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The relationship between continuous-time dynamics and the corresponding discrete schemes,
and its generally limited validity, is an important and widely acknowledged field within
numerical analysis. In this paper, we propose another, more physical, viewpoint on this topic
in order to understand the possible failure of discretisation procedures and the way to fix it.
Three basic examples, the logistic equation, the Lotka—Volterra predator—prey model and
Newton’s law for planetary motion, are worked out. They illustrate the deep difference
between continuous-time evolutions and discrete-time mappings, hence shedding some light
on the more general duality between continuous descriptions of natural phenomena and
discrete numerical computations.

1. Introduction

This special issue of Mathematical Structures in Computer Science is devoted to the
ubiquitous duality between discreteness and continuity, and to the debates that have
arisen with the aim of reconciling or contrasting these two notions. We shall consider this
issue within a more restricted scope — throughout this paper we will use ‘continuous’ and
‘discrete’ to mean continuous or discrete in time, and with reference to the modality used
to describe a deterministic evolution: either by a continuous trajectory t € [0, c0[— x(t),
or as a discrete sequence (x,), labelled by integers. Our main aim is to give a simple and
comprehensive account of results scattered in the literature.

A striking difference between discrete and continuous modellings, which is further
explained in Section 2, is related to the occurrence of deterministic chaos, namely, the
seemingly erratic behaviour originating in nonlinear amplification of any perturba-
tion (sensitivity to initial conditions) and the mixing of phase space regions. Discrete
autonomous dynamical systems in 1-dimension can exhibit chaotic behaviour, whereas
the corresponding (1-dimensional) continuous evolution equations rule it out, and cannot
even possess a nontrivial periodic solution. A phase-space dimension d > 3 is required
to observe (possibly) a chaotic behaviour in a continuous dynamical system (see, for
instance, the textbook Devaney (1989)). This point suggests that the passage from discrete
to continuous equations, or the converse, is anything but insignificant. Moreover, we
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cannot avoid this issue since any numerical resolution of a continuous equation does, in
fact, imply a recourse to a discrete analogue: it is thus of the utmost importance for us to
describe the relationship between the desired (continuous) solution and the output of the
actual (discrete) computation.

In Section 2, we present some caveats concerning the passage from discrete to
continuous equations, and conversely, on the paradigmatic Verhulst logistic equation,
investigating, in particular, the status and influence of the actual size of the unit time
step in discrete modellings, and providing a physical interpretation of standard numerical
analysis procedures. In Section 3, we consider a 2-dimensional evolution, which brings
new difficulties, though some guidelines can be laid down in the case of Hamiltonian
systems, based on their symplectic structure. We recall in Section 4 the historical example
of Newton’s derivation of Kepler’s law. Finally, in Section 5 we draw some general
conclusions enlarging the scope of the three case studies.

2. From discrete to continuous dynamics and back: How large is 1?
2.1. The discrete-time logistic evolution

The logistic map f.(x) = ax(1 —x) giving the celebrated recursion relation on the interval
[0,1]

Xptl = axn(l - xn) = fa(xn) xo € [0, 1] a€|l,4] (1)
is one of the simplest example of discrete autonomous evolution leading to chaos. This
nonlinear equation was introduced by Verhulst (a Belgian mathematician) in 1838 to
take into account the fact that a, the Malthus coefficient characterising the growth of the
population

Xn+1 = an,

has to decrease when X, increases, due to the limitation of resources (Verhulst 1838). The
simplest way was to replace the constant rate a by a linear dependence in X,,, matching the
rate a at vanishing population, namely a(1 — X,,/M); the parameter M is then interpreted
as being the maximum acceptable population, currently known as the ‘carrying capacity’
of the environment. Equation (1) is recovered by substituting x, = X,,/M. A very rich
variety of dynamic behaviours is generated by Equation (1), whose temporal structure
is governed by the values of the control parameter a. Since the seminal reference’ (May
1976), several studies of the asymptotic dynamics of (1) have been published, amongst
which Evans and Morriss (1991), Peitgen et al. (1992) and Korsch and Jodl (1998) are
very pedagogical. Here, we will just review the most significant properties.

For a given, such that 1 < a < a; = 3, the fixed point x, = 1 — 1/a is stable and
globally attractive, therefore x, — x, as n — oo, irrespective of the initial condition
xg, provided it lies within its basin of attraction |0, 1[. If a¢; = 3, a cycle of period 2
appears through a pitchfork bifurcation. This is also called a period-doubling bifurcation

 Without wishing to denigrate the historical importance and repercussions of this paper, one should note that
rather more is known today about the asymptotic behaviour in the region a > a, and this leads us to modify
May’s claim that all trajectories are periodic but with period so large that the dynamics resembles chaos.
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since it is associated with the destabilisation of a fixed point X, into a 2-cycle (or the
destabilisation of a 2"-cycle into a 2"*!-cycle when it involves f2" rather than f,), and this
generic bifurcation is characterised by the relation f (x; ) = 0.f(a1,x,) = —1 and the
generic condition 92, f(ai,x;, ) # 0, where, for clarity, we have denoted the a-dependence
on the same footing (Iooss and Joseph 1981). The 2-cycle emerging in @; remains stable
and globally attractive in |0, 1[ for any 3 <a <a, =1+ \/3 More generally, there exists
an increasing sequence (ag), of bifurcation values such that for ¢ < a < @y, the
asymptotic regime is a cycle of period 2, which destabilises in az,; through a pitchfork
bifurcation of fﬁk. This sequence converges to a, ~ 3.5699 according to the scaling
law a, — ag ~ 6% with a universal rate 6 ~ 4.6692 (Feigenbaum 1978; Coullet and
Tresser 1978). The discrete evolution given by Equation (1) is actually a generic example
exhibiting this so-called period-doubling scenario toward chaos, that is, a normal form to
which any one-parameter family experiencing such a scenario is conjugated (Collet and
Eckmann 1981). If a = a., a chaotic behaviour arises, which is reflected for a > a,, in a
positive Lyapunov exponent (sensitivity to initial conditions) and mixing property (time
decorrelation of phase space regions). Chaotic regions in the a-space then intermingle in
a highly complicated fashion (though this is now understood (Collet and FEckmann 1981))
with non-chaotic regions where stable odd cycles rule the asymptotic dynamics.

The conclusion is now accepted, but was striking when May (1976) was published: a
large variety of chaotic behaviours can be generated by a 1-dimensional discrete evolution,
with a seemingly harmless nonlinearity (smooth and simply quadratic). The results recalled
above showed unquestionably that nonlinearities are never harmless when supplemented
by a folding dynamics, here coming from the bell shape of the evolution map. But the
role and importance of the time-discrete nature of the evolution rule are far less clear,
and we shall pursue the analysis further in this direction.

2.2. Continuous-time counterpart: a trivial dynamics

As it is impossible to give an analytic solution® of (1), that is, x,, as an explicit function
of n and x, and because we are interested in the asymptotic solution n — oo (which gives
a vanishing relative duration to the unit step n — n 4+ 1), it is appealing to deal with the
corresponding continuous problem (Hubbard and West 1991), which is straightforwardly
solvable. To derive a continuous counterpart of (1), one subtracts x, from both sides of
Equation (1) and identifies x,,,; — x,, with the differential of a continuous function of time
y(t), which leads to

d
= = fuy) =y = ylal—y) - 11 )
whose analytic solution is easily obtained as
a—1
() = e 3

ayo + [a(1 — yo) — 1]e~(a=1¢"

T Except for when a = 4, where x, = sinz(ZnGn) with 8, = 26,1 = 2"0g if xg = sinz(ZnGO). This equivalence
with the angle-doubling 6,,; = 26, (modulo 1) allows us to prove that one gets a fully chaotic behaviour
for a = 4 (the location of x, below 1/2, coded 0, or above 1/2, coded 1, generates a binary sequence that is
statistically equivalent to the outcome of a game of heads-and-tails).
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This solution is obviously regular with respect to t > 0 for any value of ¢ > 1 and,
not surprisingly, tends to x), as t — co. In contrast with this simple behaviour, which is
qualitatively insensitive to the value of a > 1, any attempt to solve (2) by discretisation
with a time step h = 1 will lead to the logistic evolution (1) with its full richness of
solutions as «a is varied. On the other hand, one expects that, for & small enough, one
should approach the true solution (3). To see how this is possible, we have to quantify
what we mean by ‘small enough’.

2.3. Interpretation of discretisation schemes associated with the logistic equation

In this section we will recall the behaviour of the discretisation schemes associated with
Equation (2) (Borrelli and Coleman 1998). Our aim is not to produce new results for this
equation, or to devise an accurate numerical resolution, but rather to understand in this
tractable and well-understood situation what can currently be done to solve real problems
when no straightforward solution is available. For a given time step 5, the discretisation
scheme is given by

y(t+ hy = y(t) + hlay(t) [1 — y(t)] — y(t)}. (4)
A remarkable feature of the logistic equation is the possibility of rewriting this scheme as
Y(t+h)y =AY (t)(1 =Y (1)), (5)
with
Y(6) = ip(t) where 4= — 1 (6)
=AW A= T e — 1y
involving the effective control parameter
Ala,h) =14+ h(a—1) (7)

provided yo € [0,1/4] (note that 4 < 1 if h < 1). Obviously, the same phenomenology
as we get for the evolution given by Equation (1) will be observed. For instance, the
inequality 4 < a; = 3, required to obtain the convergence of (5) to the nontrivial fixed
point Y; =1 —1/A4, means
-1 2
h<hoa)y= 2"~ — (8)

a—1 a—1

Extending the reasoning to the subsequent bifurcations, one would observe the whole
period-doubling scenario when the discretisation step # increases, namely, at values (i )x
with A(a, by ) = ag, that is,

hy = ak__l. 9)

a—1

Chaos occurs for h > ho(a) = (a, — 1)/(a — 1). The bifurcation diagram as a function of
h, at fixed a, would then be similar to the standard bifurcation diagram in a-space, up
to a rescaling of the attracting sets by a factor of A(a, k), a translation and a rescaling of
the bifurcation values (a; = 1 + (a — 1)h). In particular, it is interesting to note that the
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Fig. 1. Discretisation of the logistic equation (2) with a = 3.1, using a time step h < h, (here
h=0.94, while h. =2/(a — 1) = 20/21 =~ 0.95), see text, Section 2.3. The bold line shows the exact
(continuous-time) solution of (2). Stair step %fA(nh). X, = 1 —1/a. The behaviour near the origin is
shown in the inset.
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Fig. 2. This is the same as Figure 1 but with 7 = 0.96 > h,.

sequence (I ) follows the same universal scaling law hy, — b ~ 6%, or, more precisely,
e TS hen oo with 6 ~ 4.4669. (10)
hivy —hiyy
As an example, consider the case ¢ = 3.1 (Figures 1, 2 and 3). The critical value of h is
he= (a1 —1)/(a—1)=2/2.1 ~0.9524. For h > h., one gets a 2-cycle, namely oscillations
of the solution between the two (stable) fixed points of f4[f4(Y)]. The onset of chaos
occurs for 1 = he, = (a0 — 1)/(a — 1) = 2.5699/2.1 = 1.22376.

2.4, Discussion: an interplay between two characteristic times

This simple study illustrates that the passage from continuous-time to discrete-time in a
nonlinear evolution is not insignificant: an actual chaotic behaviour can be suppressed
by replacing a discrete model by its limiting continuous counterpart, or, conversely,
destabilisation of the continuous-time evolution, leading to cycles and even a spurious
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Fig. 3. Discretisation of the logistic equation (2) with a = 3.1, using a time step
h=3/(a— 1) = 1.424 corresponding to the fully chaotic case 4 = 4, see text, Section 2.3.

chaotic behaviour, might follow from an improper choice of the discretisation step
(Yamaguti and Matano 1979).

However, the passage from Equation (1) to (5) by a simple scaling is exact only
in the case of the quadratic family. To enlarge the scope of our discussion, we shall
now investigate what can be carried over to more general situations. Let f be a map,
generating a discrete dynamical system x,.; = f(x,) and having a stable fixed point
x* (that is, f(x") = x* and |f’(x")| < 1). The naive continuous counterpart is given by
dy/dt = f(y) — y. Linear stability analysis shows that x* is still (at least locally) a stable
fixed point of the continuous dynamics since the linear growth rate of perturbations is
negative: f'(x")—1 < 0.

We might then consider the discrete scheme z, 1 = z, + h[f(z,) — z,,] for various values
of the time step £. It is straightforward to show that this discretisation scheme destabilises
for h > h, where

he =2/[1— f'(x")]. (11)
Indeed, the linear stability of x* breaks down when the modulus |1 + h(f'(x™) — 1)]
overwhelms 1, which occurs for 1 4 A(f'(x") — 1) = —1. This relation yields the above

value of h. and shows that the discrete scheme exhibits a period-doubling (pitchfork)
bifurcation in / = i, (one can check directly that the additional generic condition for this
bifurcation stated in Section 2.1 is also fulfilled).

The additional feature observed when the map f, depends on a control parameter a
and exhibits a period-doubling in @ is that h.(a) crosses h = 1 in a = a;: for a > ay,
fi(x;) < —1 and x], is unstable with respect to the initial discrete dynamics (h = 1) but
is still a stable fixed point of the continuous dynamics, showing the inadequacy of the
limiting continuous model dy/dt = f.(y) — y for capturing the behaviour of the discrete
one x,1 = fa(x,). Note that, in the case when f/(x) decreases with a (as in the logistic
example), h.(a) decreases if a increases: as the fixed point becomes more stable (that is,
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If7(x.) — 1] becomes larger with f/(x}) — 1 < 0), the time-step range of validity of the
discretisation scheme becomes smaller (in a sense, the discretisation scheme becomes less
stable).

The qualitative differences between the continuous-time and discrete-time versions of
the logistic equation (which were described explicitly in earlier sections, and above in
a more general framework) are not really surprising: a general claim asserts that a
continuous-time dynamics requires a phase space of dimension at least 3 to develop
chaotic behaviour (Schuster 1984). In dimension 1 or 2, continuous trajectories behave
as mutual boundaries for each other (trajectories of an autonomous continuous dynamic
system cannot cross each other), which obviously prevents chaos (and even nontrivial
periodic solutions in dimension 1). But, while it is straightforward to foresee the loss of
chaotic and even periodic behaviour when turning to the limiting continuous dynamics,
one may ask if it is possible to understand on physical grounds the existence of a critical
value &, for the discretisation time step 5.

The explanation lies in a comparison of the intrinsic time scale(s) of the dynamics with
the chosen ‘time unit’ h. The characteristic time of a continuous evolution, which we will
continue to denote by dy/dt = f(y) — y to avoid a proliferation of new notation, can be
estimated as t ~ 1/[1 — f'(x")]. Indeed, a mere linearisation of (2) around the fixed point
x" leads to

S0 = X1 = [F() ~ e =), (12)

whose solution is x(t) — x* ~ e =71 and hence the value of . The discretisation
scheme is destabilised when & > h, = 27. The stepwise updating, after each time step 5,
of the evolution law is too rough to control the discrete evolution properly and to force
it to follow closely all the relevant variations of the continuous trajectory.

This is reminiscent of the Nyquist theorem (Nyquist 1928; Shannon 1949) for a periodic
continuous evolution: the observation time step should be smaller than half the smallest
period (or characteristic time) to sample the continuous trajectory properly.

Note that 7 or, equivalently, the critical value ., = 27 of the time step are intrinsic
features of the dynamics, in the sense that they are invariant through conjugacy. This
means that for any diffeomorphism ¢, we have that f and ¢~ o f o ¢ (which provides an
equivalent modelling of the discrete model associated with f) have the same critical value
h. and the same characteristic time 7. Indeed, if we use y* = ¢~'(x") to denote the fixed
point of ¢! o f o ¢, it is easy to check that f'(x*) = [¢ ' o f o ¢]'(y*), from which we get
the equality of the characteristic times associated with f and ¢~ o f o ¢, respectively.

We will now pursue the comparison between the continuous evolution and its discret-
isation a little further in order to understand the emergence of oscillations for h > 27. The
general continuous equation dy/dt = f(y) — y operates a fine tuning of the evolution rate
dy/dt that is obviously not achieved by updating f(y)—y at times t, = nh. We have shown
here that, near a stable fixed point, the resulting discrepancies lead to a bifurcation in the
asymptotic dynamics when 4 overwhelms the characteristic time of the evolution. To take
a familiar example of such oscillations arising from a mismatch between two characteristic
times, consider a heating/cooling device that is able to measure the difference between
the instantancous room temperature and a prescribed one, and adjust the appropriate
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energy supply or extraction to counteract the measured difference. If the time s necessary
for the device to actually deliver the required energy is longer than the characteristic time
of temperature variations in the environment, the device will not balance the external
temperature variations but rather, its ill-phased response will dominate, and the room
temperature will suffer large oscillations. More generally, any ill-tuned homeostatic device,
responding with a large time lag h, will produce oscillations, and the result of Section 2.3
is the mathematical translation of this ubiquitous phenomenon.

2.5. Generalised Euler discretisation schemes

In fact, the improvement in the validity range of a discretisation scheme given by using
an implicit recursion relation is a general property. In particular, one can check that the
implicit scheme

Xnt1 = Xp + hlaxn 1 (1 — Xpi1) — X 1] (13)
(with the notation x, = x(t,) where t,, = tg + nh) for the logistic equation is stable for
arbitrarily large time steps 7 (Hubbard and West 1991).

As an illustration of the general ideas, consider the simpler case of a 1-dimensional
dynamical system dx/dt = g(x) having a stable fixed point x*, that is, g(x*) = 0 and
g'(x") < 0. The first-order Euler scheme z,.; = z, 4+ hg(z,) destabilises in h, = 2/|g/(x")]
through a pitchfork bifurcation (see Section 2). Higher-order schemes are given by

h2
Znpt = Fy(h,zy) = zp + hg(z,) + 7g(zn)g/(zn)

3
8P @)+ 8 )+ By ). (14)

Direct computation of 0, F,(h,x") yields the following results:

— The second-order scheme (g = 2) destabilises at the same value h.» = h.;, but through
a tangent bifurcation (0, F»(h,x") = +1, in contrast with o, Fi(h, x") = —1).

— The third-order scheme (¢ = 3) destabilises through a pitchfork bifurcation but at a
larger value h.3 > h;.

— It can be shown that the successive critical values (h.4); for schemes of increasing
order form an increasing sequence, up to oo.

Moreover, it can be shown that the implicit scheme embeds all the higher-order schemes
of arbitrary orders and can be viewed as an ‘infinite-order’ scheme (Mendes and
Letellier 2004), with no limitation on the time-step size. The price to pay is the implicit
nature of the scheme, which means that it is not easily tractable numerically.

3. Lotka—Volterra predator—prey model

Section 2 cast some light on the specificity of discrete dynamics, which cannot be
understood in general, even qualitatively, from the behaviour of its continuous counterpart.
The same problem also arises in two or more dimensions: the discrete recursion relation
following from the continuous evolution law is not unique. The caveats illustrated in
Section 2 are all the more relevant.
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3.1. Continuous Lotka—Volterra predator—prey model

The Lotka—Volterra model is a seminal model in population dynamics and ecology. It
was introduced by Lotka in 1920 and independently by Volterra in 1925 to describe the
joint evolution of two interacting species, namely preys (population x) and predators
(population y) feeding on them (Lotka 1920; Volterra 1931):

le—x = x(a — by)
o (15)
- = Wex—d)

where « is the growth rate of the prey population alone, by is the mortality rate due to
predators (it is taken to be proportional to the predator population y as the natural death
of preys is assumed to be negligible), cx is the growth rate of predators (this is determined
by predation, and hence proportional to the available resources x), and d is the natural
mortality rate of predators. More refined and realistic models have been introduced
since, for instance by Kolmogorov and May for ecological studies (Kolmogorov 1936;
May 1973). However, for simplicity, we will stick to the basic model since our aim is just
to illustrate some caveats with respect to discrete vs. continuous modelling.

This model is the archetypical example of nonlinear dynamics inducing intrinsic
oscillations. Let us briefly recall its main properties. We will use reduced population
and time variables

uzg, vzb—y, T=at (16)
d a
so that the coupled evolution becomes
d
= —ull—0)
: (17)
d_v = ow(u—1)
dr
depending on a single control parameter
d
o= —. (18)
a

It possesses two fixed points: an unstable one (0,0) (a hyperbolic point with unstable
direction Ou and stable direction Ov); and a marginally stable one (v* = 1,0v" = 1). It is
well known (Murray 2002) that this 2-dimensional dynamical system leaves the quantity

H(u,v) = o+ v — log(u*v) = afu — logu] + [v — logv] (19)

invariant. Trajectories are thus level curves of H(u,v). A straightforward expansion of
H(u,v) around the fixed-point (u* = 1,0 = 1) shows that the trajectories in its neighbour-
hood are close to ellipses with period close to 27/, /x. Further away from (u",0"), the
trajectories are still closed (and hence bounded) curves (see the full line in Figure 4)
turning in a counterclockwise direction around (u*,v"), with extremal amplitudes for u
reached when v =v"=1 (when u=u" = 1, respectively, for v). They describe out-of-phase
oscillations of the two species. The period, the phase difference and amplitudes are joint
functions of the initial conditions and the control parameter o of the dynamics.
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3.2. Discretisations of the equations

A natural way to discretise Equation (17) is to use the Euler scheme.

The Euler method
The Euler method, for any given time step k4, is given by
u(t + h) = u(t) + hu(t) (1 —o(1))
{u@+hﬁ=wﬂ+hmuxmﬂ—1y

As an illustration, here is a, very simple, Fortran program corresponding to (20):

(20)

! Resolution of Lotka-Volterra equations
implicit none
real*8 al,h,u,v,u0,v0
integer i

al=0.5d0 ! value of alpha
h=0.1d0 ! time step

u0=0.3d0 ! initial conditions
v0=1.d0

do i=1,250

u=u0* (1.d0+h*(1.40-v0))
v=v0#* (1.d40+al*h*(u0-1.40))
write(23,*) h*real(i),u,v ! writing t,u(t),v(t)
ul=u
vO=v
enddo
end

This simply does not work : Figure 4 shows (dotted line) the destabilisation of the expected
periodic solution, while Figure 5 displays the growth of the ‘constant’ H(u,v). We will
explain what happens in the analytically tractable case of small amplitude variations in
the neighbourhood of the fixed point (u*,v").

Small amplitude
In the harmonic approximation, it is easy to show that

H(t+ h) = H(t)(1 + oah?) — ah®(1 + ).
Then, by recursion,

H(nh) = (1 4+ ah®y*[H(0) — H,,] + H,,
where H,, = 1 + o is the smallest possible value of H. Replacing (1 + «h?)" by ¢ and
nh by 1, we get

H(t)— H,, = "™ (H(0) — H,,). (21)

This exponential growth of H is shown in Figure 6.
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Fig. 4. Trajectories in the phase space {r,u} for « = 0.5. The dotted line corresponds to the Euler
scheme, and the full line to the implicit Euler scheme.

Fig. 5. Trajectories in the phase space {u,v} for « = 0.5. The continuous line corresponds to the
Euler scheme, and the crosses to the implicit Euler scheme.

It is known that the implicit Euler method is often more accurate (Hubbard and
West 1991). This leads us to introduce the following hybrid scheme, which differs from
Equations (20) in the second line.
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Fig. 6. Exponential divergence of H(t) — H,, as a function of t = nh with « = 0.5, h = 1072 The
continuous line is given by Equation (21), and the dashed line shows the results from numerical
integration (with uy = 0.3 and vy = 1).

The implicit Euler method

{u(r + h) = u(t) + hu(t) [1 — v(z)]
(22)

v(t + h) = v(t) + how(t) [u(z + h) — 1].
This has a simpler Fortran program:

do i1=1,250

u=w*(1.40+h*(1.d0-v))

v=v*(1.d40+al*h*(u-1.40))

write(23,*) h*real(i),u,v ! writing t,u(t),v(t)
enddo

The results are also displayed in Figures 4 and 5 for comparison. The solution is
periodic and h remains bounded, and does not even vary significantly. The implicit Euler
scheme is in this case not simply more accurate, but it makes the numerical integration
possible (see Figure 7).

3.3. Symplectic structure

It is interesting to note that a mere change of variables allows us to unravel the Hamiltonian
character of the Lotka—Volterra equations, that is, the underlying symplectic structure of
this conservative dynamics. Indeed, setting

p=logu and g =Ilogv (hence H = o(e’ — p)+ (e — q)) (23)
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Fig. 7. Stability of H(t) — H(0) as function of T = nh with « = 0.5. Numerical integration of
Equations (22). Notice the scales.

casts the evolution (17) into the Hamilton equations

d O0H d O0H
2 & _ (24)
dt op dt dq

The reason underlying the need to use the implicit Euler scheme to solve the discrete
Lotka—Volterra equation properly is thus known: it is the symplectic structure of the
equation given by the Hamilton equations (see, for instance, Tabor (1989)):

,__on
-

2
o 25)
1=

The Euler scheme (with the same notation as above: p, = p(t,) and g, = ¢(t,) where
t, = to + nh) is given by

oH
Pn+1 = Pn — h%(pn; qn)
oH (26)
Gni1 = Gn + ha—(pn, Gn)-
q

The Jacobian of the associated linear transformation is

PHPH  (PH !
dq*> 0p? dqop

J=1+n1

This means that the phase-space volume is not conserved in time (unlike the case for
the continuous evolution, where it is conserved). In the most frequent case, for which the
variables p and ¢ in the Hamiltonian can be separated, namely H(p,q) = K(p)+ V(g), the
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implicit Euler method

0H
Pnt1 = Pn — E(pn; qn)
ol (27)
gn+1 = Gn + %(pwrl; qn)

fixes this flaw. Namely, plugging p, .y = p, — h(0H /dq)(p,, q,) into the expression for
4.1 before taking the derivative leads to J = 1. Such an integration scheme is called
a symplectic integrator, or the symplectic Euler method, since it preserves the symplectic
structure of the original evolution, and the associated area conservation (Sanz-Serna 1992).
Note that the symplectic structure is only apparent in the canonical variables p = logu,
q = loguw.

4. A historical precedent: Newton’s derivation of Kepler’s laws

The above situation for the Lotka—Volterra model resembles Newton’s resolution of the
planectary movement equation. The physical requirement to use a semi-implicit scheme is
again encountered in the reasoning developed by Newton to provide dynamical grounds
for Kepler’s laws (Coullet et al. 2004).

In his Principia, in 1687, Isaac Newton implemented a discrete description of the
planctary motion as the result of a sequence of pointwise impulses, which he actually
borrowed from Robert Hooke. Remarkably, the algorithm implicitly associated with this
viewpoint corresponds to an implicit version of the Euler discretisation scheme in the
plane (Coullet ez al. 2004)

Fuy1 = Fp + Wy,
2 28
R oty 2%

m
(where m 1s the planet mass and f the central gravitation force) and it achieves a better
numerical stability than the standard one. Indeed, the standard Euler algorithm

;‘nJrl = ?n + hljn

£ry)

m

(29)

T]nJrl = ﬁn +h

fails to follow the planetary motion properly, mainly because it fails to preserve conserva-
tion laws (energy conservation and the equality of areas swept in a given time interval). It is
worth noting that the celebrated Verlet algorithm used in molecular dynamics simulations
follows (28) and not the Euler scheme (29).

5. Discusssion and extensions
5.1. Improved discretisation schemes

We have briefly mentioned the improved validity range of Euler implicit schemes (see
Section 2.5). In the same spirit, a wide variety of generalised discretisation procedures,
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known as non-standard Euler schemes, are still in development, but mainly on the
basis of numerical skill and intuition. A few empirical guidelines can be summarised
(Mickens 2002):

— The discrete scheme should be of the same (differential) order as the original continuous
evolution equation.

— The invariants and symmetries of the continuous evolution should be preserved. This
is the basic principle of so-called geometric integrators. Two examples have been given
here: the symplectic integrators associated with the Lotka—Volterra equations and
Newton equations, respectively (Hairer et al. 2002);

— Nonlinear terms (for example, quadratic cross-products) are better treated using a
hybrid expression. For instance, a term x(t)y(t) in dy/dt might be best translated into
a term x, 1y, (rather than x,y,) in the expression for y,.1 — V.

— Generally speaking, the discretisation step 7 should never exceed the characteristic
times of the continuous evolution.

5.2. Conclusion

We began this paper by presenting an example showing explicitly the link between the
validity of the discretisation scheme and the dynamical (in)stability of the associated
map for a unit step-size. Conversely, our study has cast light on the specificity of the
discrete dynamics, which, in general, cannot be understood, even qualitatively, from
the behaviour of its continuous counterpart. In dimension d > 2, the discretisation of a
system of first-order differential equations is not unambiguously defined. In the cases of
the Lotka—Volterra (predator—prey) model and Newton’s equations, we showed how the
symplectic structure of the equation determines the ‘good’ choice. More generally, these
examples illustrate the deep difference between continuous dynamical systems and discrete
recursions, and, accordingly, the gap existing between a continuous dynamical system and
its numerical integration, which requires a discrete scheme that might not be a faithful
analogue from either a conceptual viewpoint or even for simple practical purposes.
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