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This paper presents a sample of the deep and multiple interplay between discrete and

continuous behaviours and the corresponding modellings in physics. The aim of this

overview is to show that discrete and continuous features coexist in any natural

phenomenon, depending on the scales of observation. Accordingly, different models, either

discrete or continuous in time, space, phase space or conjugate space can be considered.

Some caveats about their limits of validity and their interrelationships (discretisation and

continuous limits) are pointed out. Difficulties and gaps arising from the singular nature of

continuous limits and from the information loss accompanying discretisation are discussed.
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1. Introduction: setting the stage

This special issue of Mathematical Structures in Computer Science reflects the deep and

multiple debates arising in pure and computational mathematics that concern discrete

versus continuous frameworks and computations. The issues under debate range from

practical caveats about the use of discrete computational schemes for solving continuous

equations, or continuous frameworks to describe discrete systems, through to conceptual

questions about the very nature, either discrete or continuous, of reality (not just our

perception of reality). The tension between discrete and continuous aspects is also

ubiquitous in physics. In this contribution, I will try to give a brief, though inevitably far

from complete, account of the numerous facets of this dilemma from a physical viewpoint,

with as few prerequisites as possible.

1.1. The terms of the debate: ‘discrete’ and ‘continuous’

We will begin by clarifying the issues and sketching a skeleton on which specific examples

will be built. The first step is to agree on the terms of the debate. The words discrete and

continuous can refer to:

Time: The evolution of a system can be described either as a continuous trajectory in the

space of system states (what is called the ‘phase space’), or as a discrete sequence of

successive states (see Section 2).

Real space: The underlying space (of dimension d= 1, 2, 3 in natural situations or possibly

larger in theoretical case studies) might be seen either as a continuum, where positions
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are labelled by d real-valued coordinates or as a tiling of discrete cells, or, equivalently,

as a lattice, where positions are labelled by d integers (see Section 3).

Phase space: The representation of the system state may scan a continuum (a vector space

or a manifold) or vary within a discrete set (finite or countable) of configurations (see

Section 4).

Conjugate space (in the context of spectral analyses): We shall see in Section 5 that spectra

offer another modality to the ‘discrete versus continuous’ dichotomy.

Note that the meaning of ‘continuous’ is less ambiguous in physics than in mathematics,

where set-theoretic, topological and measure-theoretic notions of continuity are superim-

posed. In physics, the required smoothness is included in the very notion of a continuous

medium, and in the same way, a continuous dynamical system will be differentiable unless

explicitly stated to be otherwise. It may seem sensible to distinguish between discrete

systems, namely those made of disjoint (seemingly intrinsic) particles, and discretised

systems, resulting from a (seemingly arbitrary) partition. However, the examples of

quantum particles, localisation and pattern formation (Section 3), and symbolic dynamics

(Section 4) will show that such a distinction may, in fact, be irrelevant.

1.2. The debated questions

The debate itself takes place at different levels:

— It might concern computational techniques, for instance, discrete numerical schemes

used to implement continuous equations, or continuous limits replacing an exact

discrete formula by an approximate but tractable one.

— It might refer to the choice of the proper framework to model the system according to

the phenomenon of interest and the description (or observation) scale.

— Finally, it might consider the nature of the phenomenon, and investigate the observable

consequences of the discrete nature of any actual material (made of atoms) and the

quantum nature (discrete low-energy levels) of these atoms or, on the other hand,

investigate whether the underlying continuous wave function of the system is essential

to understanding its behaviour.

This third facet of the debate partly vanishes in the now generally accepted ambivalent

picture of, say, an electron viewed jointly as a particle and as a wave, and we will see that

similar ambivalent pictures are also the rule at larger scales in classical physics.

2. Discrete versus continuous in time

In this section I present some examples illustrating the relationships between discrete-time

and continuous-time dynamic modellings. The focus will be on difficulties that can arise,

in theoretical modelling (Sections 2.1, 2.2, 2.3), data analysis (Section 2.4) or numerical

implementation (Section 2.5), when trying to form a bridge between the discrete and

continuous viewpoints.
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Fig. 1. Poincaré section discretisation method. The periodic orbit O is underlined in bold. The

successive intersections x0, x1, x2, . . . of a continuous trajectory with the section Σ define the return

map ϕΣ through x1 = ϕΣ(x0), x2 = ϕΣ(x1), and so on.

2.1. Poincaré sections

A generally accepted example of a discretisation procedure for a continuous dynamical

system is provided by Poincaré sections (see Figure 1). This procedure was devised by

Poincaré in the context of celestial mechanics, with the aim of reducing the analysis of

long-term planetary motion and its dynamic stability (Poincaré 1892).

Let us consider an autonomous differentiable dynamical system ż = V (z), generating a

flow Φ(z, t) and possessing a periodic orbit O of period T . The behaviour of the flow in the

neighbourhood of O can be tracked through the successive intersections of the flow with

a hypersurface Σ (for instance, the locus of points sharing a common phase) crossing O
once and transversally at x∗ ∈ Σ. One thus defines the return map ϕΣ (or Poincaré map) in

an appropriate neighbourhood U of x∗ in Σ: the point x1 = ϕΣ(x0) is the first intersection

with Σ of the trajectory t → Φ(x0, t) starting from x0 ∈ U, and the time τ(x0) at which

the intersection occurs (that is, such that Φ(x0, τ(x0)) = ϕΣ(x0) = x1) is called the return

time (Guckenheimer and Holmes 1983). By construction, ϕΣ(x∗) = x∗, that is, x∗ is a fixed

point of the Poincaré map and τ(x∗) = T .

The rationale for this discretisation is the qualitative similarity between the behaviour

of the discrete evolution generated by ϕΣ in Σ behaviour of the original (continuous)

flow, in particular, with regard to the stability of the periodic orbit O, which is identical to

the stability of its trace x∗ under the action of the Poincaré map ϕΣ. The correspondence

is even quantitative, as we shall see now. Linearising the continuous dynamical system

ż = V (z) around the periodic orbit O yields an equation u̇ = DV [Φ(z, x∗)].u whose

solutions are of the form u(t) = u0(t)e
tR , with u0(t+ T ) = u0(t) for any t and R a matrix.

The eigenvalues (Λj)j of the constant matrix eTR are called the Floquet multipliers of the

orbit O. The multiplier associated with perturbations along the orbit O is Λ0 = 1; the

moduli of the remaining ones determine the stability of O (stable if all are smaller than 1).

It is straightforward to show that the eigenvalues (λj)j of the Jacobian matrix DϕΣ(x∗) of

ϕΣ in x∗ (also called the stability matrix of the fixed point x∗) are related to the Floquet

multipliers by the equation Λj = eλjT (with Λ0 = 1) (Guckenheimer and Holmes 1983):

the (in)stability of x∗ with respect to the discrete Poincaré dynamics is thus equivalent to

the (in)stability of the periodic orbit O with respect to the original continuous dynamics.

The multipliers (Λj)j are characteristics of the periodic orbit as a whole, and hence do
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not depend on the specific intersection point x∗; in consequence, changing the section Σ

would not modify the exponents (λj)j , or the stability properties derived from the analysis of

the discrete dynamics.

In this method, the discretisation step is not chosen arbitrarily but prescribed by the

dynamics. The main virtue of a Poincaré section is, indeed, that it provides an intrinsic

discretisation, lowering the phase space dimension by at least one unit, that is adapted to

the dynamics (the time step τ(x0) depends on the trajectory considered). It captures some

generic features of the continuous flow, for example, perturbations modifying trajectories

outside Σ are of no consequences if the intersections with Σ are preserved. It is thus a

first step in bringing out the geometry of the dynamics and its universal properties.

An important caveat is the restricted range of validity (in the phase space) of this

discretisation: the return map is defined only in a neighbourhood U of the periodic orbit

O (which should intersect Σ once only). Smoothness of the flow in U is also essential.

This is usually satisfied, ensuring a wide range of application of the Poincaré section

method, but in some special instances, it may happen that the return time τ(x) is not

bounded above and below in U, and the Poincaré map then fails to reflect quantitatively

the behaviour of the flow: if τ(x) does not remain in a finite interval [τm, τM] (with τm > 0

and τM < ∞) for any x ∈ U, the time correlation functions of the discrete and continuous

flows differ strongly, and, accordingly, their Fourier transforms (which are called power

spectra, see Section 5.3) exhibit different behaviours. For instance, the divergence of τ(x)

makes the correlation time of the continuous flow diverge even if the correlation function

of the discrete evolution is well-behaved, that is, decreases exponentially with a finite

characteristic time. The way out of this difficulty is to keep track of the return time

function x → τ(x). To this end, a new mathematical object has been introduced, which is

known as a special flow (or ‘flow under the function τ(x)’, or ‘flow over the map ϕΣ(x)’).

It is a continuous-time dynamics [x(t), y(t)], with a step-wise constant component x(t)

(associated with the Poincaré map) varying in the Poincaré section Σ and another function

y(t) taking real positive values. It is defined recursively as follows:

— Starting from (x0, 0) at time t = 0, the second component y steadily increases with

velocity 1 until it reaches the value τ(x0), at time t = τ(x0).

— The trajectory then jumps from [x0, τ(x0)] to the point [x1 ≡ ϕΣ(x0), 0].

— The second component then steadily increases with velocity 1 until it reaches the value

τ(x1), at time t = τ(x0) + τ(x1).

— The trajectory then jumps from [x1, τ(x1)] to the point [x2 ≡ ϕ2
Σ(x0), 0], and so on.

Such a flow forms a bridge between the dynamics generated by the Poincaré map, which

is too reduced in the singular cases considered here, and the original continuous one: the

spectral properties (that is, time correlations) of the special flow matches those of the

continuous dynamics (Zaks and Pikovsky 2003).

2.2. Billiards and Birkhoff maps

A special instance of Poincaré maps is encountered in billiards (see Figure 2). The motion

of a tracer point-particle inside the billiard is an alternation of free flights and elastic
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Fig. 2. Three examples of chaotic billiards: (left) Sinai’s billiard, (middle) Bunimovich’s stadium,

(right) when the outer square wall of the Sinai’s billiard is replaced by a circular wall, the inner

disk should be eccentric in order to get chaos.

reflections on the boundaries: consequently, the phase space has dimension d = 3 for

a billiard in the plane, since the modulus of the particle velocity remains constant. The

dynamic recursion is fully determined by a knowledge of the collisions, namely, by the

map relating a pre-collision state to the next one, which is known as the Birkhoff map

(Gaspard 2004a). This corresponds to the Poincaré map associated with the section

containing the particle states {(�r,�v)} with�r located on the boundary and �v the incoming

velocity. The return time is equal to the free flight duration, and hence depends on

the overall shape of the billiard (in general, on the boundary point where reflection

occurs). The Birkhoff map critically depends on the local geometry of the boundary:

for instance, a convex boundary (for example, a disk) is defocusing and amplifies any

incident inhomogeneity or fluctuation, generically leading to chaos if iterated in a bounded

domain, as in the Sinai’s billiard represented in Figure 2 (left).

2.3. Discrete models

Discrete models can also be introduced directly, for instance in population dynamics,

where each time label corresponds to a generation. Let us consider the formal example

xn+1 = xn + hg(xn) in order to underline a key point: the comparison with a continuous

counterpart dx/dt = ag(x) over a duration h0 shows that the parameter h = ah0 accounts

for both the instantaneous growth rate a and for the delay h0 that takes place between

the action ag(xn) and its consequence on the following state xn+1. It is thus not surprising

that h appears as a control parameter of the behaviour. Oscillations might appear at

large enough values of h if g is non-linear – typically when the delay h0 overwhelms

the characteristic growth time 1/a. This point is worked out for detailed examples in the

contribution by H. Krivine et al. in this volume, where it is shown to give a qualitative,

and even a quantitative, understanding of the instabilities arising in the numerical (hence

discrete) implementation of continuous dynamics (see also Section 2.5).

More generally, it should be borne in mind that dynamical system modelling, for

example, for chemical reactions, accounts for time lags through kinetic rates of memoryless

evolution equations. This is technically most fruitful, but might sometimes erase the actual

mechanisms, for example, the interplay between delays and characteristic times, or the

kinetic race between competing chemical pathways. Alternative approaches have been

developed, such as delay equations, integro-differential equations involving a memory

kernel, or a logical circuit analysis (Thomas and Kaufman 2001), which is technically

more tractable for complex systems.
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2.4. The Nyquist theorem on experimental sampling frequency

On the experimental side, concrete bounds imposed by time resolution of the recording

apparatus are described by an important theorem of signal analysis: the Nyquist theorem

(Nyquist 1928; Shannon 1949). Sampling frequency puts a limit on the variations that

can be followed: it is obvious that variations occuring faster than the sampling frequency,

hence taking place between two successive recordings, cannot be tracked. The Nyquist

theorem makes this quite intuitive statement quantitative: a full experimental determination

of a time signal f(t) containing no frequencies higher than ωm requires us to sample the

signal with a time resolution τ � τm = π/ωm. To be more precise, the case of discrete

sampling (when the apparatus needs to relax between successive measurements) should

be distinguished from the case of local averaging (when the overwhelming lag comes from

the time integration performed by the apparatus to deliver a value), which is reflected in

a factor of 2 in the above bound.

2.5. Euler discretisation schemes

Numerical resolution of continuous equations dX/dt = g(X) is generally implemented

using finite difference methods, such as the (first-order) Euler discretisation scheme xn+1 =

xn + hg(xn) with xn ≈ X(tn=nh). In this numerical analysis context, the relation between

discrete-time and continuous-time dynamics is well controlled and harmless provided the

continuous evolution has characteristic times bounded below by 2τm and the discretisation

step h remains below τm, in agreement with the Nyquist theorem (see Section 2.4). Higher-

order schemes involve a higher-order Taylor expansion of the (integrated) continuous

evolution law X(tn + h) = X(tn) +
∫ h

0
g[X(s)]ds, leading to the following recursion at

order 2: xn+1 = xn + hg(xn) + h2g(xn)g
′(xn)/2. Using these higher-order schemes allows

us to relax the bound hc on the time step up to which the numerical scheme is ‘stable’,

in the sense that its discrete-time solution interpolates the continuous one. The stability

threshold hc(n) of the Euler scheme of order n increases with n up to infinity. Implicit

schemes can be used to cure the numerical instability of direct schemes (they actually

correspond to a direct scheme of infinite order): basically, the idea is to solve the

recursion xn+1 = xn + hg(xn+1) instead of xn+1 = xn + hg(xn) in order to reconstruct the

continuous solution of dX/dt = g(X). The price we pay is that these implicit schemes

are far less tractable numerically. A basic example is detailed in the contribution by

H. Krivine et al. in this volume. Another well-known example of misleading discretisation

is provided by the Verlet time-discretisation for the pendulum: one obtains the standard

map (In+1 = In +K sin θn, θn+1 = θn + In+1) whose control parameter K is proportional to

the discretisation step h. For h > hc, it is chaotic, while the original system is regular.

3. Discrete versus continuous in real space

The discussion about discrete or continuous time variables presented in the previous

section should naturally be supplemented with a similar discussion regarding real-space

variables. Issues range from the nature of a particle (Sections 3.1 and 3.7) to the status
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Fig. 3. (Left) microscopic deterministic model of diffusive transport (the Lorentz gas model, which

was initially developed as a classical model of electron transport in the lattice formed by the

atomic nuclei (Dorfman 1999)) where a light particle experiences numerous elastic collisions on

circular scatterers (grey disks). The defocusing character of the collisions induces molecular chaos,

in turn generating a diffusive motion and supporting a statistical approach. (Right) observation at

time t of the microscopic simulation (implementing discrete random walks) of diffusion in a

semi-infinite box, starting from a step in x = 0 at time 0. (Extreme right) average profile n(x, t)

(vertical axis represents the spatial coordinate x whereas concentration n(x, t) spans values from 0

to 1 horizontally); n(x, t) tends to the solution of the 1-dimensional diffusion equation ∂tn = ∂2
xxn

as the number of particles tends to infinity.

of lattice models (Section 3.2), caveats about continuous limits (Sections 3.3 and 3.4), and

the origin and modelling of localisation (Sections 3.5 and 3.6).

3.1. From molecular chaos to continuous media

In classical physics, an important paradigm bridging the discrete structure of any material

made of atoms or molecules and a continuous description is the continuous medium

approximation. It corresponds to a mesoscopic modelling of a many-particles system

extended in space, for instance a fluid, starting with a partition of the real space into

cells of linear size a (it is noticeable that the passage from a cloud of particles to a

continuous medium begins with a real-space discretisation). The main assumption is that

a is large compared to the microscopic scales (for example, the mean free path of the

molecules), but small compared to the macroscopic scales (for example, the characteristic

length associated with density or temperature gradients). In particular, each cell should

contain a large number of particles: ρad 	 1 if ρ is the number density of the fluid

and d the real-space dimension. An argument based on the law of large numbers, itself

rooted in an assumption of molecular chaos preventing long-range correlations between

the molecules (see Figure 3), supports a continuous description of the medium at the

cell level: any observable A will be associated with a smooth and deterministic field

A(�r, t), where A(�r, t) is the value of A averaged at time t over the cell located in �r. For

instance, in hydrodynamics, A will be the density, velocity or temperature field (Landau

and Lifschitz 1984).

This description emerges from a full statistical picture describing the N-particle system

through its distribution function fN such that

fN(�r1,�v1, . . . ,�rN,�vN, t)d
d�r1d

d�v1 . . . d
d�rNd

d�vN
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Fig. 4. Lattice approximation (right) of a Brownian trajectory (left). The associated dynamic model

is a lattice random walk (Markov chain) fully prescribed by the probability of jumping from any

node to one of its nearest neighbours on the lattice.

is the probability that for each j = 1, . . . , N, the particle j lies in the elementary volume

dd�rj ∼ ad around �rj with a velocity lying in the elementary volume dd�vj around �vj
(where again d is the dimension of the real space, that is, normally d = 3). The time

evolution of this distribution function is ruled by the Liouville equation following from

the deterministic Newtonian dynamics for the N particles. The following steps are to

integrate over N − 1 particles, then to use the Boltzmann approximation

f2(�r1,�v1,�r2,�v2, t) ≈ f1(�r1,�v1)f1(�r2,�v2)

(again supported by the decorrelation achieved by molecular chaos) to express the

evolution of f1(�r1,�v1) in a closed form (that is, involving only f1), and, finally, integrating

out the velocity�v1 to get the density n(�r, t) and the velocity field �u(�r, t) (Dorfman 1999)

n(�r, t) =

∫
f1(�r,�v)d

d�v, �u(�r, t) =
1

n(�r, t)

∫
�vf1(�r,�v)d

d�v (1)

and the temperature

T (�r, t) =
1

d kB n(�r, t)

∫
mv2

2
f1(�r,�v)d

d�v. (2)

This description is generally supplemented with a hypothesis of local thermodynamic

equilibrium, in each cell, allowing us to use all the thermodynamic relations at each point�r.

The simplest example is the description of transport phenomena, for example, the diffusion

equation ∂tn = D∆n (where ∆ denotes the Laplacian) starting from deterministic molecular

dynamics (Laguës and Lesne 2003). Work is still in progress to extend such an effective

continuous mesoscopic description to far-from-equilibrium systems, the main open issue

being to define entropy and temperature on microscopic bases (Gruber et al. 2004).

3.2. Lattice models

Conversely, continuous models might be reduced, for example, for computation or

simulation purposes, into lattice models, where the underlying real space is a regular lattice.

Three major examples are illustrated in Figures 4, 5 and 6, namely, Brownian motion

on a lattice, random-walk modelling of polymer chain conformations and percolation

theory for, for example, porous media and other disordered systems. We will now consider
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Fig. 5. Lattice models of polymers. (Left) Brownian random walk, with no correlations between

successive steps; the size a of a step (a ‘monomer’) should be larger than the persistence length of

the actual polymer chain so that all relative orientations are possible. (Middle) steric hindrance

between successive monomers is taken into account in a more refined model, known as

self-avoiding walk; it exhibits an infinite memory since the walker remembers all the previously

visited nodes in order to avoid them. (Right) a third model, the interacting self-avoiding walk,

accounts for short but finite range interactions between monomers: self-avoidance (infinite

repulsion between monomers at the same point) is here supplemented by an interaction −J
(attractive if J > 0) between any neighbouring steps (that is, monomers) on the lattice (dotted

lines).

Fig. 6. Percolation models: the real space is discretised, either as a lattice of nodes (a: site

percolation), a web of links (b: bond percolation), both (c: site-bond percolation) or as a web of

oriented links (d: directed percolation). Each unit (node or link) is supposed to be fully described

by a Boolean state variable 0 (empty) or 1 (occupied). Sites are occupied (links are present) with a

probability p independently each of each other. Overall behaviour (for example, conductivity,

permeability, contagion) depends on the existence of a percolating cluster, namely a connected

path bridging the opposite sides of the lattice; its emergence is a critical transition, occurring for a

well-defined probability pc (percolation threshold) when lattice size goes to infinity (Stauffer and

Aharony 1992).

briefly the main discrepancies arising between lattice models and actual systems, and the

situations where lattice models are relevant.

The discretisation is all the more perceptible as the relative size L/a is small (a being

the linear cell size and L the linear lattice size). The continuous limit corresponds to

a/L → 0. A strong lattice effect might originate from the restricted symmetry properties

of the lattice: translational invariance is replaced by invariance under translations of step

equal to an integer multiple of a (we here recover the criterion of validity a � L). Isotropy

breaks down and is replaced by invariance under the action of finite groups of rotations

(those encountered in the natural lattice structures of crystals).

Using lattice models is especially relevant when investigating universal properties, that

is, properties common to physical systems of very different natures but sharing the same

geometrical properties and symmetries. Let us consider, for instance, percolation models
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(see Figure 6). A remarkable feature is the percolation transition, that is, the emergence

of an infinite cluster spanning the whole system, above a threshold p = pc. This transition

appears to be a close analogue of a second-order phase transition and it accordingly

satisfies scaling laws; for instance, the correlation length ξ obeys: ξ(p) ∼ |p − pc|−ν .
The value pc of percolation threshold depends on the lattice geometry (for example, it

differs between a square lattice and a triangular lattice), but the exponents involved in

the scaling laws, such as ν, depend only on the space dimension and percolation type

(Laguës and Lesne 2003). In the same spirit, universal properties of diffusion support its

implementation with discrete random walks: the exponent γ involved in the diffusion law

R(t) ∼ tγ/2 will not depend on the lattice geometry (provided the lattice remains regular).

One may go further and show, using renormalisation methods (Lesne 1998), that universal

properties are identical in continuous systems and in their discretised versions; the latter

will be preferred for obvious reasons of simplicity in theoretical, and even more so in

numerical investigations.

3.3. Diffusion in a porous medium

As presented in Figure 3, diffusion basically involves the motion of discrete particles.

An operational way to get a continuous description of a diffusion process is to cast the

behaviour into a phenomenological description involving effective parameters accounting

for all microscopic details through their integrated consequences at higher scales. We will

consider diffusion in a porous medium. Two situations should be distinguished (Laguës

and Lesne 2003):

— The pores have a finite typical size a. The intuitive idea is that at scales far larger than

a, the medium can be considered as a homogeneous continuous medium (see Figure 7).

Mathematically well-controlled averaging procedures and homogenisation theorems

are then available, for example, relating the derivatives of averaged variables and the

average derivatives (Bensoussan et al. 1978). It is thus possible to derive the spatio-

temporal evolution of the locally averaged density (averaged over a representative

region, far larger than a pore but still elementary compared to the whole system). The

remarkable fact is that it has the same form as the plain diffusion equation. Such a

homogenisation procedure thus yields an effective diffusion equation with a reduced

diffusion coefficient Deff < D accounting for the obstacles encountered by the diffusing

particles (having a diffusion coefficient D in plain solvent).

— The medium exhibits pores at all sizes (fractal substrate). The diffusion is then

anomalous: R(t) ∼ tγ/2 with γ < 1. A relevant theoretical approach is to mimic

the medium using a percolation model right at the percolation threshold, then to

investigate transport on the (fractal) percolation cluster. A relation can thus be shown,

relating the fractal characteristics of the cluster (its fractal dimension df and its spectral

dimension ds � df) and the exponent of the diffusion law, namely γ = ds/df .

This example of diffusion in a porous medium illustrates a wide-ranging conclusion:

continuous limits and effective descriptions require characteristic scales to be bounded and

their validity range lies far above these bounds.
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Fig. 7. Homogenisation of a diffusion process in a porous medium: particles, of diffusion

coefficient D inside the pores, experience a hampered diffusive motion at larger scales; if the

typical size of the pores is finite, normal diffusion is still observed, with lower diffusion coefficient

Deff , where Deff/D is related to the medium porosity (Nicholson 2001; Laguës and Lesne 2003).

?

a

Fig. 8. (Left) wind-tree model where the motion of a tracer is non chaotic. (Middle) Lorentz gas

model (see also Figure 3) where the motion of a tracer is chaotic. (Right) what can we say about

polygonal scatterers when the facet size a tends to 0?

3.4. Wind-tree discrete/continuous paradox

The Lorentz-gas model (shown in Figure 3) is an array of circular scatterers amongst which

a small tracer particle travels, experiencing elastic collisions at encounters with scatterers.

The wind-tree model is quite similar, except that disks are replaced by squares (see Figure 8).

One can imagine passing from a wind-tree model to a Lorentz gas by considering instead

of squares, polygons of constant area and an increasing number of sides (the well-known

Archimedian limit towards a circle). It can be shown that the tracer motion is chaotic in

a sufficiently dense and generic Lorentz gas (at low densities or in special geometries, the

tracer would escape along a free flight without experiencing any collisions). By contrast,

the motion is not chaotic for any polygonal wind-tree model, so how can we match

these behaviours when the polygons are physically indiscernible from disks? Physically,

the puzzle is solved when looking at relevant (large enough) scales: in both models, the

tracer exhibits a diffusive motion. Mathematically, the way out of this paradox requires

the introduction of an intermediate notion, which is adapted to the resolution ε, here in

real space: this is the ε-entropy (Boffetta et al. 2002). The precise definition is given in

Section 4.4: it is a time entropy measuring the rate at which observation of the motion

with an accuracy ε generates information about the trajectory. Its behaviour with respect

to ε determines the nature of the motion: limε→0 h(ε) = h > 0 for chaotic motion and

h(ε) ∼ 1/ε2 for Brownian motion. In the case of an array of polygons of side a, the tracer

motion looks regular at scales ε < a, as reflected by the values h(ε) ≈ 0, but it looks

chaotic at scales ε > a, according to the values h(ε) ≈ const > 0, and even diffusive at

scales ε 	 a, corresponding to a behaviour h(ε) ∼ 1/ε2.
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3.5. Localisation and pattern formation

Pattern formation, namely the spontaneous appearance of well-defined shapes and

patterns in an initially homogeneous system, is ubiquitous in the natural sciences (Cross

and Hohenberg 1993; Murray 2002). The emergence of discrete shapes and localised

structures relates this issue to our main topic. One of the lessons of pattern formation

studies, supplemented by the development of minimal models, such as the set of two

coupled reaction–diffusion equations introduced by Turing as a model of morphogenesis

(Turing 1952), is that localisation often follows from collective effects extended in space. It

is the very presence of a spatially extended reactive substrate and non-linear interactions

that lead to a phenomenon highly localised in space and seemingly involving only a

tiny, almost discrete region of the system. For instance, the stripes observed in Turing

structures (corresponding to roughly step-like concentration profiles for the two reactive

chemical species) are actually discrete features of an interacting whole, and they are

indissolubly linked together: it is impossible to isolate, or even to modify one band without

modifying another one, and the system can only be regulated as a whole. Such an example

illustrates the ambivalent nature, both discrete (in their expression) and continuous (in

their mechanisms) of most dynamic patterns encountered in the natural sciences.

3.6. Localisation and the Dirac ‘generalised function’

On a more abstract level, localisation provides a tractable example of the mathematical

idealisation commonly at work in physical modelling. Point particles or the position

of some event spatially localised in x0 are commonly described by a Dirac ‘function’

δ(x− x0). It is actually a generalised function, which is well defined in the framework of

the theory of distributions developed by Schwartz. Its physical meaning follows from the

limiting behaviour (weak convergence) of peaks of increasing height, decreasing width

and constant area:

δ(x− x0) = lim
a→0

1√
2πa

e− (x−x0)2

2a . (3)

In practice, a unimodal distribution centred in x0 can be identified with δ(x − x0)

provided its width satisfies a � δxobs where δxobs is the experimental resolution. The

Dirac distribution is the mathematical idealisation of ‘point mass’, which is so often used

in physics. Its interest for physicists is to endow physical reasoning with mathematical

rigour. From a mathematical viewpoint, its achievement is to unify entities with seemingly

different mathematical natures (functions and measures) within a comprehensive theory,

in which objects are defined, not in themselves, but through their actions on ‘probes’,

namely test-functions (the basic idea of weak convergence). Remarkably, this property is

shared with our physical access to the real world.

Another example is provided by the time analogue of a point mass, namely an

instantaneous impulse. This ideal event corresponds to an infinite force applied during

a vanishing time duration. This event can be physically realised in the same way, by

considering the limiting behaviour associated with a large force applied for a short

duration, when the force and the inverse duration tend to infinity in a concerted way,

namely with a fixed ratio.
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In the same spirit, non-standard analysis allows us to handle limiting behaviours in

a more transparent way. It suppresses the qualitative gap between finite and limiting

quantities arising when taking a limit ε → 0 by introducing an explicit ‘extension of the

mathematical world’, thereby giving a mathematical status to infinitely small quantities,

and replacing qualitative shades by a well-defined ordering between these infinitely small

quantities (Diener and Diener 1995).

3.7. Discrete versus discretised systems

It now appears that there is no reason to make a fundamental distinction between discrete

and discretised systems: an object seems to be intrinsically discrete, even isolated, only if

we choose the proper glasses. Let us consider for instance an atom: at very small scales,

those of quantum mechanics, this ‘particle’ is delocalised. This dichotomy even appears

in the classical framework: at long time scales, we do not record a single position of

the particle but rather the distribution of its probability in the whole space; we might

speak of ‘the position’ of the particle only if the width of this distribution is smaller than

the relevant spatial scales (for example, observation scales or interaction ranges). Hence,

discrete objects are not really any more ‘objective’ than an arbitrarily chosen partition of

the space into cells.

4. Discrete versus continuous in phase space

4.1. From agent-based descriptions to continuous models

The relationship between agent-based descriptions, right at the level of individuals, and

kinetic continuous-state descriptions is a ubiquitous issue, encountered, for instance, in

population dynamics (Auger and Roussarie 1994), and more generally in the study of

the emergence of any collective behaviour ranging from granular media (Ernst 2000)

to swarms, flocks or societies (Vicsek 2001), and, finally, at a very different scale,

in the context of chemical reactions (Arnold 1980). It has been deeply investigated

(Kirkpatrick and Ernst 1991; Chopard and Droz 1998; Droz and Pekalski 2004) to

support both kinetic theories of intrinsically discrete systems and discrete simulations

(cellular automata) of continuous equations. An explicit derivation of such a relation

between a discrete-state microscopic description and a continuous-state macroscopic one is

interesting as it exposes the approximations lying behind kinetic continuous (real-valued)

modelling (Givon et al. 2004).

As an example, we will give details of the celebrated Lotka–Volterra (predator–prey)

model of population dynamics, which is also discussed in the contribution by H. Krivine

et al. in this volume: ⎧
⎪⎪⎨
⎪⎪⎩

dx

dt
= x(a− by)

dy

dt
= y(cx− d)

(4)

where x and y describe the respective populations of preys and predators.
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The first assumption is:

(H1) The spatial homogeneity of the population.

This is justified if the environment is itself homogeneous and species are free to move and

mix. It allows us to neglect any space dependence and to consider only how the prey and

predator populations vary in time. Let X(t) and Y (t) be integers describing the respective

numbers of preys and predators at time t. In agent-based simulations, it is possible to

describe the behaviour of each agent with great detail, but in analytic or cellular automata

approaches, only a minimal, birth-and-death modelling is retained and the populations

will evolve according to simple probabilistic rules.

The second assumption is:

(H2) The Markov character of the evolution.

Even in a continuous-time dynamics, the description implicitly involves a minimum time

scale (the ‘size’ of dt), and the validity of the Markov assumption requires dt to be larger

than the ‘memory’ of the system†. The model is thus entirely determined by a transition

rate matrix W :
dP (X,Y , t)

dt
=

∑

X ′

∑

Y ′

W (X,Y |X ′, Y ′)P (X ′, Y ′, t) (5)

where the sum runs over all positive integers X ′ and Y ′, and
∑

X

∑

Y

W (X,Y |X ′, Y ′) = 0 (6)

to ensure the conservation of probability (
∑

X

∑
Y P (X,Y , t) = 1). Equation (5) requires

an additional assumption of the differentiability of t → P (X,Y , t):

(H3) No jump, bounded transition rates.

The fourth assumption is:

(H4) The identification of macroscopic variables with statistical averages 〈X〉 and 〈Y 〉.
This assumption is the core of the passage from a microscopic model to a macroscopic

one. It is straightforward from (5) to write the time evolution of the various moments, for

instance,

d〈Xn〉
dt

=
∑

X ′

∑

Y ′

∑

X

Xn W (X,Y |X ′, Y ′)P (X ′, Y ′, t). (7)

At this stage, in order to go further, we must turn to a specific expression of W . At short

time scales, it is justified to suppose that:

(H5) Only single events will occur with a non-negligible rate.

Hence we consider only the following elementary transitions in W :

— Birth of a prey: (X,Y ) → (X + 1, Y ), at a rate a0X.

— Capture of a prey: (X,Y ) → (X − 1, Y ), at a rate b0XY .

† This memory is related to direct interactions, and should not be confused with the correlation time (a Markov

chain can exhibit long-range correlations, in the case of the near-reducibility of the transition matrix).
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— Birth of a predator: (X,Y ) → (X,Y + 1), at a rate c0XY .

— Natural death of a predator: (X,Y ) → (X,Y − 1), at a rate d0Y .

From these we get the expression of non-vanishing components of W :

W (X + 1, Y |X,Y ) = a0X W (X − 1, Y |X,Y ) = bX0Y (8)

W (X,Y + 1|X,Y ) = c0XY W (X,Y − 1|X,Y ) = d0Y . (9)

Here again the assumption of the population homogeneity is essential: for instance, each

prey gives rise with the same rate a0 to another one. Alternatively, this assumption can

be viewed as:

(H6) Mean-field approximation, neglecting fluctuations.

Within this approximation, a0 is, in fact, a mean rate 〈ã0〉, averaged over the whole prey

population:
∑X

i=1 ã0(i) ≈ a0X if ã0(i) is the reproduction rate of the individual i of the

prey population. Note that:

(H7) The temporal fluctuations of the rates are also neglected (average rates over a year,

for instance).

W (X − 1, Y |X,Y ) automatically vanishes if X = 0 (and, similarly, W (X,Y − 1|X,Y ) if

Y = 0), hence transitions towards negative values of X and Y are forbidden: the dynamics

remains in the acceptable set of positive integers for both X and Y . The last step is to

deduce

W (X,Y |X,Y ) = −a0X − b0XY − c0XY − d0Y . (10)

The evolution finally gives:

dP (X,Y , t)

dt
= a0(X − 1)P (X − 1, Y , t) − a0XP (X,Y , t)

+ b0(X + 1)Y P (X + 1, Y , t) − b0XY P (X,Y , t)

+ c0X(Y − 1)P (X,Y − 1, t) − c0XY P (X,Y , t)

+ d0(Y + 1)(X,Y + 1, t) − d0Y P (X,Y , t). (11)

Now it is possible to write the evolution of 〈X〉 and 〈Y 〉:
d〈X〉
dt

= a0〈X〉 − b0〈XY 〉 (12)

d〈Y 〉
dt

= c0〈XY 〉 − d0〈Y 〉. (13)

The main assumption appears here: identifying 〈XY 〉 with 〈X〉〈Y 〉. This amounts to:

(H8) Neglect microscopic correlations (so this involves a second mean-field approximation).

The justification for this relies on the law of large numbers and the central limit theorem.

Actually, the relevant macroscopic variables are not 〈X〉 and 〈Y 〉, but rather x = 〈X/N〉
and y = 〈Y /N〉 where N is some bound on the total population. While x = O(1), we

have 〈(X/N)(Y /N)〉 − xy = O(1/N) decreases with the system size, provided microscopic

correlations remain short-range and involves only a (small) fixed number of individuals

whatever the size N of the total population. This shows that the relative influence of

the cross-correlation between X and Y is actually negligible when the population size is
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macroscopic. Note finally that 〈X〉 and 〈Y 〉 are no longer restricted to integer values, and

far more than x and y, thus completing the microscopic foundations of the continuous-

state macroscopic model (4), with a = a0, b = b0N, c = c0N and d = d0.

This derivation points out all the different hypotheses and approximations underlying

continuous chemical kinetics and similar models; it thus clearly delineates the range of

validity of the passage from discrete and stochastic elementary dynamics to a continuous

and deterministic one at the scale of the whole population. Accordingly, it hints at

situations where this procedure may fail. For instance, finite-size effects are likely to affect

chemical kinetic equations when only a small number of molecules are involved in the

reaction, for example, inside a living cell. It is then essential to account for the actual

discrete and stochastic nature of the variables X, and to investigate the influence of what

might be called the ‘molecular noise’, namely the fluctuations X − 〈X〉 (that is, X −Nx).

The consequences of such noise increase as the system size decreases, setting a minimal size

Nmin below which the original discrete and stochastic description should be used; they are

expected to be specially dramatic near bifurcation points of the deterministic continuous

kinetic equations, where the minimal size Nmin takes macroscopic values (Gonze et al.

2002).

Generalising this to spatio-temporal systems has attracted much work in theoretical

physics and chemical physics, as illustrated by Arnold (1980), Chopard and Droz (1998)

and Cardy (2004). Rigorous mathematical results supporting the above approach and its

spatio-temporal analogue can be found in Rezakhanlou (to appear).

4.2. Partitions of the phase space

To account for the finite observation accuracy, say ε, available on the system state, it is

always possible to replace the original continuous phase space X by a partition (Xε,ω)ω
into cells of linear size ε. Nevertheless, starting from a deterministic evolution on X
(discrete in time, that is, modelled by a map f : X → X), such a partition does not always

achieve a simplification of the analysis. Indeed, if the partition is arbitrary, the associated

discretisation typically replaces the deterministic model by a stochastic one, since many

trajectories come out of a given cell and generally reach several other cells (Givon et al.

2004). Discretising the phase space achieves a fruitful reduction of the dynamics to its

essential, somehow universal features, in at least two distinct instances (ignoring related

cases):

— Generating partitions: For these, by definition, a knowledge of the whole sequence

ω̄ = (ωn)n of visited cells specifies a unique point x0, hence a unique trajectory in

the continuous phase space ∩n�0Xε,ωn = {x0}. There is thus no loss of information

when describing the evolution at the cell level since (ωn)n�0 and (fn(x0))n�0 are

uniquely related (except, possibly, for a countable set of points). This is the basic

feature underlying symbolic dynamics (Lind and Marcus 1995). For example, the map

f(x) = 2x (modulo 1) in [0, 1] is equivalent to the Bernoulli shift ω̄ → σω̄ with

(σω̄)n = ωn+1, acting in the space {0, 1}∗ of binary sequences: ω̄(x) is the dyadic

representation of x: x =
∑∞

i=0 2−(i+1)ωi. This equivalence is associated with a partition

of the phase space into two cells X0 = [0, 1/2[ and X1 = [1/2, 1[, namely ω0(x) = 0 if
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x < 1/2, ω1(x) = 1 if x � 1/2, ωn(x) = 0 if fn(x) < 1/2, and so on (Badii and Politi

1999):

x ∈ [0, 1] =⇒ ω̄ ∈ {0, 1}∗

↓ ↓
f(x) =⇒ σω̄

where =⇒ represents the dyadic representation. Such a conjugacy to a Bernoulli shift

is a hallmark of fully developed chaos (strong mixing). Work is in progress to extend

this viewpoint to multivariate labels (the discrete time n being supplemented by integer

labels associated with a partition of real space) in order to get an operational definition

of spatio-temporal chaos, that is, chaos occurring in spatially extended systems (Mielke

and Zelik 2004).

— Markov partitions: For these, by definition†, the possible successor cells of a given cell

do not depend on the history (topological Markov property), which is a prerequisite

for devising a Markov chain modelling at the cell level. In a more stringent instance,

that of the so-called Markov maps (MacKernan and Nicolis 1994), the reduction to a

Markov model can be done exactly: the symbolic dynamics is a Markov chain, which

is fully characterised by a transition matrix Wωω′ = Prob(ω → ω′), with no loss of

information compared with the original evolution in the continuous phase space. In

other cases, the reduction to a Markov model relies on a Markov approximation, which

is supported by the intrinsic stochasticity and memory loss of the underlying evolution

in X, if it is sufficiently chaotic, namely mixing (Schnakenberg 1976).

As an aside, note that, as in the above example, discretisation of the phase space

is generally performed on a model that is already discrete in time. However, we have

already encountered a notable exception in Section 4.1 with birth-and-death processes,

where a Markov chain in Nn (Gardiner 1983) describes the number, say, of molecules of

n different species and involves unit jumps after random waiting times. Another instance

of continuous-time and discrete (or countable) state-space process is provided by Boolean

delay equations (Ghil and Mullhaupt 1985), where the trajectory is an alternation of jumps

0 → 1 and 1 → 0 at times varying within a continuum.

4.3. Shannon entropy

The information available about any phenomenon depends on the observation scale.

This obvious statement can be turned into a quantitative tool by exploiting the notion

of (statistical) entropy, which was introduced by Shannon and allows us to measure the

average information gained during the observation. Shannon entropy S is associated with

a partition P = [Xi]i=1...N of the phase space and a probability distribution [pi]i=1...N (with

pi = Prob[x ∈ Xi]) accounting for knowledge available prior to the observation (Shannon

† For instance, if X ⊂ R, f admits a Markov partition (Xω)ω=1...N if for any ω = 1, . . . , N, we have

f(Xω) = ∪ω′ηωω′ Xω′ where ηωω′ = 0 or 1; see Guckenheimer and Holmes (1983) for the definition of

Markov partitions in higher dimensions.
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1948):

S(P, [pi]i) = −
N∑

i=1

pi log pi. (14)

Here log(1/pi) measures the ‘surprise’ at observing a state x ∈ Xi rather than lying

in any other cell, and hence is taken† as a measure of the information gained by

observing the macrostate i. S vanishes if one macrostate i has a probability of 1, and is

maximal (S = logN) if the N macrostates are equiprobable. Increasing the resolution,

that is, splitting the cells (Xi)i=1...N into finer ones leads to an increase of S (since

−(p + p′) log(p + p′) � −p log p − p′ log p′), which agrees with the intuitive statement

introducing this section.

Note that Shannon entropy is closely related to the entropy encountered in statistical

mechanics. The connection between statisical mechanics and information theory has

already been fully developed‡, mainly by Jaynes (Jaynes 1989). Boltzmann, in his seminal

works, which provided the basis of statistical mechanics, adopted a finitist viewpoint

through the introduction of a partition of the continuous classical phase space (the

positions and velocities of all the particles composing the system). The obvious flaw in this

approach is the arbitrariness of the partition: in particular, as for the Shannon entropy,

the statistical entropy varies when the partition varies. These difficulties encountered

in classical statistical mechanics in giving an absolute definition of statistical entropy

vanish at the quantum level, thanks to the discreteness of the states in a quantum

system. Statistical entropy is, indeed, univoquely defined in quantum mechanics according

to S = − Trρ̂ log ρ̂, where ρ̂ is the density matrix (Wehrl 1978). Coarse-graining procedures

can then be developed to relate the full quantum description to classical ones at higher

scales. The increase of entropy observed in these procedures reflects the loss of information

(about quantum correlations) accompanying the various projections and the reduction of

the system description involved in the quantum/classical connection (Balian 2004).

4.4. ε-entropy

Continuing the theme of information theory, and more specifically the above notion of

(Shannon) entropy, it is fruitful to introduce a time entropy measuring the information

at the starting point x0 that is gained when observing its trajectory (xj)j�0 with a finite

resolution ε in the phase space associated with some partition [Xε,ω]ω . Using ω̄n =

(ω0, . . . , ωn−1) to denote an n-step trajectory observed at this level (by construction xj ∈
Xε,ωj ), we define for each n � 1 a Shannon-like time entropy

Hn(ε) = −
∑

ω̄n

Probn(ω̄n) log Probn(ω̄n). (15)

† This choice of log(1/pi) as a measure of the information content of the macrostate i (that is, the set Xi

of microstates) is uniquely prescribed if we impose relevant behaviour on S: continuity, concavity and

subadditivity when considering the intersection of two partitions, which turns into additivity in the case of

statistically independent partitions (Wehrl 1978).
‡ However, this viewpoint is not shared by the whole community: an alternative, dynamic viewpoint is based

instead on the chaotic properties of the microscopic dynamics.
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The asymptotic rate

h(ε) = lim
n→∞

Hn(ε)

n
= lim

n→∞
[Hn+1(ε) −Hn(ε)] (16)

is called the ε-entropy (Kolmogorov and Tikhomirov 1959; Gaspard and Wang 1993;

Nicolis and Gaspard 1994). This is, therefore, the rate of information production when

observing the evolution with an accuracy ε.

This quantity can be defined for both deterministic and stochastic evolutions. It is,

moreover, experimentally accessible (Boffetta et al. 2002). It characterises the apparent

behaviour at scale ε. For instance, limε→0 h(ε) = hKS (Kolmogorov–Sinai entropy) in the

case of deterministic chaos, while h(ε) ∼ 1/ε2 for Brownian motion (normal diffusion). So

the ε-entropy should be computed prior to choosing any modelling. Striking applications

of the ε-entropy as a tool for describing quantitatively the apparent natures, at different

scales, of an actual evolution, are given in Boffetta et al. (2002). As we have already

sketched in Section 3.4 for the example of chaotic diffusion, this indicator allows us

to reconcile models that have seemingly different natures (for example, discrete and

continuous) but are related through some continuous limit, typically when decreasing

some characteristic size a to 0: behaviours at scale ε will be the same whatever the value

of a, vanishing or not, provided a < ε. On the other hand, the behaviour of h(ε) for ε < a

will mark out the difference between the model with a > 0 and the limiting, idealised

one with a = 0. For instance, a behaviour h(ε) ∼ 1/ε2, in some window for ε, supports

a stochastic, diffusion-like description at these scales, whatever the actual mechanism at

smaller and larger scales.

We have considered here a discrete-time dynamics. The ε-entropy can be generalised

for continuous-time dynamics into an (ε, τ) entropy h(ε, τ), namely the rate of information

production when the evolution is observed with an accuracy ε and a time-step τ. As

with the ε-dependence, the τ-dependence of h(ε, τ) is highly meaningful, allowing us, for

instance, to discriminate deterministic evolution (h(ε, τ) ∼ hKS for a chaotic dynamics of

Kolmogorov–Sinai entropy hKS ) and stochastic processes (h(ε, τ) ∼ (1/τ) log(1/ε) for a

white noise). See Gaspard and Wang (1993) for a full account of this extended notion

and its applications.

As demonstrated in Falcione et al. (2003), this discussion allows us to understand

a classical decoherence effect that is quite similar to the quantum decoherence effect

described in Berry (2001) and Zurek (1995) (see also Section 5.5). Consider a map whose

states, that is, x, are continuous: xk+1 = f(xk) on [0, 1]. Moreover, suppose that the

associated dynamics is chaotic, which is reflected in a positive Kolmogorov–Sinai entropy

h(f) > 0. Its discretisation with step a � 1 (discretisation in the phase space) is written

zk+1 = E[(1/a)f(azk)] ≡ ga(zk) (17)

where E[.] denotes the integral part. This mapping acts within a finite set of states

{zk, k = 0, 1, . . . ,E[1/a]}, hence all trajectories are periodic† (after a possible transient)

† When the dynamics is periodic of period T , it is straightforward to show that Hn(ε) = HT (ε) for any n � T ,

and hence h(ε) = 0. The same argument applies here, T being the maximal period of the discrete trajectories



The discrete versus continuous controversy in physics 21

and the dynamics is non-chaotic, which is reflected in h(ga) = 0. We here see again the

issue, already encountered in Section 3.4, of matching two behaviours that have different

natures but are expected to be indiscernible for all practical purposes when a → 0.

First, note that for ε > a, the curve n → Hn(ε, ga) follows n → Hn(ε, f) closely as long

as the discretisation and ensuing periodicity of the trajectories are imperceptible. This

condition puts a bound nmax(a, ε) on the observation duration n, which can be estimated

as follows: at n = nmax(a, ε), the number Nn(ε) ∼ enh(ε,f) of ε-separated trajectories of

length n (that is, trajectories of the continuous system that differ from one another by a

distance of at least ε at some moment between t = 0 and t = n) is equal to the number

(roughly 1/a) of discrete states:

nmax(a, ε) ∼ log(1/a)

h(ε, f)
. (18)

If nmax is large enough, the linear part in the curve n → Hn(ε, ga) might be sufficiently

marked and long enough to estimate h(ε, f) quite accurately. Above nmax, the curve

n → Hn(ε, f) tends to the straight line of slope h(f) (that is, n−1Hn(ε, f) tends to h(f) > 0),

while Hn(ε, ga) saturates to a constant finite value (roughly equal to Hnmax(ε, ga) and of

order log(1/a)), reflecting the periodic regime of the discrete dynamics.

Second, adding uncorrelated microscopic noise to the discrete evolution might restore

the features of the continuous evolution at large scales ε 	 a, in exactly the same way as

adding noise to a quantum evolution allows us to recover the chaotic behaviour, if any,

of the classical analogue. This can also be seen in the entropic behaviour. Consider the

case where the noise amounts to uncorrelated random jumps into neighbouring a-cells,

and use hnoise to denote the entropy (rate) of this stochastic process. This noise can be

fully perceived only at scales ε > a, and then

h(ε, ga + noise) ≈ hnoise (ε > a). (19)

As shown in Falcioni et al. (2003), if hnoise 	 h(f) and ε 	 a, the randomness of the

superimposed noise restores the complexity of the chaotic continuous dynamics, namely

h(ε, ga + noise) with a = αε tends to h(ε, f) as α tends to 0. (20)

The explanation lies in the amplification of the microscopic noise by the deterministic

dynamics. In simple terms, the dynamic instability still present in the discrete dynamics

(before being truncated by the discretisation and the ensuing periodicity) feeds on the noise

and propagates its randomness (that is, its entropy) at larger scales in a way reflecting

the underlying continuous dynamics. The random events at scale a allow us to bypass

the ‘taming’ of the chaotic behaviour following from the coarse-graining f → ga, and

to recover the full entropic content of the original continuous dynamics at observation

scales ε that are large compared with the discretisation step ε 	 a. The authors finally

suggest that chaotic deterministic systems might appear as effective models for randomly

(T is actually finite since there is a finite number of discrete states, and hence a finite number of discrete

deterministic trajectories).
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perturbed quantum (and hence discrete) motion, when observed at classical scales (Falcioni

et al. 2003).

The general point to remember is the importance of superimposed randomness in the

inter-relation between continuous and discrete dynamics.

5. Spectral analyses

5.1. Introductory overview of the spectral landscape

The heading ‘spectral analyses’ covers a large variety of ideas going under the name of a

spectrum. The purpose of this section is to give a representative sample of their variety to

show that spectral analyses form a whole world, where we need to shed light on the choice

between the discrete and continuous (here, spectra), which reflect deep differences in the

behaviour of the system, and where we may need a richer picture than that provided by

a simple dichotomy between two exclusive possibilities. A preliminary classification will

help here. Spectra may correspond to:

— Frequencies or, equivalently, time periods (Fourier modes, Section 5.2, and power

spectra, Section 5.3);

— Wave vectors or, equivalently, wavelengths (spatio-temporal normal modes, for ex-

ample, in pattern formation, Section 5.4);

— Energy levels, Section 5.5;

— Correlation times (that is, characteristic times for the decay of correlations, Section 5.6);

— Amplification rates (Lyapunov exponents, Section 5.7);

— Experimentally available spectra and associated spectroscopy methods, Section 5.8.

5.2. Fourier analysis

Fourier analysis was introduced by Fourier in 1807 to solve the heat equation ∂tT = χ∆T

for a temperature profile T (�r) (Fourier 1822). It has since been intensively developed,

both on the theoretical side (convergence results, for instance) and on the practical

side (computational methods to implement Fourier transforms, such as the Fast Fourier

Transform algorithm). I shall not dwell on the basic definitions and properties of Fourier

transforms but instead discuss its status in the light of the present discrete/continuous

debate.

The basic idea is to decompose, say, a real-valued time function f(t) into purely

sinusoidal components, namely Aω cos(ωt + φ), or, equivalently, aω cos(ωt) + bω sin(ωt),

or, in the complex form, f̂(ω)eiωt with ω ∈ R. If this function f(t) is T -periodic, only

the components with ω = ω1 ≡ 2π/T and its harmonics, with frequencies ωn = 2πn/T ,

remain, turning the continuum of possible frequencies into a discrete set: a discrete ‘point

spectrum’ reveals the periodicity of the associated phenomenon.

The extension to spatio-temporal phenomena is fairly straightforward, replacing eiωt

with eiωt−i�q.�r . A well-known illustration is provided by musical instruments: flute, violin

strings (d = 1) or drum (d = 2). In this case, looking for a solution of the wave

equation describing the system behaviour (for example, its response to an excitation)

relates frequencies ω and wave vectors �q through a dispersion relation ω = qc, where c
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is the velocity of sound. Boundary conditions (for example, the deformation of a drum

membrane should vanish at its boundary) select only one component (and its harmonics)

corresponding to the note emitted by the instrument. Playing the instrument mainly

amounts to modulating the boundary conditions to get different notes: this is what a

violin player achieves with the fingers of his left hand in tuning the emitted sound by

varying the length of the string section actually excited by the bow. The differences between

different instruments lie in the relative weight of the harmonics, which are reflected in the

timbre and can be controlled by the way the string is excited (compare a guitar, a violin,

a piano and a harpsichord).

Fourier analysis makes sense only in the case of linear equations; it extends to weakly

non-linear equations in a perturbative way, known as mode coupling theory (Ma 1976).

Non-linear terms induce a coupling between components, and hence generate new

frequencies: for instance, the product of f̂(ω1) and f̂(ω2) contributes to f̂(ω1 + ω2).

It is thus impossible to excite selectively a single frequency (and its harmonics) in a non-

linear system; if a single dominant frequency is observed, its origin lies in the dynamics

itself and not in the external influences; we shall give details of the emergence of such

intrinsic modes in Section 5.4. Finally, we saw in Section 2.4 that time resolution puts

bounds on the spectral range that can be scanned experimentally (Nyquist theorem): if

the sampling frequency is bounded above by ω0, only spectral components with ω < ω0/2

can be fully determined (Shannon 1949).

5.3. Power spectra

A power spectrum is a special instance of Fourier analysis. Given an evolving system, the

power spectrum SA(ω) of a given observable A is defined as

SA(ω) = lim
T→∞

1

T

∫ T

0

eiωt A(t) dt
2

. (21)

Much can be seen about the system’s behaviour in this spectrum. For instance, a chaotic

behaviour is associated with a spectrum having a large bandwidth (Eckmann 1981). The

period-doubling scenario towards chaos is also called a ‘subharmonic cascade’ due to

the peculiar, dyadic and self-similar structure of the associated spectrum (Lesne 1998). A

quasi-periodic motion (and hence with countable spectrum) with three incommensurable

frequencies is structurally unstable (Ruelle and Takens 1971), and the weakest perturbation

turns it into a chaotic motion associated with a large-bandwidth spectrum. Let us define

the auto-correlation† function

CA(t) = lim
T→∞

[∫ T

0

A(t+ s)A(s)
ds

T
−

( ∫ T

0

A(t)
dt

T

)2
]
. (22)

The Fourier transform of CA(t) is ĈA(ω) =
√

2π SA(ω). This result is sometimes called the

Wiener–Khinchine theorem. Actually, this theorem has a far stronger version, including an

† The power spectrum and correlation function, as written here, are well defined only in the stationary state;

otherwise, one should consider the two-time correlation function CA(t0, t) for the evolution starting in a given

out-of-equilibrium state at time t0.
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ergodic-theoretic aspect: it states the equality of
√

2πSA(ω) and Ĉ(ω) where CA(t) is now

defined as a statistical correlation function:

CA(t) =

∫
A(ϕt(x))A(x)µ(dx) −

( ∫
A(x)µ(dx)

)2

(23)

where µ is an invariant ergodic† measure under the action of the flow ϕt(x). It is easy

to extend the definition of the correlation function CAB(t) and power spectrum SAB(ω)

to pairs of observables (A,B) with ĈAB(ω) =
√

2π SAB(ω). Assuming the existence of an

invariant ergodic measure µ, Ruelle and Pollicott have shown that for a class of chaotic

systems, SAB(ω) is meromorphic in a stripe extending on both sides of the real axis, and

the position of its poles does not depend on the observables A and B under consideration.

Moreover, these poles are directly related to the asymptotic behaviour (t → ∞) of the

correlation function (a property of the Fourier transform). Complex poles of the power

spectrum are thus associated with resonances, the so-called Ruelle–Pollicott resonances,

and the existence of poles arbitrarily close to the real axis prevent an exponential decay

of temporal correlations. Accordingly, mixing requires that all poles lie at a finite distance

(bounded below) from the real axis; in this case, they contribute to the correlation decay

and their imaginary part provides characteristic times (correlation times) of this decay

(Ruelle 1986).

A first kind of singular power spectrum is provided by ‘continuous singular’ spectra,

corresponding to the case when the correlation function does not decay exponentially

to 0 but is still integrable (by contrast with the fully correlated periodic dynamics)

(Zaks and Pikovsky 2003). The spectrum is then an intricate superimposition of peaks

and large band, that is, of discrete and continuous features. Such spectra occur in

weakly chaotic dynamics exhibiting a divergence of the correlation time, corresponding

to the intermittent persistence of regular motion (for example, laminar transients near an

unstable or imaginary fixed point).

Power spectra can exhibit another singular behaviour lying between the discrete and

continuous (see Section 6.4), namely a power-law behaviour, with no characteristic scale

and features at all scales. A celebrated example is turbulence, which involves the real-space

analogue E(q) of the power spectrum S(ω) as a function of the wave vector q. Under

assumptions of statistical homogeneity, isotropy and stationarity, it satisfies E(q) ∼ q−5/3

in a wide range of wave vectors q called the inertial range, where eddies at all sizes

develop and dissipation is not yet efficient (Frisch 1995).

5.4. Normal modes

Normal mode analysis generalises Fourier analysis to complex frequencies. It basically

amounts to performing a linear stability analysis of a uniform stationary state, and to

† By definition, the pair (f, µ) consisting of a map f : X → X and a measure µ on X invariant under the

action of f is ergodic if and only if any invariant subset A ⊂ X is of null or full measure, that is, µ(A) = 0

or µ(X −A) = 0 provided f−1(A) = A. Equivalently, (f, µ) is ergodic if and only if any invariant µ-integrable

function ϕ (that is, such that ϕ◦f = ϕ µ-almost everywhere) is µ-almost everywhere constant (Pollicott 1998).
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Fig. 9. Dynamic instability and the influence of boundary conditions, requiring that qL ∈ 2πZ

(vertical marks on the q-axis); although the instability appears in qc for η � ηc, the actual

instability, accounting for boundary constraints, develops only for η � ηc,eff: spectral selection

arises in a confined geometry, and might even suppress the dynamic instability.

searching for linear perturbations (solutions of the linearised evolution) with the form

a(�q, t)ei�q.�r or A(ω,�r)e−iωt or A(�q,ω)ei�q.�riωt (24)

yielding a dispersion relation

ω = ω(�q) ∈ C or more generally D(ω,�q) = 0. (25)

In a confined medium, �q is real and ‘quantified’, as required by the boundary conditions,

for example, qL ∈ 2πZ if the underlying space is an interval [0, L] (as we saw in

Section 5.2, the same constraint rules the Fourier spectrum). The mode is stable if and

only if Im(ω(�q)) < 0. The homogeneous stationary state is thus dynamically stable if and

only if Im(ω(�q)) < 0 for any �q ∈ Rd.

For simplicity, consider a unidimensional medium of size L, and the situation where its

dynamics depends on a control parameter η. Destabilisation occurs at the minimal value

ηc such that it exists qc, with

Im(ω(ηc, qc)) = 0 and Im(ω(ηc, q)) < 0 if q �= qc (26)

(see Figure 9). For η > ηc, a continuum [qm(η), qM(η)] of modes is destabilised, surrounding

the value qc(η) where Im(ω(q)) is maximal. In this window, only those wave vectors

satisfying

qL ∈ 2πZ (27)
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are acceptable. Although the dynamics allows a continuum of unstable modes†, only a discrete

set, selected by the boundary conditions, is actually observed. It is important to note that the

window of unstable modes is independent of the system geometry: boundary conditions

intervene later, as a further selection rule fine-tuning specific modes among the set of

dynamically unstable ones. Near the instability threshold, or for small system sizes L,

the intersection of [qm, qM] with (2π/L)Z might be empty: this means that the instability

is hindered by the boundary conditions. As sketched in Figure 9, the instability can

thus be avoided in a confined geometry (L too small) and it develops only if η > ηc(L)

(or equivalently L > Lc(η)). On the other hand, in a very extended medium (L → ∞,

2π/L � dq), the quantification is almost insignificant and, in practice, one observes a

continuum of unstable modes. All this discussion can be substantiated and illustrated

using examples of pattern formation (Cross and Hohenberg 1993), such as the celebrated

Turing structures (Turing 1952). Spatio-temporal systems thus exhibit the superimposition

of a continuous instability, intrinsically prescribed by the dynamics, and a further selection

of discrete modes, imposed by the boundary conditions.

Note that a continuous symmetry of the evolution equation induces a marginally stable

mode ω = 0. Here again a kind of conjugacy appears between continuous features (here

a continuous symmetry) and discrete ones (here a mode ω = 0 or �q = 0). However,

this conjugacy is neither an opposition nor a negation, but rather a balance, or even

a conjunction, where discrete features exist only when continuous ones are present in the

conjugate instance.

5.5. Quantum mechanics

Spectral analysis is at the core of quantum mechanics because of the linear nature of the

Schrödinger equation

ı�∂ψ/∂t = ĤΨ (28)

and the Hermitian property of the Hamiltonian operator Ĥ acting on the wave function

ψ. Eigenvalues (Ek)k of Ĥ correspond to energy levels of the system and the associated

eigenvectors (ψk)k correspond to ‘pure states’ of well-defined energy Ek . One distinguishes:

— The case of a discrete (or pure point) spectrum, where the spectrum reduces to the set

of eigenvalues;

— The opposite situation, which is a continuous spectrum with no eigenvalues (and hence

no eigenvectors).

However, the normal situation is a mixed spectrum, whose restriction to some subspace is

a pure point spectrum whereas the complementary part (in the orthogonal, supplementary

subspace) is continuous.

The basic idea is that a discrete spectrum reflects a quantification of the energy, and hence

a non-classical behaviour of the system, while passing to a continuum marks the energy

† The modes are linearly unstable; in the true dynamics, non-linear effects generally induce a saturation of the

instability and turn these unstable modes into well-defined structures of bounded amplitude.
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threshold above which the system behaves classically. However, the situation is more

complicated than this, and a more refined analysis reveals different kinds of continuous

spectra, according to their fine structure (which is related to the existence of ‘resonances’,

namely complex poles of the resolvant [det (1 − zH̃]−1 of a non-Hermitian extension H̃

of Ĥ). This point is described fully for the case of the Helium atom in the contributions

by D. Delande and A. Buchleitner in this volume.

An issue that has been investigated quite recently is quantum chaos. Here the problem

is to determine whether some specific spectral properties are associated with chaotic

properties of the corresponding classical system (the limit � → 0, or rather, the limit when

the ratio �/Ac tends to 0, where Ac is a classical scale for the action) (Gaspard 2004b).

It is important to note that an isolated quantum system does not exhibit chaos, even if

its classical counterpart is chaotic. The reason is that any fine structure (for example,

the homoclinic tangle at the origin of chaos – see the contribution by C. Simo in this

volume) in the phase space is bounded below at scale �. However, it can be shown that

any external influence, even the weakest one, restores the classical chaotic behaviour, a

phenomenon belonging to what is called quantum decoherence – see, for instance, Berry’s

introductory paper Berry (2001); see also the classical analogue presented in Section 4.4.

Remarkably, quantum mechanics shows that discrete versus continuous issues are

multiple and should be precisely delineated to avoid a dialogue of the deaf. Indeed,

while quantum systems appear as the discrete counterparts of classical ones with regard

to energy spectrum (discrete low-energy levels) and phase space (discrete states), they

generally exhibit the opposite behaviour in real space: quantum particles are described

by a continuous, spatially extended wave function, while classical ones are localised and

described by a few coordinates. This points out that discreteness in phase space† and

discreteness in real space are not straightforwardly related.

5.6. Koopman–Frobenius–Perron theory

Spectral analysis also arises in classical mechanics in association with the Liouville equation

∂tρ = Lρ for the density ρt(x) in the phase space‡. This Liouville equation is formally

similar to the Schrödinger equation ∂tψ = −ıĤψ/�, with the noticeable difference that

ı�L is not Hermitian and ρ is restricted to be a positive function.

You should not be misled by the linearity of this Liouville equation: it does not mean

in any way that the dynamics is linear; non-linearities of the dynamics are embedded in

the evolution of the phase-space dependence of ρ, that is, in the evolution of the relative

weight of phase space regions, which can mix in a complicated non-linear way as time

goes on.

† The discrete or continuous nature of states, that is, the discrete or continuous nature of the energy spectrum,

should not be confused with the bounds following from the Heisenberg uncertainty relations, which prevents

the simultaneous observation of eigenstates for non-commuting observables, notwithstanding the discrete or

continuous nature of their spectra.
‡ In the case of Hamiltonian dynamics, the Liouville equation takes the form ∂tρ = Lρ ≡ {H, ρ} where {H, ρ}

is the Poisson bracket. It follows that ρ ≡ 1 is a stationary solution and Hamiltonian dynamics preserves the

phase-space volume, a result known as the Liouville theorem.
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In the case of a discrete time evolution xn+1 = f(xn) in X ⊂ Rd, the evolution of

the density is given by ρn+1 = Pρn where the operator P is called the Frobenius–Perron

operator. P is linear on L1(X, dx), positive (Pρ � 0 if ρ � 0) and preserves the L1-norm

of positive integrable functions. An interesting result is the relationship to ergodic theory:

in the case when there exists a stationary density ρ∗, the couple (f, ρ∗) is ergodic if and

only if Pρn is weakly Cesaro-convergent to ρ∗, namely, for any initial density ρ0 and for

any bounded measurable function g,

lim
n→∞

1

n

∫ n−1∑

j=0

P jρ0(x)g(x)dx =

∫
ρ∗(x)g(x)dx. (29)

If X is of finite measure, (f, ρ∗) is mixing if Pnρ0 is weakly convergent for any initial

density ρ0, that is, for any bounded measurable function g,

lim
n→∞

∫
Pnρ0(x)g(x)dx =

∫
ρ∗(x)g(x)dx. (30)

These statements have a spectral counterpart (Parry 1981; Pollicott and Yuri 1998): there

exists a stationary density ρ∗ if and only if P has an eigenvalue equal to 1 (the eigenvector

then being ρ∗); ergodicity follows if and only if this eigenvalue is simple (namely, if and

only if ρ∗ is the unique stationary density of f). If, moreover, it is an isolated eigenvalue of

P , then (f, ρ∗) is mixing. Other eigenvalues are also of interest, since they are associated

with characteristic times of the correlation decay. It is here that the close link between

Koopman theory and Pollicott–Ruelle resonances (Section 5.3) appears. The Fredholm

determinant of P defines the Selberg–Smale zeta function Z(z) and the Ruelle zeta functions

ζk(z):

Z(z) = det(1 − zP ) =
∏

k

1

ζk(z)
. (31)

Under some technical conditions (MacKernan and Nicolis 1994), the Ruelle zeta functions

can be expressed explicitly from a knowledge of all the periodic orbits Oj (labelled by j)

(Gaspard and Dorfman 1995):

ζk(z) =
∏

j

(
1 − znj

|Λj |Λk−1
j

)
(32)

where nj is the period of the periodic orbit Oj and Λj is its stability factor, that is,

the product of f′ along the orbit, namely Λj = f′(xj,0) f
′(xj,1) . . . f

′(xj,nj−1). Hence, the

decay of time correlations (mixing property) of the dynamics is determined by the

dynamic behaviour along the periodic orbits; these orbits thus form the skeleton, not

only qualitatively but also quantitatively, of the dynamics (see the contribution by C.

Simo in this volume). Conversely, the spectrum of P contains the same information, in a

somehow integrated form: the inverses of the eigenvalues of U are the poles of 1/Z(z)

(under some technical restrictions on f). It is notable that the formula (31) (or rather,

its inverse giving the expression of 1/Z(z)) is strongly reminiscent of the semi-classical

Gutzwiller trace formula bridging the spectrum of the quantum Hamiltonian and some
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characteristics (periodic orbits) of the corresponding classical dynamics (Gutzwiller 1990;

Gaspard and Dorfman 1995) – see also the contribution by T. Paul in this volume.

5.7. Lyapunov spectrum

Given a map f on a compact phase space X associated with an invariant ergodic measure

µ, another spectrum (in addition to the spectrum of the Frobenius–Perron operator and

the associated Ruelle–Pollicott resonances described above in Section 5.3 and Section 5.6)

can be considered – this is the Lyapunov spectrum. The Lyapunov spectrum is a global

feature of the flow, and is defined as the spectrum of the asymptotic matrix

M = log lim
n→∞

[Λn(x)
†Λn(x)]

1/2n (33)

where

Λn(x) = Df[fn−1(x)] ◦ . . . ◦ Df(x)
is the Jacobian matrix iterated along the flow, for any µ-typical x (note that M(x), being

invariant under the action of f, is µ-almost everywhere constant due to the ergodicity

of (f, µ)). The dynamics is chaotic if and only if this spectrum has a positive part. This

positive part controls the decay of time correlations due to chaotic amplification of external

noise: correlations decay with time t like exp(−t
∑

(positive Lyapounov exponents)). It

is important to note that this decay does not have the same origin as the decay due to

mixing associated with the Ruelle–Pollicott resonances (Ruelle 1986) – see Section 5.3 and

Section 5.6. This sum of positive exponents provides an upper bound on the Kolmogorov–

Sinai entropy, where the bound is conjectured to turn into an equality (the Pesin equality)

for a large class of dynamical systems, for example, hyperbolic Axiom A systems (Eckmann

and Ruelle 1985). Another conjecture, the Kaplan–Yorke conjecture, states that the capacity

dimension D0 (roughly, the fractal dimension of the attractor (Baker and Gollub 1996))

is equal to the Lyapunov dimension

dLyap = j +

j∑

i=1

λi/λj+1 (34)

where j is the integer such that
∑j

i=1 λi � 0 and
∑j+1

i=1 λi < 0. This statement has been

proved for a two-dimensional hyperbolic mapping where dLyap reduces to 1 − (λ1/λ2). The

total sum of this spectrum (trace ofM) gives the average rate of expansion (or contraction if

negative) of the phase-space volume achieved by the dynamics. In the case of Hamiltonian

dynamics, this sum is 0; more importantly, under various additional hypotheses (for

example, constant kinetic energy), the spectrum satisfies the pairing property (Dettmann

and Morriss 1996)

λj + λ2N−j = 0 (35)

where N is the number of degrees of freedom. In the case of extended systems, with many

degrees of freedom (N 	 1), the discrete features of the Lyapunov spectrum, especially the

step-like structures observed near λ = 0 (van Beijeren and Dorfman 1995; Taniguchi and

Morriss 2002), are still not fully understood. A description of generic scaling properties
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with respect to the number N of degrees of freedom and the possible continuous limit

of the spectrum after an appropriate rescaling, for example, λ̃(α) = λ(j=αN)/λ1, are also

still the subject of on-going work.

5.8. Experimental spectroscopy

This is not the place even to list the whole variety of spectroscopic methods, which

range from infrared spectroscopy to X-rays (that is, from low to high energy), including

the still developing fluorescence techniques (which are especially useful in biology for

investigations into the functioning of living cells) and more specific probes like circular

dichroism (which are sensitive to structural chirality). Spectroscopic methods roughly

separate into two classes: absorption spectra, where one records how the system selectively

absorbs radiation from incident light, and emission spectra, where one records the specific

wavelengths radiated by the system. In the two cases, the spectrum profile is related

to the atomic structure and degrees of freedom through the relation ∆E = hν between

the photon frequency ν and the energy jump (towards higher energy during absorption

and conversely, towards de-excitation and lower energies during emission). For instance,

spectroscopy allows us to identify the elements composing a star from the analysis of its

light, or to follow changes in the atomic structure of a macromolecule as some control

parameter varies. Its interpretation at larger scale, for instance in terms of conformational

changes of the macromolecule, requires a model, and this is one of the purposes and

achievements of (computer-assisted) molecular modelling.

5.9. Some conclusions on spectral analyses

Spectral analyses provide a powerful method for decomposing a given behaviour into

elementary components that are orthogonal to what can be achieved when considering

the system at successive instants or when splitting the underlying real space in cells; one

speaks of ‘conjugate space’. The discrete/continuous duality appears quite ill-suited to

discriminating spectral properties:

— Discrete spectral values have different consequences depending on whether they lie on

the real line or in the complex plane.

— Continuous spectra may even be singular (fractal spectra exhibiting a power-law

behaviour) and their scaling behaviour discriminates between very different physical

behaviours.

The briefest mathematical analysis underlines the fact that the spectrum of any operator

is highly dependent on the functional space in which it operates; in physical terms, it

depends on the set of observables (in particular, it is prescribed by the geometry and

boundary conditions). At the opposite extreme, experimental spectra are inevitably limited

by time resolution (see Section 5.2), noise (the 50 Hz electric supply, the normal modes of

the apparatus and less identifiable background noise) and external medium (such as the

superimposition of solvent spectral features).

Some interpretations, for example, the association of frequencies with spectral lines,

seem to refer only to discrete spectral features. In fact, we here again encounter some
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tolerance depending on the observation scale: speaking of ‘the spectral line at a frequency

ν0’ makes sense provided the width δν of the peak of the spectrum S(ν) in ν = ν0 is far

smaller than the resolution ∆ν ∼ ν2∆t allowed by the experimental setup or computation

accuracy. What appear to be purely monochromatic peaks might reveal an inner structure

when unfolded by a higher resolution. Here also, the discrete or continuous character of a

spectrum is an absolute property only for a given mathematical model of the real system,

and should be reconsidered, together with its interpretation, when changing the scale of

description or observation.

6. Discussion

6.1. Singularities

Discreteness is often, if not always, associated with some kind of singularity. For instance,

any discrete shape A (or concrete body) exhibits a singularity at its boundary (which

precisely defines the boundary):

1(x) = 1 if x ∈ A and 1(x) = 0 if x �∈ A. (36)

Similarly, any countable partition (Aj)j (the sets (Aj)j having pairwise disjoint interiors)

can be associated with a stepwise function f|Aj ≡ j, which is discontinuous at each

boundary δAj , where it jumps from j to other integer values. We also see here a

repetition of the leitmotiv of this paper: such a singularity is a feature of the mathematical

idealisation of the system, which is of a different nature compared to the smooth ‘physical’

profiles: it physically turns into a smooth step at sufficiently small scales, and into a fuzzy

boundary layer at still smaller ones. For all practical purposes, using step functions is to

be preferred at larger observation scales (except in the case, discussed in Section 6.4, of a

fractal boundary). The physical smoothness is nevertheless to be borne in mind if we are to

avoid falling into meaningless paradoxes.

This point might even be expressed mathematically by modelling the boundary by a

sigmoidal function

fa(x) =
1

2
(tanh(x/a) + 1) (37)

smoothly interpolating between 0 and 1. This profile converges (in the sense of Schwartz

distributions) towards a step function in x = 0 in the limit when the width a tends to 0

(see Figure 10):

lim
a→0

tanh(x/a) + 1

2
= lim

a→0

1

1 + e−2x/a
= Θ(x) ≡

{
1 if x > 0

0 if x < 0.
(38)

Here, in d = 1, the Laplacian ∆fa is merely the second derivative

f′′
a (x) = −2 sinh(x/a) [a(1 + cosh(x/a))]−2,

which behaves as −x/2a3 in the neighbourhood of x = 0 (more precisely, provided

|x| � a) while remaining bounded when a → 0 at fixed x. Hence the graph of ∆fa
exhibits a marked feature, almost diverging to ±∞ when a → 0∓, that indicates the
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Fig. 10. Sketch of a boundary profile at different scales (the bar indicates a given interval [−a, a]).
The three smooth profiles, accounting for the same physical feature observed at different scales, are

to be contrasted with the mathematical idealisation (step-like profile) obtained in the limiting

situation a = 0.

steep jump occuring there; the relief of the Laplacian is actually all the more marked

as the jump is steep, that is, as a is small. Taking the limit a → 0 induces a qualitative

change: turning the generic situation a > 0 (even when it is very small) into the isolated

value a = 0 is not innocuous. We here recover localisation arising in some limit (here

a → 0) and the associated singularities, reflecting the ideal character and different nature

of this representation of a physical boundary. For instance, while it makes sense to add

a small localised perturbation on the physical profiles and investigate its fate, the only

perturbation of a step function (while remaining a step) is a translation of the discontinuity

point.

In the above example, as in Section 3.6, Schwartz distributions allow us to give a

mathematically well-defined meaning to the limit a → 0, and to exchange derivation and

the limit a → 0, leading to ∆Θ = δ′. It is then possible to investigate in a unified framework

the stability of a step function with respect to superimposed fluctuations. Schwartz theory

thus reconciles, with all the desired mathematical rigor, discrete and continuous objects and

somehow smoothes out the debate.

More generally, the Laplacian ∆f(x) measures the difference between the value of f in

x and its average in a neighbourhood of x. Namely, in d = 1,

1

2
[f(x+ h) + f(x− h)] − f(x) ≈ f̄h(x) − f(x) ≈ h2

2
∆f(x). (39)

It thus vanishes if f is uniform or linear and it emphasises any localised inhomogeneity,

bringing out a discrete feature in x from its surrounding [x−h, x+h]. In higher dimensions,

taking the Laplacian of a shape brings out the discontinuity occurring at its boundaries,

and thus delineates the edges of this shape, providing a basic tool for image analysis

(Canny 1986).

6.2. Singular limits and emergent properties

We have just encountered in Section 6.1 a singular limit a → 0 and realised the deeply

differing nature of the limiting behaviour (here a discrete, discontinuous step, see Figure 10)

compared with the behaviour for an arbitrarily small but finite value of a (a smooth step).

Taking the limit a → 0 induces a qualitative gap, from continuous to discrete, since there
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is no way to recover a smooth profile starting from the discontinuous step. Moreover,

the limit is not uniform, so it does not commute with other operations (derivation, for

instance, or continuous dependence with respect to an auxiliary control parameter) except

in the specially designed framework of Schwartz distributions. Such singular limits are

ubiquitous in the interplay between discrete and continuous features. For example:

— The continuous limit ε → 0 of a partition in cells of linear size ε (or lattice of

parameter ε).

— The classical limit � → 0 (rather �/Ac → 0 where Ac is the characteristic classical

action scale).

— The thermodynamic limit N → ∞.

Paradoxes arise when comparing and trying to relate the properties of finite systems

to their limiting behaviour (Krivine and Lesne 2003). It is essential to bear in mind that

the limit induces a qualitative change in the system behaviour, with an irreversible loss

of information. If the system depends on another control parameter θ, it might happen

that the limits ε → 0 and θ → θc do not commute, as a result of the singular nature of

ε → 0. The way out of this follows from renormalisation-group ideas, which suggest we

take the two limits jointly, according to the procedure: ε = aε1, θ = θc + aα(θ1 − θc) and

a → 0 at fixed ε1 and θ1. Typically, the joint limit is trivial except for a special choice

of the exponent α, from which we get the full behaviour. More generally, joint rescalings

often provide a powerful tool for capturing singular emergent behaviours (Lesne 1998).

6.3. Digital computing

The different causal nature of (ideal) digital computing, compared with the standard

one, which is limited by rounding errors, is identified by computational mathematics

(Longo 2002). In fact, from a physical viewpoint, computing on an actual digital computer

is bound by an accuracy limitation of the same nature: computer elements are physical

devices, experiencing external perturbations as well as unavoidable, intrinsic thermal noise

(that is, noise originating in the thermal motion of atoms, which itself merely reflects their

kinetic energy at thermal equilibrium). Strictly speaking, errors may arise, but in practice

the probability is so low that they can be considered not to occur. This might be, for

instance, due to a high activation barrier ∆F for taking paths other than the quasi-

deterministically prescribed one: the characteristic time to observe the system wandering

away can be roughly estimated as the Kramers time τK ∼ e∆F/kBT (where kB is the

Boltzmann constant) (Hänggi et al. 1990), and this time increases exponentially if many

such barriers line the ‘deterministic’ computation path.

Although impossible to detect in practice, this nuance is of importance: improbability

and impossibility are not of the same nature, and no conceptual gap between continuous

and digital computing arises if we stick to an improbability of observing a different result

from the expected one in a digital computation. The same subtlety is encountered with the

emergence of irreversibility and the associated Second Law of thermodynamics; similarly,

paradoxes and dead ends appear when treating an improbability (that is, an event of

probability smaller than the inverse age of the Universe) as a strict impossibility (that is,
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etc

etc

Fig. 11. (Left) lacunary Cantor set, of null measure and fractal dimension df = log 2/ log 3 (Cantor

1883). (Right) convoluted plane-filling Hilbert curve, with df = 2 (Hilbert 1891).

an event of probability strictly equal to 0), and trying to derive rigorously the microscopic

basis of this presumed impossibility of observing backward evolutions (Lebowitz 1993).

Theoretical computing on a Turing machine does not suffer such flaws: it achieves

ideal digital computing, and hence is of a deeply different causal nature (Bailly and Longo

2004). This means that the real world does not work as a Turing machine, and that such

an ideal machine, in a sufficiently long (but finite) time will always lose the imitation game

(proposed by Turing to check the intelligence of machines), if played with actual physical

systems, a human being, or a real computer (Turing 1950). Only the time required to

discriminate the players will vary between these three protagonists of a Turing test.

6.4. Fractals: at the border between discreteness and continuity

Fractal geometry, initiated (among others) by Bouligand, Hausdorff and Minkowski (see,

for instance, Gouyet (1996)) and popularised in physics and other natural sciences by

Mandelbrot (see, for instance, Mandelbrot (1977a, 1997b)) might be seen as a hybrid of

discrete and continuous features.

Let us first recall the definition of the main characteristic of a fractal structure: its

fractal dimension df (Haursdorff 1919). It might either be:

Local – for example, the mass M(r) contained in a ball of radius r scales according to

M(r) ∼ rdf ; or

Global – for example, the number N(ε) of cells of linear size ε required to cover the fractal

structure scales according to N(ε) ∼ ε−df .

In the case of a Cantor set (Figure 11, left), this notion of fractal dimension interpolates

between the (integer) topological dimension of the underlying space and the vanishing

dimension of a discrete (countable) set of points: so should we say this Cantor dust is

discrete (although uncountable) or continuous (although of null measure)? And what

about the plane-filling Hilbert curve (Figure 11, right)? The answer is conditioned by the

observer himself: unlike the case of a normal ‘Euclidean’ body, the local density ρ(r) now

depends on the scale r of the observation: ρ(r) ∼ rdf−d. In real systems (as you would

expect), fractal geometry is an idealisation that breaks down at very small scales and very

large ones, where Euclidean geometry rules again.

The fractal structure behaves in practice as a continuum if and only if df = d (integer),

for instance, a Brownian trajectory in the plane or the above-mentioned plane-filling

Hilbert curve. In other cases, fractal structures behave in their own fashion, which is neither

discrete nor continuous. They are often the spatial expression of a critical phenomenon,
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where all scales participate in the behaviour and can no longer be separated; accordingly,

the correlation length ξ diverges. This feature is reflected in the self-similarity of fractal

structures. The spatial correlation function then exhibits a power law behaviour C(r) ∼
rdf−d (instead of the exponential decrease C(r) ∼ e−r/ξ of the finite characteristic scale

ξ). In fact, more generally, power laws might be seen as the signature of a third category

lying between the discrete and continuous, as we have already encountered in spectra in

Section 5.3.

Taking the continuous limit might be trivial, for example, when considering equally

distributed discrete tags on a continuous shape or function. It might, on the other hand,

be a puzzling task in the case where this limit is singular, that is, when a qualitative jump

arises between the continuous system and its discrete counterparts. A typical example is

the measuring of a fractal curve that requires a number of steps of diverging (in the case

of a convoluted fractal structure with df > 1) or vanishing total length (in the case of a

lacunary fractal structure with df < 1). The way out of this puzzle is to rescale jointly

the stepsize a and the step number N(a); the exponent involves the fractal dimension

N(ka) ∼ k−dfN(a).

7. Conclusion

In conclusion, physics in all instances is an interplay between discrete and continuous

features, mainly because any such feature actually characterises a representation, from a

given observer, of the real system and its evolution. This extended ‘relativity principle’

implies that discrete and continuous modellings, behaviours or computing schemes are

the inseparable sides of the same coin. Rather than motivating a debate about the reality

of exclusively discrete or continuous pictures, observations of physical phenomena lead

us to elaborate more complex categories, bridging discreteness and continuity: fractal

structures, discrete features punctuating a continuum, or continuous behaviour smoothing

out an accumulation of discrete events. In practice, the choice between discrete and

continuous models should be based on a comparison between the respective scales of

description, observation, variations (for example, gradient scales, oscillation periods, or

inhomogeneity sizes) and correlations. In this way, it is possible to disentangle the joint

discrete and continuous natures of any natural system in a ‘subjective’ fashion that is

highly dependent on the specific phenomenon and experimental setup being considered.

For instance, nowadays we know quite clearly how to determine when a photon should

be described as a wave or as a point particle.

A key point is that the discrete is not an approximation of the continuum nor the converse.

Great care should be taken when passing from discrete to continuous models and

conversely, since their natures are irremediably different. Paradoxes and inconsistencies

between discrete and continuous viewpoints only appear when we forget that our

descriptions, and even physical laws, are only idealised abstractions, tangent to reality

in an appropriate scale range, and unavoidably bounded above and below. As a result,

wild and spurious features arise when we push a model beyond its validity range,

and limiting behaviours exhibit emergent properties, of a qualitatively different nature,

reflecting the singularity of the limit (continuous limits in the present case). Conversely,
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coarse-grainings are also quite delicate and care should be taken to get closed effective

descriptions, minimising the loss of relevant information and approximations. But both

procedures (continuous limits and coarse-grainings) are at the core of theoretical physics,

aiming at unifying all the different observations, descriptions and laws into a consistent,

minimal explanatory frame capturing the multiple facets of the real world.

This point is subsumed in a more general one: any physical theory is at the same time

based on a representation of the system and deals only with this representation, while

reality always remains beyond the theory and is never fully captured. Hence, as already

emphasised by Newton, and more recently in the context of irreversible thermodynamics

(Chernov and Lebowitz 1997), the mathematical analysis of any physical model should

be enlarged by an additional pragmatic status for the ensuing assertions, that of being

physically exact. Indeed, since the model is only a plausible approximation of the real

system, only robust and plausible features make sense, hence some tolerance of improbable

events should be accepted: a property that fails to be observed only with a negligible

property (at relevant scales) should be considered as true. This opens a gap between

mathematics and physical studies, which is essential to go beyond the mere analysis of a

model and shift to an understanding of the real world.
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et le discret mathématiques. In: Joinet, J. B. (ed.) Logique et interaction: pour une géométrie de la
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