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Abstract. The aim of this text is to show the central role played by networks in complex
system science. A remarkable feature of network studies is to lie at the crossroads of
different disciplines, from mathematics (graph theory, combinatorics, probability theory)
to physics (statistical physics of networks) to computer science (network generating algo-
rithms, combinatorial optimization) to biological issues (regulatory networks). New para-
digms recently appeared, like that of ‘scale-free networks’ providing an alternative to the
random graph model introduced long ago by Erdds and Renyi. With the notion of statis-
tical ensemble and methods originally introduced for percolation networks, statistical phys-
ics is of high relevance to get a deep account of topological and statistical properties of a
network. Then their consequences on the dynamics taking place in the network should be
investigated. Impact of network theory is huge in all natural sciences, especially in biology
with gene networks, metabolic networks, neural networks or food webs. I illustrate this
brief overview with a recent work on the influence of network topology on the dynamics
of coupled excitable units, and the insights it provides about network emerging features,
robustness of network behaviors, and the notion of static or dynamic motif.
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1. Introduction

The name network first belongs to common language; as such, it refers to many
familiar and concrete structures: man-made networks like railways or roads, air-
lines, electric supply networks, or the Internet, social networks, biological net-
works (metabolic reactions, neural networks, blood circulation, food webs) and
tree-like networks (hydrographical networks) with simpler properties.
Formalization follows quite straightforwardly: a network is a set V of N vertices
pairwise connected by a subset E of edges; these edges can be oriented, weighted,
signed, or not. The network configuration is defined as the set 5(t)=[s;(¢);i€V]
describing the instantaneous state s;(t) of each node i (either discrete, e.g. a
Boolean variable s; =1 or 0, or taking continuous values). In a mathematical
context, one rather speaks of a graph G=(V, E) with E a given subset of V x V.
The edges are in this case unweighted (either present or absent) but possibly
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oriented if some (i, j) and (j,i) do not belong jointly to E. A network structure
can be associated to any pair property or interaction within a group V of ele-
ments: two elements i, j € V sharing this property will be connected, that writes
(i, j) € E. What might appear as a mere re-formulation of an ensemble relationship
actually proves to be very fruitful, since it makes available the geometrical con-
cepts and results of graph theory, on the mathematical side, and the operational
methods of complex network theory, on the statistical physics side.

It is worth noticing that a graph may be associated to a real space, or not. For
instance, V can be a discrete set of points in the plane R? or space R (think of railways
or roads); in this case, the network inherits the natural distance of the underlying space,
and this distance associates a length ;; to each pair (7, j). Butin the general case, graph
definition involves abstract relationships: V is an arbitrary set of points, with a priori
neither linear nor topological structure (think for instance of a social network in a given
place, say a school or a company, or to a network as Internet in which the connection
lengths play almost no role in practice). Edges then have no intrinsic length and the
sole topology is that associated with network connectedness: the distance between any
two elements is defined as the minimal number of elementary steps in a path connecting
them (this amounts to set the distance between neighbors nodesi and j tor;; =1). Here
shows up the interest of the notion of network in providing a novel topological struc-
ture, super-imposed to the natural topology of the system, if any, and closely related
to the functional meaning of the connections. Networks exhibiting the most complex
behaviors are those where this intrinsic topology of the connections and the natural
topology of the underlying space coexist, because of competition, frustration or vari-
ous selection effects that might ensue from this super-imposition; current examples are
food webs and neural networks.

The graph is represented by its adjacency matrix A= (A;}); jev, defined by

A;j=1 if there is an edge from i to j,

elsewise A;; =0.

A is a N x N matrix where N is the number of nodes in the graph. It is symmetric
when edges are not oriented. Its diagonal elements vanish when there is no loops,
i.e. no edges relating a node to itself. Within a straightforward extension, its com-
ponents might take other values than 0 or 1 in order to account for weighted
edges: the weight A;; of the edge (i, j) might be its length in case of a network
embedded in the plane, the coupling strength in case of an interaction network,
or a kinetic rate in case of a reaction network. If not explicitly mentioned, I will
consider only symmetric and unweighted edges.

The degree of a node i is the number k; = Z;V:I A;; of direct connections it
establishes;! its neighborhood V; and neighbors j e V; are the k; nodes directly

n case of oriented edges, one defines the in-degree k}n=zy:1 Aj; (number of edges incoming
in i) and out-degree k?“tzzy: 1 Aij (number of edges coming out of i). The elementary steps in a
path have now to be consistently oriented, what is ensured by considering the non-vanishing con-

tributions Aj;; Ay, ... Aj,_,j in the powers A" of the (now non-symmetric) adjacency matrix A.
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connected to i. Powers of A describe paths: the component A?j of the n-th
power A" gives the number of paths connecting i to j in n steps, where each
non-vanishing contribution A;; A; i, --Ai,_,;j (equal to 1) describes one of the
possible n-steps paths [i,i1,i2,...,iy—1,j] from i to j. Several other topological
features can be defined: the number of minimal paths through a given node or a
given edge, the fraction of triangles (i.e. the fraction of edges present among all
possible links relating neighbors of a given site) and many other meaningful ones.
I present and discuss the main ones in Section 4.3.

Network studies and their framework, as just sketched, let aside the trivial
situation where a few specific nodes or motifs, of special nature, control the
network and phenomena involving it (think of the electric plant in the power
supply network or to a pace-maker neuron ruling certain neural networks); this
case is akin to organization ruled by a chief, far less rich and surprising than
self-organization and its emergent properties. In contrast, network theory con-
siders the situation where nodes are identical and play equivalent roles. In this
case, the basic origin of observed behavior, hence the essential controlling factor
is the connection pattern, namely the very existence of a network structure. One
of the challenges is to understand the impact of local properties and events on
the network global emergent behavior, with an obvious interest for predicting and
controlling the phenomena occurring in the network. As we shall see, this impact
varies according to the considered phenomena (propagation, epidemic spreading,
coupled dynamics or response to external inputs, to quote but a few).

2. Graph Theory and Markov Chains

Graph theory is too wide-ranging a domain of mathematics to give even a brief
overview within the scope of this presentation. I will focus on a specific a specific
point, namely the inter-relations between graph theory and Markov chains describ-
ing random and memoryless transitions between discrete states: each of these states
corresponds to a node of the graph, and transitions correspond to its edges. We
shall see that this mapping is very fruitful, on the one hand to use graph theory
framework and methods to establish Markov chain properties, on the other hand to
explore some of the topological properties of a given graph, for instance its commu-
nity structure, by means of a random walk generated by a suitable Markov chain.

2.1. CYCLES AND MARKOV CHAINS

An important notion, qualitatively but also technically, is that of cycle, namely a
closed path on the network (it is a sub-graph of n>3 nodes and the same number
n of edges), also called a loop in physical literature.A cycle (ig, i1, ..., i, =ig) is said
to be elementary if it is not possible to make a closed short-circuit, i.e. if it does not
exist a link (iy,i,) € E with ¢’ > ¢+ 1 providing a short-cut reducing the size n of
the cycle to n+q +1—¢q’ steps. A closely related notion is that of maximal span-
ning tree i.e. a connected subgraph 7 of N nodes without any cycle; it is maximal
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insofar as adding any of the edges let apart creates a cycle: a maximal spanning tree
thus contains N—1 edges. The edges of a spanning tree 7 can be oriented unam-
biguously by choosing a root, namely a site i towards which they are consistently
directed, yielding an oriented tree 7; for any of the N possible choices for i. Any
spanning tree 7 generates a family [Cy]y Of elementary cycles, where each cycle C,
is obtained by adding one of the edges [, not belonging to the tree 7 and providing
the additional edge required to close a path in 7. These cycles have varying lengths
n ranging between the obvious bounds n=3 and n=N. Such a family of M — N +1
elementary cycles provided a basis in the sense that [34]:

THEOREM 1. Any cycle C can be decomposed into a linear superposition 224:_11\] +
ay (C)Cy of elementary cycles with ay(C)=0, —1 or 1. This expression means that the
contribution associated to a given edge (i, j) comes from cycles C, containing (i, j)
or (j,i), with Z{al(i,j)ecaor(j,i)ecu}a“(c) equals 1 if (i, j) belongs to C, —1 if (j,i)
belongs to C, 0 if neither (i, j) nor (j,i) belongs to C.

A transition matrix R=[R;_ ;]; j=1,...n on V (i.e. any square matrix with R;;>0
and >, R;jj =1) defines a graph according to A;;j =1 if R;; >0, else A;; =0 (if
R;;=0). This graph has symmetric edges as soon as R;; and Rj; are jointly vanish-
ing, or jointly non-vanishing. Following a method basically introduced by Kirch-
hoff in 1847, the stationary distribution of the Markov chain generated by R (with
states i € V) can be related to the features of this graph, namely to the whole set?
[7™],, of maximal spanning trees:

THEOREM 2. For any node i=1,..., N, let [Ti(“)]u be the family of oriented max-
imal spanning trees derived from the set [TW1, by fixing a root i. Each tree 7;(“ )
is associated with an algebraic value b(’];(” ) ) defined as the product of all transitions
probabilities Rj; such that the edge (j,1) is present in the oriented graph ’];(“ ). Then
the stationary distribution of the Markov chain generated by R writes pl.(sm) =S;/S
where S;=3", b (T™y and S=3"N | S;.

This expression straightforwardly implies the following fundamental result [34]:

THEOREM 3. Let R be a transition matrix (R;; >0, Zj Rij=1) assumed to be

(1) irreducible: any state i can be related to any other j in a finite number of steps
(i.e. there exists an integer n;j such that R?j"j > 0) or equivalently the eigenvalue
ro=1 is simple.

(1) aperiodic, namely all eigenvalues except Ao=1 have a modulus strictly lower than 1;

Then the Markov chain generated by R possesses a unique stationary distribution

pO@Y with strictly positive components: pl.(sm) >0 foralli=1,...,N.

2The number pmax of maximal spanning trees depends on the number N of nodes and M of
edges of the graph, but in a way varying with its topology, so that no general formula is available.
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These now quite old and acknowledged theorems and their proofs illustrate the
deep and operational relation between graph theory and Markov chain theory, the
former providing demonstrative and constructive tools to the latter.

2.2. RANDOM WALKS TO EXPLORE A GRAPH

Conversely, a given graph (V, E) and its adjacency matrix A define a random walk
in V, with elementary steps in E, prescribed by the transition matrix® R;_, i=R;;

N

Rij = % with k; :ZAij being the out-degree ofi. (1
1 ]=1

By construction R;; >0 and z;v:l R;j =1. It thus defines a bona fide transition
matrix: R;; describes the conditional probability of a step from i to j knowing
that the walker is in i before doing the step.The benefit of introducing this tran-
sition matrix R follows from the fact that the exploration of V by the associated
random walk evidences some of the graph topological properties, for instance the
presence of densely connected regions. Indeed, one can show that such regions,
called communities, correspond to meta-stable domains in which the random walk
remains trapped for long [16,38]. Moreover, these meta-stable features appear as
a transient ergodicity breaking and accordingly reflect in the spectrum of R: their
spectral signature is the existence of eigenvalues A, very close to 1. We state below
(Section 2.3) in more details the consequences on the transient and asymptotic
dynamics of such a spectral feature. In the present context, it is enough to know
that the right eigenvectors* associated with these quasi-degenerate eigenvalues A,
are quasi-piece-wise constant. The regions in V where they take almost the same
value are invariant upon the evolution law up to times r < 7, ~ (log1/Ag)~!
(in other words, one observes mostly internal transitions up to time t,) leading,
according to the very definition of R, to identify these regions with communities.
The random walk generated by R thus appears as an exploratory tool allowing to
probe quantitatively the graph topology.

By construction, R gives the same weight 1/k; to the k; links originating from
the node i; in the case when A is symmetric, the asymptotic probability of the
node i (equivalently the frequency of visit in the stationary regime) is proportional
to its degree: p}sm) =ki/> ikj=ki/2M where M is the total number of edges.
The iterates of R provide the relative weights of the different paths (recall that, by
contrast, the iterates of A provide the number of different paths). This approach

3Both notations Rj.; and R;; are encountered for the conditional probability of a transi-
tion from state i to state j. The quality of the notation R;_,; and its iterates le‘j is to exhibit the
followed path in our usual way of reading, from left to right, the advantage of the reverse notation
is to lead to the usual matrix-theoretic notation p; =R’ pg for the evolution of a probability distri-
bution py on V. I use here the first one R;j=R;_,;, besides the one currently used for adjacency
matrix Aij EA,‘_>]‘.

4Respectively, left eigenvectors when adopting the notation Rj.; as in [16].
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can be generalized to weighted edges, defining now the transition matrix as R;; =
Ajj/ >’ Air then carrying the analysis as in the unweighted case, within the general
framework of Markov chains.

2.3. SPECTRAL ANALYSES

Given a graph, three different spectral analyses can be performed. Without entering
technicalities, I will thus compare the spectral analysis of

e the adjacency matrix A (defined in Section 2.1);
¢ the matrix A=A — K where K;; =k;é;; is the diagonal matrix of degrees;
e the transition matrix R=K ~'A (previously mentioned in Section 2.2).

The spectra of the matrices A, A and R are related in a simple way only if the
graph is regular, that is, when all nodes have the same degree k; =k; their eigen-
values then satisfy

ra(A)=khra(R)=2ra(A)+k. 2

In the general case, these three spectra differ and provide different informations
on the graph, all relevant both for the determination of its statistical properties
and the choice of the best-suited class of models (‘statistical ensemble’) in which
considering the genericity of its properties.

It follows from the normalization ). j Rij =1 that R possesses an eigenvalue
Ao(R) = 1. It corresponds to the eigenvalue Ag(A) =0 of A (whose existence
directly follows from the relations > ; A;; =0). In the special case of a regular
graph, it implies that A possesses an eigenvalue Ag(A) =k giving the common
value k of the degrees.

A is called the graph Laplacian matrix because it corresponds to a discrete ver-
sion of the Laplacian on the graph. To explain this point, let us consider an array
x; = ai where each node has two neighbors j =i + 1; it comes Zj Ajjp(xj) =
X1 +P(xi—1 — 20 (x5) ~a? " (x;) since here k; =2. On a more general graph,
the analog of the Laplace diffusion equation writes’

¢i(t+1)=kliZAij¢j(t) ie. ¢+ =Rop(). (3)
j

Not surprisingly, we recover the Markov process generated by the transition
matrix R=K ~'A. The above graph diffusion equation (3) thus describes the relax-
ation of any initial distribution ¢(0) to the stationary state p®@9 of the Markov

5The graph analog of Laplace diffusion equation only makes sense in finite time due to the
discreteness of the jumps from a site i to its neighbors j. It appears as a space-time discretization
of the diffusion equation ¢ =(R — 1)¢ where R—1=K"1A.
But the solution of this equation would exhibit a discretization effect, originating from the gap
between e/ R=1 and R’: the proper relaxation equation is (3). The influence of discretization and
specificities of the discrete Laplacian have been thoroughly investigated on regular grids, see e.g. [8].
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chain, corresponding to the eigenvector with eigenvalue Ag(R)=1 of R and eigen-
value Ag(A) =0 of A.The spectral analysis of R provides many other direct in-
formations, both on the asymptotics and the transients of the random walk it
generates:

e as previously mentioned, if the eigenvalue Aog(R) =1 is simple,then R is irreduc-
ible, namely each element of V can be related to any other one by a finite path.
There is accordingly a unique stationary distribution p®@Y . Irreducibility thus
appears as the stochastic analog of an ergodicity property for the evolution gen-
erated by R;

e if all non-trivial eigenvalues have a modulus strictly lower than 1 (|A,(R)| < 1),
R is said to be aperiodic. Joint irreducibility and aperiodicity of R ensure that
any initial distribution of probability pg on V converges to the unique stationary
distribution p®aY =lim,_, o R' po;

e when A is symmetric, the occupancy of a node i in the stationary regime is
directly proportional to its degree k;, namely p§5tat) =ki/D. j k;. It is straight-
forward to see that R then satisfies the detailed balance property:S p®*R;; =
pg.smt) Rj; for any pair of sites (i, j). It means that once the stationary regime is
reached, there are as many transitions from i to j than from j to i; in conse-
quence, this stationary regime is in fact an equilibrium state (with no probability
currents);

¢ having sorted the eigenvalues [A,(R)],>1 of R according to decreasing modu-
lus, the times [7,], defined by A, =e!/% vyield the relaxation times towards the
asymptotic distribution p®®Y; for a typical initial distribution, this relaxation is
controlled by the largest time ty;

e the characteristic time t; also quantifies the correlation time of typical observ-
ables A (that is, whose projection (A|g|) on the eigenvector g associated to Aj
does not vanish). Intermediary times 7, with a>2 describe the correlation times
of non typical observables A (such that (A|q;)=0).

More can be said in the case when some (say, n) eigenvalues of R are close to 1,
hence being associated with slow modes: 7,>> 1 for a=1,...,n. We have shown
that such a quasi-degeneracy of R induces a multi-scale dynamic structure in the
state space V, all the more when a definite scale separation ©1>>1>--->1,>>1
leads to clear-cut hierarchical features [16]. The proof relies on the additional
assumption, satisfied in all generic situations, that R admits a spectral decompo-
sition:

N-1 N-1
Rij=> 2 B"q" hence (R);j=> 2B"q\" (.j=1.....N) (4
a=0 a=0

OThis property is also known as microreversibility since it ensures the invariance of the Markov
chain upon time-reversal.
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where [B@], and [¢?], are, respectively, the right and left eigenvectors of R,
with ¢(@ = ptad, B(O) =1 and 3V IB(”)q.(" ) =§,4. This expansion clearly shows
that the contrlbutlon of the mode a to the dynamics decreases in time as e ™"/,

The key preliminary result is the piecewise constancy, at leading order’ with
respect to the scale separation factor, of the n right eigenvectors associated with
the n quasi-degenerate eigenvalues. More precisely, we can partition the state
space in regions

v, =lieV| B ~b, fora=1,....n} 5)

(possibly leaving aside some ‘dust’) and also consider the coarse-grained versions:
(=1  _ (n) (1) _ (n)

Vb], by =Up, Vbl,nwbn up to V by =Up,,..., Vb], by (6)

These nested partitions are adapted to the dynamics in the following sense:

THEOREM 4. [16] For times t K t,, the regions V ’’’’’ b, @re quasi-invariant: the
trajectory of a random walker remains in the region where it starts (the index a here
varies in {1 .,n}). T, appears as the characteristic time of the transitions from a
region V bu_t.by 1O another one V(la,). ba 1., within one and the same V(” 1,)3

.....

.....

—t/r P 1.

The spectral analysis of R thus provides a whole hierarchical picture of the
state space and its exploration by the random walk generated by R. To con-
clude, I underline a general insight from this study: the coincidence of the corre-
lation times, the relaxation times and the characteristic times of transition (inverse
transition rates between meta-stable regions), moreover all directly related to the
eigenvalues of R.

2.4. LANDSCAPE EXPLORATION

Given a discrete set V of elements, belonging or not to a real space, a landscape
is defined as a function ® on V with real positive values. In this context, the
edges (i, j) € E of a graph (V, E) can be seen as a set of elementary moves on
the landscape. As explained in Section 2.2, the graph defines a random walk in
V, whose transition matrix R is obtained through the proper normalization of
the graph adjacency matrix. By restricting the set of points j that can be reached

7All the given statements involve some level of approximation, as indicated in using the adverb
‘quasi’ and =~ instead of = in the formulas. The associated tolerance, controlled by the fast modes
a>n with 7, =0(1) <1y, could be written explicitly and bounded. We here let apart these (quite
cumbersome) technicalities; it is enough to know that this tolerance tends to 0 when the scale sep-
aration factor between the fast and slow modes increases to oco.
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from i, the definition of E allows to account for various constraints (supplement-
ing the energetic constraints associated with the landscape) for instance conser-
vation laws, steric hindrance or topological invariants. As detailed below, it also
allows to monitor the exploration, e.g. enforcing large steps or directed motion. I
shall here present how such an ‘a priori’ exploration of V provides insights about
the landscape features.

The correlation time tqo(®, R) is defined as the characteristic range of the cor-
relations between the values taken by ® along a trajectory of the random walk
generated by R (‘a priori motion’): it is roughly the number of steps that the ran-
dom walker needs to reach a region whose altitude is no longer correlated with the
starting point altitude. It is thus a joint characteristic of the landscape ® and the
graph (V, E) (or equivalently R). To compute this time from the knowledge of a
_____ 7 with T steps, one exploits an ergodicity
argument, allowing to estimate statistical averages® by identification with temporal
averages along a typical realization of the random walk:

Co.r(0)=(P(ir16)P>;)) — (®)> (independent of 7)
2

1 = 1 I
~T o [Z dD(iz)q’(ir+e)] - [? > @(i,)} o0/ feorr(®.R) )
t=1

t=1

(such an identification being exact in the limit as 7 — oo and provided R is irre-
ducible). The landscape correlation length l.or(®) is then defined as the mean-
square distance traveled during f.o(®P) steps [43]. Whereas f.orr depends on R,
leorr(®P) 1s an intrinsic characteristic of the landscape ® and it gives an estimate
of the size of its wells [15].

The set E of elementary steps associated with a graph (V, E) might be exploited
as a library of test-moves (‘a priori motion’) in a Monte Carlo® simulation. In
such a simulation, the landscape super-imposes an energetic acceptance criterion,
for instance the Metropolis criterion: if ®; < ®;, the test-move i — j is accepted
with probability 1; if ®; > ®;, it is accepted with probability e A®i=®)  ensur-
ing that V is sampled with a weight proportional to e #® where g is a tunable
parameter (the inverse temperature in statistical mechanics). The analysis of the
transition matrix R of the graph provides clues on the test-motion properties for
instance its ergodicity if R is irreducible.

In this context, we have proposed a novel Monte Carlo algorithm to improve the
landscape exploration in simulations aiming at exploring or sampling V. Indeed,

8Here, the statistical average would be an average over V weighted by the stationary distribu-
tion p©tad of R.

9Conversely, any dynamic Monte Carlo method in a state space V defines a graph whose nodes
are the elements of V and whose links correspond to the test-moves of the simulation.
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steps of size far larger than leor(®) presumably!” carry the trajectory from a well
to another one, preventing it to remain trapped in a local minimum of the land-
scape: this is an invaluable property when looking for the ground state or for
sampling the whole space V. When looking for an absolute minimum of &, it is
not enough to visit each well; it is also necessary to explore the well enough pre-
cisely to determine the bottom-value of ®. Exploring each well is also required
for sampling purposes. In consequence, what is needed is an alternation of local
steps, inside the wells, and steps of long range | > l.orr (P), achieving transition from
a well of ® to another.The weight reflecting the difficulty to climb the landscape
hill thus super-imposes, in a multiplicative fashion, to the basic weight of the
test-moves (inversely proportional to the degree of the site they come from). The
ensuing exploratory mechanism is still a Markov chain, and the hierarchical space-
time structure of the landscape reflects in the spectrum of the associated transition
matrix (a product of R with the transition matrix associated with the energetic
acceptance criterion) as exposed in Section 2.3. Such a ‘nested Monte Carlo’ algo-
rithm is specially well-suited in situations exhibiting strong geometric constraints
(e.g. steric hindrance, as in granular media and polymer systems, or topological
invariants, as with elastic rods or their microscopic analogs like DNA or actin
filaments) [21].

3. Random Graphs
3.1. ERDOS-RENYI MODEL

Given a set V of N points, the simplest model of random graph, developed by Erdos
and Renyi [10] amounts to establish a link with a probability p between any two
points of V, independently for all the different pairs of points. The adjacency matrix
A has thus random coefficients, statistically independent and equal to 1 with proba-
bility p; in other words, they are independent random Boolean variables. Here graph
theory meets random matrix theory.!! The topology is fully prescribed by the set of
edges E: there is no longer an underlying real space and the neighborhood of a site i
is composed of all the sites directly connected to it. The distance between two sites
is given by the number of steps of the minimal path connecting them. The network
diameter is the average distance between pair of sites.

A variant of this random graph model is rather parametrized by the number M
of links, placed at random; in other words, it amounts to choose M pairs among
the N(N —1)/2 possible ones. This variant coincides with the first model in the

10More precisely, the ‘correlation length conjecture’ (rigorously proved in some special situ-
ations) states that a region of linear size lcorr(®P) typically contains one minimum of the land-
scape @ [40].

1 This theory, with more physical motivations than graph theory, recently developed mainly in
the context of quantum mechanics and in particular of quantum chaos, dealing with the quantum
behavior of systems whose classical analogs are chaotic [19].
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P(k)
P(k)

<k> K k

Figure 1. Comparison of random graphs (left) and scale-free networks (right). The first ones
are homogeneous, with a degree distribution P(k) peaked around (k) and decreasing faster
than an exponential law (as e~klogk)y " while the second ones have a highly heterogeneous
structure, exhibiting high-degree nodes and also more low-degree nodes (e.g. k=1), with a
power-law degree distribution P(k)~k~7 with y >1 (currently 2<y <3 in real complex net-
works, corresponding to a finite average degree but an infinite variance).

limit as N — oo at fixed p=2M /(N —1). In both cases, the average degree (k)=
2M /N = Np corresponds to the typical degree value.

An important network characteristic is the degree distribution P(k), describing
the probability for a node to be directly connected to k other ones. In the limit
N — 0o now at fixed (k)= Np, the Erdos—Renyi model is shown to exhibit a Pois-
son degree distribution peaked around the average degree (k) and decreasing at
large k faster than an exponential'®> (Figure 1):

kef)t

Pk)= with &= (k) (8)

12Recall that the Poisson distribution Py (k) approaches a Gaussian for large A; more precisely,
the variable (k—21)/+/A tends in law to a normal distribution (centered of variance 1) when A— oo.
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3.2. CAYLEY TREES AND INFINITE-DIMENSIONAL GRAPHS

One can extend plane (d =2, e.g. a square grid) or spatial (d =3, e.g. a cubic
mesh) lattices and consider abstract graphs, whose connections are not embedded
in a real space.It is for instance the case of a Cayley tree (or Bethe lattice for the
physicists), originating from a central point from which radiate z edges, then built
recursively: each node is related to z —1 new nodes ignoring each another, and
in particular not connected. The degree of each node is thus z (leaving apart the
newly added nodes of degree 1) and all nodes are equivalent in the infinite-size
limit N — oo. This seemingly artificial model plays an important role: due to the
absence of coupling between nodes not directly related along the tree, it lends itself
to exact analytical approaches of several issues (for instance the determination of
percolation threshold, see below Section 3.3). In graphs with closed paths, termed
cycles, these approaches can be traveled only at the price of a mean-field approx-
imation, that consists precisely in ignoring the presence of cycles, thus reduc-
ing the original graph to a Cayley tree. The latter appears as a wuniversal model
approximating all graphs where one expects that correlations following from cycles
play a negligible role (of course a point to be checked quantitatively, at least a
posteriori).

An equivalent viewpoint is to consider a Cayley tree as a lattice of connectivity
z in infinite dimension:'> general theoretical arguments, following from the theory
of critical phenomena and renormalization group, invoke this infinite value d = oo
of the dimension in support of the mean-field approach validity [24].

3.3. PERCOLATION NETWORKS

Percolation networks were introduced as simple (actually the simplest) models of
disordered media. They involve regular lattices (e.g. square, hexagonal, or triangu-
lar grids in d =2, cubic grids in d =3). Random holes are introduced by breaking
the bonds of the regular grid with a probability 1 — p (or replacing their nodes
with holes with a probability 1 — p, in case of site percolation). As in the Erdos-
Renyi model, the presence or absence of a link is independent of the status of the
other links. This kind of spatially discrete model with independent Boolean local
state variables is specially well suited for numerical studies. One then observes
remarkable statistical properties, namely a percolation transition when varying the
control parameter p, corresponding to the appearance of a connected component
spanning the whole network.

13In finite dimension d, a regular lattice of connectivity z exhibits cycles, for instance of length
4 on a square lattice (z=4) or of length 3 on a triangular lattice (z=6). One shows that the fraction
of cycles among the paths coming out a given node decreases as the space dimension d increases,
tending to 0 as d — oo.
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In the limit'* N — oo, for p > p., this spanning cluster contains an infinite num-
ber of nodes and is currently named ‘the infinite cluster’. Right at the percola-
tion threshold p = p. (and of course below, for p < p.) it contains a vanishing
fraction P(p.) =0 of links; this fraction P(p) becomes strictly positive for p >
Pc, providing a relevant order parameter and endowing the percolation transition
with a continuous, second-order-like transition nature. Accordingly, the transition
is described by scaling laws, e.g.

P(p)~(p—p)f (p=pe) &)

and the infinite cluster exhibits a fractal nature at the percolation threshold.
Several analytical approaches have been developed to quantitatively describe the
percolation transition, mainly its threshold p. and the scaling exponents: phenom-
enological scaling theories, mean-field approximation, renormalization methods
[24]. They exemplify the fruitfulness of tools, concepts and methods of statisti-
cal mechanics, beyond their original application to molecular systems within the
framework established by Boltzmann and Gibbs.

The Erdos—Renyi random graph model can be seen as an infinite-dimensional
extension of bond-percolation models: all sites are a priori accessible by a direct
link from a given node (not only the z=2d nearest neighbors as on a hypercu-
bic lattice in dimension d) but only a fraction p of links are actually present. One
shows that the percolation threshold is reached!® when the average degree is (k)=
1. The relation (k) =Np then gives the finite-size percolation threshold p.=1/N of
the Erdos-Renyi model, vanishing in the infinite-size limit, and the infinite cluster
reduces to a spanning tree. The random graph percolation threshold can be recov-
ered with a qualitative argument, identifying the percolation threshold of a N-site
random graph with that, equal to p.=1/(z—1), of a Cayley tree where the num-
ber of neighbors of a given site when all bonds are present is z=N [24].

3.4. SUCCESSES AND FLAWS OF RANDOM GRAPH MODELS

The Erdos—Renyi model offered the first model of random graph in which the
real space where the sites lie (if any) plays no role. Its topology is exclusively pre-
scribed by the connection pattern. As such, it was adopted as a paradigm, having
allowed to develop concepts (degree distribution, diameter) and several methods to
investigate random networks [6]. It has proven to be successful in several appli-
cations, for instance (the list is by far only a sample) in devising optimization
algorithms for communications or resources allocation, in pattern recognition, in

14Note that a bona fide transition occurs only in this limit, as for any other phase transition;
otherwise the change is smooth and the threshold p.(N) is still random, what is referred as “finite-
size effects’.

15The general condition writes (k2)22(k), yielding (k) =1 in a graph with a Poisson degree
distribution [32].
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clustering and classification methods, or in probabilistic methods used to prove
graphs properties like e.g. the minimal number of edge crossings over all drawings
of a simple graph on the plane.

Nevertheless, the relevance of the Erdos-Renyi model as a formal and ideal
representation of real complex networks has been deeply questioned for a short
decade [1,12]. A real network of N nodes and M links can be confronted to a
random graph having on the average the same number of links, i.e. a random
graph with N nodes defined by the probability p=2M/N(N — 1) or more directly
the variant model defined by its number M of links. One then sees that the ran-
dom graph model does not account, by far, for the properties of most real com-
plex networks, for instance metabolic networks, food webs, social networks or the
Internet. In particular, real networks have a degree distribution P (k) decreasing
far more slowly at large k values, typically according a power law (see Figure 1):

P(k)~k" (withy > 1). (10)

This power-law dependence reflects the absence of a typical value for the degree,
and such networks are currently termed scale-free networks; their main properties
will be presented in Section 4. Notwithstanding this gap, the Erdds-Renyi model
remains a reference point with thoroughly known statistical and topological prop-
erties. Observing different properties in a real network evidences by contrast that
it essentially differs from a random graph and that other ingredients should be
taken into account in its modeling.

4. Modeling Real Complex Networks
4.1. STATISTICAL MECHANICS OF NETWORKS

The determination of ‘macroscopic’ collective behavior of a large number of
‘microscopic’ elements lies at the very core of statistical mechanics. In the systems
usually considered in statistical mechanics, interactions between these elements are
always simple and homogeneous, even in critical phenomena. Let us quote for
instance ferromagnetic interactions between spins, excluded-volume interactions
between the monomers of a polymer chain in solution, short-range (diffusive cou-
pling where each element is coupled to its nearest neighbors) or long-range (global
coupling where each element is coupled to any other one) interactions between
oscillators in coupled map lattice models. Interaction networks are then simple
and regular, being either square or cubic lattices (or the more isotropic triangu-
lar or hexagonal variants), either infinite-dimensional graphs where each node is
connected to each other. Often, they simply result from a discretization of the real
space where the considered phenomenon occurs.

Interactions are not always so simple in real systems, and they can form net-
works with irregular and complicated architecture. In biology, for instance, inter-
actions can be relayed by various means, possibly being non-local, oriented,
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involving delays, or even with different spatial ranges in the same system. Current
examples are gene networks, metabolic networks [22], neural networks [20], food
webs [33], communication networks as the World Wide Web or the Internet [32]
and social networks [41].

Statistical mechanics of networks is a way of studying such complex systems,
focusing on the connection pattern and its topological and statistical properties.
It extends the spirit of percolation models to more complex topologies, often self-
organized, and in which real space and associated natural distance might be absent
or of little relevance. A first benefit of this formalization is to provide indices
allowing to quantify the network complexity. But the main interest is to sort real
networks into classes, defined by a set of typical properties and providing the rel-
evant statistical ensembles. In this context, a statistical ensemble gathers all graphs
sharing some prescribed ingredients, e.g. the degree distribution or a growth mech-
anism [32]. The theoretical issue is then to determine the properties ensuing from
these basic ingredients, either for prediction purposes in situations where the rel-
evance of the statistical ensemble is well assessed, either to validate its relevance
by confronting the predictions and the available experimental data; a discrep-
ancy would evidence the need of including additional features in the definition
of the statistical ensemble to get an adequate model of the real network under
investigation.

4.2. SCALE-FREE NETWORKS

Following from extensive experimental data analysis, it recently appeared that the
relevant paradigm to describe real networks is rather that of scale-free networks.
In such networks, the average number of links per node does not at all repre-
sent the typical degree: actually, there is no typical node hence no typical degree.
Most often, the empirical degree distribution is consistent with the simplest generic
analytical form, namely a power-law'® dependence P (k) ~k~" with y > 1. The
power-law decay of P (k) indicates a non-negligible probability to observe highly
connected nodes, and also a higher probability to observe weakly connected nodes
(k=1 or k=2) than in a random graph with (k) > 1.

When links are oriented, two different distributions P™™(k) (probability that k
links enter a given node) and P°“!(k) (probability that k links come out a given
node) are to be distinguished, associated with two exponents y™ and y°U. For
instance, such a dual power law is observed in metabolic networks with " =2.4
and y°"'=2.0 [22]. It is also the case of the Internet and the World Wide Web,
with here also different exponents ™™ and y°", and of several biological networks
[13,30] In other situations, for instance gene networks (where the nodes are the

16A value y>2 is required to have a finite average degree; smaller values of y can be consid-
ered, including values y <1 (a priori precluded to get a normalized P(k)) provided the distribution
P(k) is truncated at large k values.
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genes and a connection (i, j) reflects that the protein coded by gene i regulates
the gene j), data are better fitted with an hybrid behavior: a power-law out-degree
distribution P°" (a protein coded by a given gene can regulate an arbitrary large
number of other genes) and an exponentially decaying in-degree distribution P™™
having a finite characteristic scale imposed by physical reasons,!” for instance ste-
ric hindrance preventing an arbitrarily large number of proteins to be involved in
the neighborhood of a given gene promoter [18]. Nevertheless, experimental data
are too scarce to faithfully determine the actual nature of the distribution. In most
cases, several models can be supported by the same experimental data.

It is indeed to be underlined that it is a highly delicate matter to assess with
some certainty the power-law dependence of an experimental degree distribution
(see Figure 2). First, it is recommended to estimate the cumulative degree distribu-
tion function F(k) =72, _, P(k') rather than the distribution P (k) itself: it yields
smoother plots (statistical under- and over-representation that might arise in the
sample due to finite-size fluctuations average out) and avoids the arbitrary win-
dowing choice required in drawing the histogram when degree values have to be
boxed to get a sufficient statistics. Given the empirical degrees (k;)i=1 . n, One
estimates

~ 1 ~
l—FN(k)zﬁCard{i,ki>k} (Fy ~ F when N — 00). (11)

In case when P (k) ~k~7 at large k, then fN(k) behaves as k!~7. But even with
this procedure, data over several decades are required, that correspond here to
degrees ranging between 1 and 1,000 at least. In many experimental situations,
such degree values are simply not encountered, and the support of the empirical
distribution is far narrower. The limitation in estimating the degree distribution
might come from the experimental setting but also (as it is frequently the case
in biology) from the system itself. In this case, the very issue of the distribution
nature (Poisson law vs power law) is somehow ill-posed and meaningless: the dis-
tribution reduces to the recorded data and can often be fit by either of the two
functional forms; additional arguments should be invoked to justify the modeling
choice. To summarize, a power-law shape appears at best as the simplest fit con-
sistent with the data, being more accurate and more faithful than an exponential
fit. It is in fact the simplest generic dependence when there is no characteristic scale.

Moreover, observing a power-law degree distribution, even with accuracy and
certainty, does not represent in itself an explanation of its origin (see for instance
the recent essay by Fox Keller, providing an historical perspective and a critical

17 et us assume that all factors (transcription factors, co-activators,...) involved around the
promoter of a given gene i in order to regulate the expression of this gene have roughly the same
concentrations, say c. Since each of these factors corresponds to a connection (ending in i) in the
gene network, the probability P (k) for the gene i to have an in-degree equal to k scales as P(k)~
k. This scaling estimate supports an exponential nature for the in-degree distribution, with a char-
acteristic degree k. =1/log(l/c). This formula might be read in the reverse way, giving the typical
concentration ¢ required for a gene network with typical in-degree k. to operate properly.
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Figure 2. Misleading estimate of the exponent o of a power law Y ~ X% (slope of the bold
curve) from experimental data (the points in this sketch) in case of an undetected crossover
(left) or in case of two sub-populations verifying the same scaling law with different pre-
factors (right).

assessment of this highly fashionable notion of scale-free network [14]). The only
unquestionable conclusion that can be drawn is the high heterogeneity among the
nodes, reflecting in the absence of characteristic degree and long tails in the degree
distribution, all the more dispersed than y is small. A power-law degree distribu-
tion might accompany various architectures, either clustered or not, either mod-
ular or not, ecither hierarchical or not, for instance: further specification of the
statistical ensemble might be necessary. Only a modeling approach, based on addi-
tional knowledge of the system, can suggest the relevant ensemble and provide
a real understanding of the network properties and mechanisms at work in the
observed behaviors.

The implicit reference in the name ‘scale-free networks’ to scale invariance as
encountered in the context of critical phenomena and fractal structures (both
notions involving power-law relationships) should be considered with caution: if
not totally misleading, it needs at least to be argued and established beyond a sim-
ple metaphor. The scale-invariance of complex networks, if stated without further
specification, is indeed an ill-defined feature. More precisely, the degree distribu-
tion is trivially scale invariant, but the scale invariance of the network configura-
tion (connection pattern) is another feature, far less obvious: it has to be defined
as a statistical property associated with some scale transformation. On the experi-
mental side, quantities to evidence and if possible measure network self-similarity
have to be introduced and algorithms to compute them from data have to be
designed. Actually, it remains an open field of investigations to describe the behav-
ior of complex networks upon changing the observation scale, to determine what
is the relevant concept(s) of self-similarity for such networks and to devise the
appropriate coarse-graining procedures allowing to evidence and exploit their self-
similarity, if any [26].
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The differences observed between scale-free networks and random graphs sug-
gest that real complex networks do not emerge by chance'® but according to some
organizing principles and submitted to various selection mechanisms [9].What
realistic mechanism might account of the absence of characteristic degree and
observed shape for P(k)? Many! Numerous models, more or less plausible, sim-
ple and explanatory flourished [32]. The simplest one is based on a joint princi-
ple of growth and preferential attachment:'® the new links are added towards nodes
already highly connected: ‘rich get richer’; this design principle produces a power-
law degree distribution with y =3 [4].

Totally different explanations might also be mentioned, all leading to a power-law
degree distribution but various architectures, in particular as regards the clustering
and spatial distribution of links. We have investigated for instance the situation
where each node i connects at random with all nodes of a neighborhood of a size n;
depending on i, with a probability p for each link to actually be present, as in the
Erdés-Renyi model. Its out-degree is thus a random variable with mean (k") =n; p.
Model consistency requires to orient the links and to distinguish links arriving at
a node and links coming out. Out-degree distribution reflects the size distribution
(n;);, and the issue is now to explain the features of this size distribution, e.g. the
absence of characteristic size, and their origin (the question is simply shifted). A
robust feature associated with this design, that can be confronted to data, concerns
the in-degree distribution: it is always a Poisson law (with parameter the average
degree?® (k") = (k°U) = (k)), whatever the size distribution (n;); is [25]. Numerous
other mechanisms can be invoked to account for the power-law decay of complex
network degree distribution. This is besides a general fact when investigating scaling
laws: they are delicate to assess experimentally (see Figure 2) and still more delicate
to interpret, since numerous alternative explanations can account for the appearance
of a power law (see for instance [24] and [39]).

4.3. DIAMETER, CLUSTERING COEFFICIENT AND DEGREE DISTRIBUTION

At this stage, we have come across the network degree distribution. Two other
important features are its diameter, defined as the average distance between two
nodes (i.e., the average over all pairs of nodes of the number of steps of the min-
imal path connecting them) and the clustering coefficient, defined on Figure 3. It
is meaningful to compare the four most current network models as regards these
three features: regular grids, Erdds-Renyi random graphs, small-worlds obtained

18Chance being the common word for ‘at random with statistical independent and equi-proba-
ble events’.

197 quite similar derivation of power-law distributions—termed skewed distributions at that
time—has been proposed by Simon [38] in the stream of its investigations about the general orga-
nization of complex systems and their hierarchical structure; but it was not directly applied to net-
works hence remained ignored for long in this context.

201t is indeed to note that the average in-degree and the average out-degree always coincide,
whatever the degree distributions are, since Zl—,j Ajj :Zj k;.n:Nq(m) =y kf)ul=N(k°m).
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Figure 3. Clustering coefficient, defined as the fraction of edges actually present compared to
the maximal number of edges bewteen neighbors (o) of a given node (e).

Figure 4. Watts and Strogatz model. Edges of a regular network are rewired at random (inde-
pendently) with a given probability p, yielding a ‘small world’ of diameter increasing loga-
rithmically instead of linearly with the number of nodes.

after a re-wiring (presented on Figures 4, 5 [42]) and scale-free networks obtained
by a growth according the preferential attachment principle [4]. Table I summa-
rizes their (in)ability to account for the real complex network features.

4.4, COMMUNITY STRUCTURE

An important issue, for instance in the context of social networks (where besides it
has been introduced) is the detection of communities, i.e. more densely connected
regions.

A first approach is inspired from classification methods developed for general
sets of points and based on a quantitative estimate of their similarity, currently by
means of a distance. Let us quote for instance the K-means method and the hier-
archical clustering. In the first method, the number K of classes is chosen a priori
(this method is thus termed a ‘supervised method’); the procedure is then recur-

sive, starting from K points xfo), . ,x}?) chosen as centers: each point i is associ-

ated to the closest center xé(g). Once this sorting has been done for all points, the

center of gravity of each sub-group is computed, and the resulting points are then
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Figure 5. Diameter and clustering coefficient of the Watts and Strogatz model, as a function
of the rewiring probability. For intermediary values of p, the network exhibits a small diame-
ter and at the same time a high clustering coefficient, namely the signature of a ‘small world’.

Table 1. Comparison of the main network features observed in the most currently used mod-
els, compared to real complex networks exhibiting a diameter increasing slower than a power
of the number N of nodes, a finite clustering coefficient (i.e. non-vanishing in the limit as
N — o0) and a power-law degree distribution

Regular Random graph Small world Scale—free Real complex
lattices  (Erdos—Renyi) (Watts—Strogatz) (Barabasi-Albert) networks

small NO X X X X
diameter
clustering X NO X NO X
P(k)~k~Y NO NO NO x x
used to update the position of the centers into xfl), e xg). The procedure is iter-

ated using as reference points these new centers, and so forth till the partition does
not evolve anymore. The second method consists in determining a tree by group-
ing the closest points together, in successive steps. Site closeness is quantified by
means of a similarity distance, to be defined in each specific instance. This hierar-
chical method yields a family of partitions more or less grained according to the
considered level in the tree, ranging from the elementary level where each group
reduces to a single point up to the tree root where all points form a single class.
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The second approach was already presented in Section 2.2. It also provides a
hierarchical picture, but according a far different procedure, based on the graph
exploration by a random walk with transition matrix R;_, j =A;_ j/k;; communities
are then identified with quasi-invariant regions in which the walk remains trapped
for long. This method recovers a hierarchical clustering provided one introduces
a dynamic distance between the sites, reflecting the time required for the walk to
connect them [17].

4.5. BOOLEAN NETWORKS

It would be of high value for the analysis and modeling of real complex networks
to have the theoretical landmarks and guidelines offered by reference models with
well-known and controlled behavior. Such a picture is available for instance for
dynamical systems (ordinary differential equations of low dimension) following the
determination of all the possible asymptotic behaviors, the description of their
bifurcations, and the evidence of ‘normal forms’, that is, simple universal evolu-
tion laws to which smooth and generic dynamics reduce by conjugation. This is
the spirit in which design and investigations of random Boolean networks have been
conducted. These models involve networks (V, E) where the state of each site i € V
is described by a Boolean variable x; (i.e. taking only the values 0 and 1). The
evolution, in discrete time, is prescribed by defining for each site i a random map
associating to each of the 2% possible configurations the k; neighbors of i at time
¢ a value 0 or 1 for x; at time 7+ 1. These 2% choices, defining a ‘library’ at site
i, are in general performed at random and independently each from the other.

The interest of such a random model, that is not based on an explicit mecha-
nism of interaction between a site and its neighbors, is to account in an effective
way for the presence of both inhibitory and excitatory connections, and non-linear
interactions, that would be difficult if not impossible to describe in detail. The fit
between the model and the properties of the actual dynamics is performed directly
at the level of statistical features of the interactions, for instance a bias towards
activation if more configurations yields x; =1 than x; =0. It is then possible to
achieve a systematic investigation of the attractors, their basin of attraction and
transients duration, and to determine the dependence of these features with respect
to the network size. Several asymptotic dynamic regimes, with different levels of
complexity, can be observed [3]. This kind of models have been introduced in the
context of gene networks [23] where they are still developed.2! They prove to be
fruitful in numerous other contexts, and provide among the best charted dynamic
network models.

2lGee e.g. [36], where the classification provided by the generic dynamic behaviors of random
Boolean networks is used as a reference point to analyze the dynamic nature of the transcriptional
regulation in eukaryotic cells.
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5. Local Features Versus Emerging Properties

I will here give a short overview of the kind of issues that a statistical modeling of
networks allows to undertake, with a focus on the articulation between their local
and global features.

5.1. NETWORK ROBUSTNESS

A remarkable feature of scale-free networks is the presence of ‘hubs’, namely
highly connected nodes. As one of their effects is to reduce the network diame-
ter, they notably improve the efficiency of communications and network properties
will be much affected by the removal of such nodes. Scale-free networks (and in
particular real networks exhibiting a long-tail degree distribution) are thus highly
sensitive to attacks, namely a targeted destruction of the nodes following decreas-
ing degree. In contrast, these networks are robust with respect to the random
removal of nodes: a large fraction of nodes can be removed without notably ham-
pering communications within the network,?? differing thereby markedly with ran-
dom graphs. One here recovers the observed robustness of real complex networks.
This discussion gives another illustration of the expected differences between, on
the one hand real complex networks, on the other hand percolation networks
and random graphs used for long to model them, motivating to devise alternative
models.

5.2. PROPAGATION PHENOMENA

Static statistical modeling of networks, of interest for its own sake to sort real net-
works into universality classes and to evidence relevant observables and essential
parameters, is also a preliminary step towards dynamic studies. This perspective
has been developed extensively for percolation networks. The percolation model
design is based on static (topological and statistical) properties of the real net-
work; it then allows a guantitative study of dynamical phenomena involving the
network. Numerous dynamic studies, intending to predict, control or optimize the
dynamic behavior of the system, have been conducted in this spirit, e.g. for for-
est fire propagation or liquid flowing inside a porous medium [24]. It is in fact
in observing propagation phenomena that the existence of a percolation threshold
appears the most obviously, as a threshold separating situations where propaga-
tion stops from those where it develops and crosses the whole network: the fire
either stops or reaches the other side of the forest, the coffee seeps into the cup

221t can be shown that in a network where the nodes have a minimal degree m and a power-
law degree distribution with exponent y >3, a fraction g < ge=1—[m(y —2)/(y —3) — 1]*l of nodes
can be removed without breaking off the network connectedness. If y <3, the formula for the
threshold g-(N) is a bit more complicated and still depends on the network size N; it gives g.=0.9
for realistic values of the networks parameters, for instance those derived from experimental mea-
sures in the Internet [32].
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Figure 6. Dynamical motif in a coupled excitable dynamics. Each node can be in either of
the three states E (excitable), Q (quiescent) or R (refractory). Its evolution, in discrete time,
follows E— R— Q and Q — E if a neighbor is excited, else the node remains quiescent.
This triangle motif has the remarkable property to be insensitive to the state and dynamics of
the surrounding network, keeping its periodic dynamics. Such a motif acts as a ‘pace-maker’,
generically imposing its period 3 to the whole network on the long term.

or not. The special topology of real complex networks requires to undertake inves-
tigations of propagation phenomena on more appropriate network models. Appli-
cations are numerous, ranging from the propagation of information or viruses in
the Internet, the spreading of a contagious disease in a population structured by
social relations or moving along a network of airlines, or the fate of drugs in the
metabolic network. The remarkable result is the absence of percolation threshold
in scale-free networks. A quite foreseeable conclusion is that the knowledge of the
network topology is essential to predict and describe quantitatively (and already
qualitatively) propagation phenomena occurring in the network [32].

5.3. INFLUENCE OF THE NETWORK TOPOLOGY ONTO ITS DYNAMICS

In the previous subsection Section 5.2, we have mentioned some results about
the dynamics on the network; in Section 5.1, the issue concerned some proper-
ties of the network itself. We here turn to a third class of questions, concerning
the dynamics of the network nodes, i.e. the evolution of their individual states s;(¢)
when the edges mediate interactions between the nodes and their states. Given a
set of coupled elements, the influence of the interaction network topology on their
dynamics can be investigated within the frame provided by cellular automata [11].
Like in Boolean networks, state variables are discrete, but taking possibly more
than two different values. The main difference lies in the dynamic rules: here the
discrete-time updating rules involve the state of neighboring states (in general their
expression, either deterministic or stochastic, is spatially homogeneous). The evo-
lution of the state x;(¢) of site i is thus determined by the states x;(¢) of all neigh-
bors j of i, for instance through a threshold condition > jxj(0) =0 where 6 is
fixed.

In a recent work [7], we studied the influence of network topology, more spe-
cifically its degree distribution (either a Poisson law or a power law) on an excit-
able dynamics, intending to model in a minimal though realistic way a neural
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network:?® each site can be in either of three states E (excitable), Q (quiescent)
or R (refractory). Its discrete time evolution writes E— R— Q and Q — E if one
of its neighbors is excited, otherwise it remains quiescent. Quite surprisingly com-
pared to the results stated in Sections 5.1 and 5.2, the influence of topology hap-
pens to be rather weak and in any case only quantitative: the generic behavior is
only more robust and more coherent in a power-law network. Explanation of this
low sensitivity, detailed on Figure 6, lies in the presence of dynamic motifs impos-
ing their intrinsic dynamics to the whole network, whatever its topology is. This
result leads us to discuss in more detail the role of local properties and motifs in
the overall network behavior.

As previously underlined in Section 4.2 in a general context, reducing the topol-
ogy to the degree distribution might well be an over-simplification, and other
features could be more discriminating for the resulting dynamic behavior, for
instance the clustering coefficient or the distribution of cycle size (length of the
minimal nontrivial path connecting a node to itself, if any). Preliminary studies
have thus to be conducted to determine what are the relevant statistical ensembles.
For instance, in the example presented above [7], one of the results of our study
is precisely to suggest what cannot be guessed on intuitive grounds, namely that
the statistics of triangles is likely to be a key ingredient and should be explicitly
taken into account when investigating an excitable dynamics on a network.

5.4. MOTIFS AND BIOLOGICAL REGULATORY NETWORKS

A motif is any over-represented or under-represented (‘anti-motif’) subgraph in
the considered network, compared to the predictions of a given statistical model.
This notion rises a huge interest in the context of biological regulatory networks,
for instance metabolic networks and gene networks. Looking for motifs is today
considered to be a privileged approach, operational and straightforwardly mean-
ingful, to unravel biological functions and their actors (proteins or enzymatic reac-
tions, for instance) [35]. Comparison of motifs statistics in regulatory networks of
different species [5] has been proposed as a pathway towards the evolutionary his-
tory of these networks. Other remarkable local structures can be investigated, for
instance communities (previously discussed in Sections 2.2 and 4.4), correspond-
ing to densely connected regions and interpreted as functional modules. But these
approaches should be confronted to fundamental issues regarding the behavior of
a network, the relevant notion of causality and emergent properties, observed at
the level of the whole network but impossible to foresee by simply looking at the
detailed properties of the elementary ingredients (nodes, edges, local structures).
Some caveats ensue, and some caution is required in the analysis to avoid an

230ther exemplary studies, similarly focusing on the dynamic consequences of the absence of
characteristic degree, are [2] (for Boolean networks) [28] (for two-state cellular automata) and [27]
(for population evolutionary dynamics).



COMPLEX NETWORKS: FROM GRAPH THEORY TO BIOLOGY 259

over-interpretation of the motifs and their role in the overall behavior of the net-
work and its regulation.

A motif is a local property, and it is thus necessary to consider its embedding in
the whole network and to investigate the emergent consequences of this local sta-
tistical feature [31]. The importance of a motif should be thus evaluated in terms
of its influence on some global property of the network, for instance propagation
or dynamics properties. Otherwise, the presence of motifs can simply result, as an
auxiliary and non-functional fact in the present network, of the growth process
or, in a biological context, to reflect some remnant of its evolutionary history, in
other words a mere statistical bias reflecting some specificity of the network gene-
sis [29]. In a similar way, the community structure is not in itself a significant net-
work property unless links have an intrinsic meaning, like connections in a social
network. In the general case where connections only mediate interactions or indi-
cate the possibility of some pairing, communities do not necessarily reflect some
essential organizational or functional property. We thus underline the importance
to put the motif interpretation back in a definite context: whether it is mere topo-
logical property, a property following from flux analysis, or a dynamic feature as
in Figure 6; the presence of over-represented motifs will not have the same origin
and the same meaning in each case.

An unquestionable interest for motif analysis and community detection in a real
network is to confront these statistical properties with those of possible models,
especially when several concurrent ones are available. This viewpoint has been
largely developed in the context of percolation networks, where the cluster statis-
tics provides a quantitative criterion to appreciate the adequacy of a model to the
real system, before exploiting this model, e.g. to predict dynamic behavior of the
system. Another interest for motif determination is to put constraints on analyt-
ical studies, for instance the requirement to take into account local correlations
(reflecting in the existence of under- or over-represented motifs). The notion of
motif is thus relevant when it is included among the other local statistical features
(degree distribution, clustering coefficient, for instance) taken into account in the
network analysis, with no disguised hope to avoid this necessary study.

To summarize, detecting a motif is not a directly meaningful result. In a simi-
lar spirit, it is improper to identify more densely connected regions with modules,
in the sense of functionally independent blocks. This kind of interpretation rather
reflect the wish to escape the network specificity as regards causal relationships
and our lack of tools to grasp them as a whole: it would be simpler to investi-
gate networks if they could be reduced to an array of independent building blocks
with well-defined and context-free properties (e.g. invariant response functions).
It is rarely the case, and network complexity precisely originates in the fact that
the properties and even the potentialities of the elements are strongly affected by
the very phenomena occurring in it. For instance, the outcome of the competition
between several possible pathways is highly dependent of the surrounding state
and evolution. Even local manifestations, i.e. events observed locally (excitation of
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a given node, for instance) follow from the collective dynamics of the network.
Networks thus rise a huge challenge to the theoreticians, demanding to develop
systematic methods to describe and predict the consequences of numerous con-
certed or competitive interactions and feedbacks between local and global network
properties.

6. Conclusions and Perspectives

I have presented here only the simplest situation of networks with symmetric and
unweighted links. More realistic models should further account for the oriented,
valued, or even signed character of the connections (either excitatory or inhibi-
tory), the possible hybrid nature of the nodes (hence of the connections), their
variation in time (non-stationarity) and in space (inhomogeneity). The first step
is then to discriminate the inessential ingredients, leading only to a quantitative
change in qualitatively similar observed behaviors, from the essential ones, deter-
mining different behaviors and requiring to elaborate novel minimal models to
investigate their generic properties. Other perspectives open up, tackling network
growth, their appearance in the course of Evolution (for biological, ecological or
social networks), their robustness with respect to failures or targeted modifications
of their local structure. It is a whole world, with entries in almost all scientific dis-
ciplines, that asks for exploration, both on the theoretical and experimental sides.
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