 2.
Fig. 4. The theoretical recurrence rates REC th(ε) compared to the mean recurrence rates obtained from 50 simulated series of the AR(1) processes. The error bars indicate
standard deviations. (A) AR(1) with ϕ = 0.1, and N = 1000, (B) N = 500, (C) N = 250, (D) AR(1) with ϕ = 0.9, and N = 1000, (E) N = 500, (F) AR(1) N = 250.
In the case of AR(1) process with ϕ = 0.9, the results shown
in panel (D) of Fig. 6 corresponding to N = 1000 indicate a good
estimation of DET for ε > 0.4 for n = 2, 3 and 4. For ε = 0.2,
a moderate overestimation is observed and is more pronounced
when n is increased. In the case N = 500 (see panel (E)), a similar
behavior is observed but with better estimations when ε > 0.6.
For N = 250 (see panel (F)), the estimation of DET is accurate for
n = 2 and ε > 0.6, but a variable bias is noted for n = 3 and n = 4
for most ε values. This bias is reduced when ε is increased.

Fig. 7 shows the results obtained for fGn processes. For the two
cases H = 0.3 (panels (A), (B) and (C)) and H = 0.7 (panels (D), (E)
and (F)), the results are qualitatively similar. The estimations are
very good in almost all cases, except for N = 250. In this case, the
overestimation is mainly observed for ε = 0.2.
4.7. Comparison of the theoretical and empirical ε-entropies

We here perform the comparison of the ε-entropy κe(ε),
estimated from the empirical histogram of diagonal lines, with its
theoretical counterpart.

These quantities are derived respectively through the number
φ(ε, n) of diagonal lines of total lengths equal or larger than n
and the semi-log representations of the theoretical probability
Rn(ε). The former is estimated from the RPs of simulated sample
paths of the considered stochastic processes. Note that we adopt
here the same procedure as for the recurrence rate and percent
determinism (see Remark 1), that is, we generate the RPs and
histograms φ(ε, n) of each sample path, then we estimate the
individual κe(ε) and then calculate their statistics over the sample
paths.
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Fig. 5. REC values for fGn process (same configuration as Fig. 4). (A, B, C) with H = 0.3 and (D, E, F) with H = 0.7.
Fig. 6. The theoretical percents determinism DET th(ε, n) compared to the mean percents determinism obtained from 50 simulated series of the AR(1) processes. In each
panel, the 3 curves respectively correspond to n = 2, n = 3 and n = 4, from upper to lower curve. The error bars indicate standard deviations. (A) AR(1) with ϕ = 0.1, and
N = 1000, (B) N = 500, (C) N = 250, (D) AR(1) with ϕ = 0.9, and N = 1000, (E) N = 500, (F) AR(1) N = 250.
Figs. 8–11 illustrate the RP-based estimations of κe(ε) from 50
simulated sample paths of length 500 for two AR(1) processes
(ϕ = 0.1 and ϕ = 0.9) and two fGn processes (H = 0.3 and
H = 0.7), for ε = 1.0.

The comparison of the theoretical ε-entropy κ(ε) and themean
of the RP-based estimations κe(ε) is depicted in Fig. 12 for the
AR(1) process for both ϕ = 0.1 (panels (A) to (D)) and ϕ =

0.9 (panels (E) to (H)) and for ε ranging from 0.1 to 2.0 with a
step of 0.1. The statistics are computed over 50 simulated series
of decreasing lengths N = 500, 250, 125, and 75 points, from
upper to lower panels. The first qualitative observation is that
the shape of the ε-entropy curve is coherent with the expected
behavior for a discrete-time Gaussian stochastic process [41,42,4].
We also observe that, for a fixed value of the threshold radius ε,
the variability generally increases when the length N of the series
is reduced, especially for small values of ε. In addition, for a given
length, this variability is reduced when ε is increased. In the case
ϕ = 0.1, the results indicate an accurate RP-based estimation of
the ε-entropy for all lengths except for N = 75, but only for the
two smallest values of ε, 0.1 and 0.2 (see panel (D) of Fig. 12).When
ϕ = 0.9, we observe a deviation from the theoretical values for
N = 125 and N = 75, also for the smallest values of ε, 0.1 and 0.2
(see panels (G) and (H) of Fig. 12). In these cases, the ε-entropy is
underestimated when using the RP-based estimation method.
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Fig. 7. DET values for fGn process (same configuration as Fig. 6). (A, B, C) with H = 0.3 and (D, E, F) with H = 0.7.
Fig. 8. RP (A) of a 500-points sample path (B) of AR(1) process with ϕ = 0.1, without embedding and for a threshold radius ε = 1.0. Panel (C) depicts the number φ(ε, n)
of diagonal lines of total length equal or larger than n. In panel (D), the semi-log representation of φ(ε, n) is shown as a function of n, for the ten first values of n. Panel (E)
shows the corresponding theoretical probability Rn(ε) of the occurrence of a diagonal of length at least n obtained for the AR(1) process (for 10 values of n). Panel (F) depicts
the semi-log of Rn(ε) as a function of n. The slopes obtained from the two semi-log representations provide the empirical and theoretical values of the correlation entropy
for ε = 1.0, respectively κe(ε) = 0.6485 and κ(ε) = 0.6536.
For the fGn processes, the results depicted in Fig. 13 indicate
similar results but the underestimation of the ε-entropy is only
observed when the length of the series is N = 75.

5. Discussion and conclusion

The purpose of this study was to investigate the statistical
properties of the recurrence plots of data generated by discrete-
time stationary and Gaussian stochastic processes as a function
of the size N of the RP and the resolution ε used to construct it.
More specifically, we focused on specific measures widely used
in the literature (see [7,23] and references therein), including
the recurrence rate, the percent determinism and the RP-based
ε-entropy (in the sense of correlation entropy). We analytically
showed that, in the one-dimensional case (without embedding), it
is possible to estimate the theoretical probabilities of occurrence
of a recurrence point and occurrence of a diagonal of a given
length n. These results allowed us to compute the theoretical
values of the three RP-based measures of interest. The choice
of one-dimensional embedding, which implies a unit time delay,
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Fig. 9. Same as Fig. 8 for AR(1) process with ϕ = 0.9. In this case, the empirical and theoretical values of the correlation entropy are respectively κe(ε) = 0.7163 and
κ(ε) = 0.7057.
Fig. 10. Same as Fig. 8 for fGn process with H = 0.3. In this case, the empirical and theoretical values of the correlation entropy are respectively κe(ε) = 0.6294 and
κ(ε) = 0.6270.
facilitates the computations involved in the analysis but can also
be justified by the discrete-time nature of the stochastic processes
under consideration. Indeed, the statistics of diagonal lines for
different embedding dimensions d can be related since a diagonal
line of length n in dimension d appears as a diagonal line of
length (n + d − 1) when the embedding dimension is equal to
1. In the context of chaotic dynamics and dynamical invariants
estimation, the relevance of RPs constructed without embedding
has been demonstrated [43,36,6]. In addition, it should be noted
that in the case of one-dimensional embedding RPs, the maximum
and Euclidean norms used to define recurrences are equal. In this
work, we have used the maximum norm to define the domain
corresponding to a diagonal line: M(ε) = {z : z ∈ Rn, ∥z∥∞ 6 ε},
involved in the integration of the multivariate Gaussian pdf for
computing Pn

i,j(ε) (see Section 3.2). We emphasize the fact that
the maximum norm is here used as a shortcut of a mathematical
notation (and not as a convenient choice, like in the definition of
the RP, see Eq. (2)).

The proposed approach can be easily extended to other
measures based on diagonal lines such as the average diagonal
line length L (see for instance [7], where L is related to the mean
prediction time of the process). The definition of this measure
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Fig. 11. Same as Fig. 8 for fGn process with H = 0.7. In this case, the empirical and theoretical values of the correlation entropy are respectively κe(ε) = 0.5984 and
κ(ε) = 0.6057.
Fig. 12. The theoretical ε-entropy κ(ε) compared to the mean ε-entropy κe(ε) obtained from 50 simulated series of the AR(1) processes. The error bars indicate standard
deviations. (A) AR(1) with ϕ = 0.1, and N = 500, (B) N = 250, (C) N = 125, (D) N = 75, (E) AR(1) with ϕ = 0.9, and N = 500, (F) N = 250, (G) N = 125, (H) N = 75.
involves the number of diagonal lines of length exactly k, which
is also involved in the definition of the percent determinism
DET (ε, n), and as such investigated in ourmanuscript. In particular,
the theoretical value of L could be calculated using the probability
Q k(ε) of these diagonal lines. Similarly, the theoretical value of the
longest diagonal Lmax could also be extracted from Q k(ε). Another
RQA measure based on diagonal lines that can be theoretically
computed from Q k(ε) is the Shannon entropy of the distribution
of diagonal line lengths, denoted ENT (see [7]). Less frequent RQA
measures are based on vertical lines, for instance laminarity, which
is equivalent to DET for the vertical structures of the RP, and
trapping time given by the average length of vertical lines [7].
These measures are generally used for the quantification of the
occurrence of laminar phases or identify chaos–chaos transitions
and intermittency phenomena. In the present work, we have
not considered these measures which are dedicated to analyze
deterministic dynamics. Due to the very specificity of recurrence
networks, the associated measures are not related to diagonal-
lines statistics (which reflects the closeness of states over the
course of time). Accordingly, the extension of our results is not
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Fig. 13. Same as Fig. 12 for fGn processes. (A) fGn with H = 0.3, and N = 500, (B) N = 250, (C) N = 125, (D) N = 75, (E) fGn with H = 0.7, and N = 500, (F) N = 250, (G)
N = 125, (H) N = 75.
straightforward. Only the so-called edge density, which is the
formulation in network language of the recurrence rate, can be
covered by our study (see [33–35]).

In a recent work [18], Zou et al. emphasized the importance
of the stationarity of the studied stochastic process to correctly
achieve a RN analysis. For our analytical study of diagonal-based
measures of RPs such as ε-entropy (in the sense of correlation
entropy), the stationarity assumption is necessary to ensure
that the statistics are identical over all sub-RPs that could be
constructed from the original RP and that the extracted measures
will be equivalently computed over different segments of the
dynamics. The authors also reported that defining an embedding
dimension for a stationary stochastic process such as fGn is
theoretically impossible arguing that this process is infinite-
dimensional. However, they proposed that an embedding delay
can be formally obtained from time series generated by fGn
through the estimation of autocorrelation function. They reported
that a low-dimensional embedding is not recommended because
it will potentially lead to a loss of information. Our results suggest
that the considered RQA measures are accurately estimated
using one-dimensional embedding, even with H = 0.7, which
corresponds to a positively correlated (or persistent) process. In
the case of ε-entropy, the result of the analytical computation
described here is coherent with the expected scaling as a function
of ε (κ(ε) ∼ − ln(ε), see [41,42,44]). As mentioned previously,
one can relate the diagonal-basedmeasures computed for different
embedding dimensions. We also observe very similar results for
fGn with H = 0.3 and H = 0.7. This is in accordance with the
theoretical results regarding the scaling of ε-entropy,which cannot
distinguish fGns with different H exponent [44].

From a more general and conceptual point of view, it
should be noted that time delay embedding was originally
defined and developed rigorously in the context of deterministic
dynamics [22], allowing the reconstruction of phase space
trajectories of multivariate systems from univariate time series. In
a probabilistic framework, for an univariate discrete-time random
process, recurrence plots are used to characterize the statistical
behavior of predictability measures from the observation of a
realization of the process. The findings reported here are in
favor of the relevance of the construction of one-dimensional RPs
for discrete-time stochastic processes, given that stationarity is
assumed.Note that the proposed approach canbe extended tonon-
Gaussian stationary processes if the corresponding multivariate
integrals can be computed.

The numerical experiments performed on two classical Gaus-
sian processes show that the theoretical values of the considered
measures provide useful information to assess the quality of the
RP-based empirical estimations. The main conclusions that can be
made from the statistics obtained through these numerical experi-
ments are that the REC estimations are very good except in the case
of processes for which short series (N = 250) significantly deviate
from stationarity such as the AR(1) process for ϕ = 0.9 (see panel
(F) of Fig. 4). For DET measure, the estimation is globally accurate
for long series (N = 1000 and N = 500) and it is less efficient
for shorter data set (N = 250) and more crucially for values of ε
lower than 0.4 or 0.6. In this case, the overestimation is more pro-
nounced when n is increased. For the AR(1) process with ϕ = 0.9,
the overestimation is noted for both N = 500 and N = 250, for
n = 2, 3 and 4, especially when ε is small (see panels (E) and (F)
of Fig. 6). Once again, this result can be explained by the deviation
from the stationarity assumption. We underline that for problem-
atical values ε = 0.2 and ε = 0.4, the estimated and theoretical
values of REC approximately range from 0.05 to 0.20. Such values,
or even lower ones, are commonly used in the literature for vari-
ous applications. This observation is not in favor of the approach
based on targeting a low REC value as a criterion for selecting the
threshold radius ε optimizing DET estimation. It should be noted
that for values of the threshold ε larger than the range explored
here (0.2 to 1.2), the estimation of DET th(ε, n) from Eq. (32) can be
improved by using larger maximal k values to include more terms
in the involved sums. This is a natural consequence of the slower
vanishing of probability Q k(ε)with k, when ε is larger. Concerning
the RP-based ε-entropy estimation, the results suggest a more ro-
bust behavior regarding the length of data. Using 50 realizations,
the statistics showed that the estimations were globally efficient
for lengths N = 125 and even N = 75 for a threshold radius ε
larger or equal than 0.3. The poor performance of the RP-based es-
timations of the differentmeasures observed for the smaller values
of ε can be explained by the lack of neighbors in the state space,
which naturally reduces the quality of the corresponding statis-
tics. In addition, for the estimation of the ε-entropy, it should be
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noted that the linear region of the histogram φ(ε, n) is reduced
for the smaller values of ε. The deviations between the theoreti-
cal and empirical values observed for the shortest time series and
the smallest threshold radius values are also related to the choice of
the Theilerwindow [22,7]. For our simulations,we have chosen not
to use such a window because its determination is not straightfor-
ward for correlated stochastic processes. However, we observed a
better agreement between the theoretical and empirical values by
excluding only the main diagonal, especially for the DET measure
for n = 3 and n = 4. This is coherent since, for short series and low
ε values, the contribution of the main diagonal is relatively more
important. The theoretical expressions derived in Section 3 pre-
cisely provide a benchmark to validate such estimation choices. In
particular, the selection of an appropriate Theiler window based
on the probabilities Pi,j and Pn

i,j (see Figs. 1, 2, 3) could be an in-
teresting research perspective. The quantitative comparison of the
estimations of these RQA measures to their theoretical values can
be refined by performing appropriate statistical tests.

For our numerical experiments, we used 50 realizations of each
considered process. This choice was made to ensure a meaningful
estimation of the mean and standard deviation of the RP-
based measures when compared to their theoretical counterparts.
However, by reducing the number of realizations, we observed a
very good robustness of the resulting statistics up to less than 10
realizations (6–9, depending on themeasure), even for the shortest
series. The assumption of ergodicity is thus relevant here, such that
the number of realizations compensates for the finite length of the
sample paths.

As an example of real-world data presumed to be satisfactorily
modeled by a Gaussian process, hence in the scope of our study,
we may cite electroencephalographic (EEG) signals, which have
been already explored through RQA (see for instance [45,46]).
A preprocessing step is to model the experimental time series
using AR(p) autoregressive processes [47,48], generallywith a high
value of p. Implementing our general results for the case of these
processes (as done is Section 4 for the special case of AR(1)) would
allow one to predict the statistical behavior of RQAmeasures, with
respect to the length of the analyzed signals and the number of
available realizations of these signals.

In the present work, we proposed a methodological approach
to analytically study the RPs (with an embedding dimension
equal to 1) of a widespread class of random processes, namely
discrete-time stationary Gaussian processes. This approach allows
the theoretical computation of the recurrence rate and diagonals-
based measures such as percent determinism and ε-entropy given
that the covariance of the considered process is known.

These findings provide useful information and guidelines for
the processing of real-world Gaussian data in terms of theminimal
length of the series, number of realizations, threshold radius ε
used to construct the RP and the minimal length of diagonals for
the estimation of percent determinism. Further research should
confirm these statistical results for other classes of stationary
random processes.
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Appendix

For n ≥ 2, there is no closed-form expression for (23) and a
numerical method must be applied to compute the multivariate
integrals involved in this equation.

This is a classical problem encountered in various statistical ap-
plications and many contributions can be found in the literature.
The specific bivariate and trivariate normal problems have been
studied by several authors [49–53]. Other methods consider the
more general case of the multivariate normal integral [54,30]. In
our application, we have used the stochastic method proposed by
Genz [30]. The principle of this algorithm is to express the origi-
nal integral as an integral over the unit hyper-cube thanks to a se-
quence of transformations based on a Cholesky decomposition of
the covariance matrix. Denoting CCT the Cholesky decomposition
of the covariancematrix�i,j and (ck,l) the elements ofmatrix C, we
get [30]

Pn
i,j(ε) = (u1 − v1)

 1

0
(u2 − v2) . . .

 1

0
(un − vn)

 1

0
dw (45)

where we have

u1 = Φ


b1
c1,1


(46)

v1 = Φ


a1
c1,1


(47)

and for k = 2, . . . , n

uk = Φ


1
ck,k


bk −

k−1
l=1

ck,lΦ−1(vl + wl(ul − vl))


(48)

vk = Φ


1
ck,k


ak −

k−1
l=1

ck,lΦ−1(vl + wl(ul − vl))


(49)

with w = (w1, w2, . . . , wn)
T and Φ(y) =

1
√
2π

 y
−∞

exp(− 1
2θ

2)dθ
is the standard univariate normal distribution function. The real
numbers (ak) and (bk) correspond to the limits of the integration
domain. In our application, we set ak = −ε and bk = ε.

From the formulation given by Eq. (45), a classical Monte-
Carlo algorithm is used to compute the integral (see [30] for
more details). To achieve these computations, we used the freely
available source code provided by A. Genz.
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