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The coil-globule transition for a polymer chain confined in a tube:
A Monte Carlo simulation
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The behavior of a grafted polymer chain confined in a tube is investigated within a scaling theory
substantiated with biased Monte Carlo simulations of a self-avoiding (8#kV) on a cubic lattice.

All the statistical and thermodynamic properties of the chain follow from the knowledge of the joint
distribution P(z,m) giving the probability to observe a lengthanda number of contacts, in a

model where the energy of the chain in a given configuration is proportiomal The analysis is
based on the factorization d?(z,m) into the a priori distribution P(z) and theconditional
probability P(m|z) of finding m contacts given that the chain length isz. P(m|z) is
well-approximated by a Gaussian distribution. Taking the varigne® —m? of this distribution

into account, we obtain a nonmean-field expression for the free energy of the confined chain. We
show that the coil—globule transition of the confined chain is independent of its size but depends on
the pore diameter. Contrary to free, unconfined chains, it is always a continuous transiti@@009
American Institute of Physic§S0021-96060)50540-9

I. INTRODUCTION mean-field approximation. Here, we want to give a more
) . _ _general scaling expression for the free energy of the confined
The coil-globule transition has been studied theoretivhain in order to study in more details the polymer behavior
cally for quite a long time in a free interacting self-avoiding i, this one-dimensional confined geometry.
walk'(SAW), using various approaches based either on a e cojl—globule transition here is qualitatively different
Flory’s arggmeri‘t or on more complex m_ethotffg.A Phe-  from that of a free, nonconfined polymer. The chain structure
nomenolog_lcl:gll approach based on numerical simulations wag g pore of diameteD is expected to be a linear succession
developed. ~On the other hand, the problem of squeezingyf ingependent blobs of siZe. The transition occurs almost
polymer chains in a pore, either in solution or in melt, isygependently within each blob. What happens in a blob is
important and has been studied quite extensiE? The ot sensitive to the overall siZé of the chain, hence, for a
structure of a semldll_ute solutlc_)n confined in & porous Meyiven pore diameted, no finite size effects are expected on
dium has beer_l studied experlmen_tall%/, using small_angl@l,]e mear(z), (m), the density inside the chain, etc. This
neutron scattering’ In a previous articlé we have studied conjecture will be tested in this work. This argument requires
the configurational stat|§t|cs of a grafted polymer confmeq INthat confining effects operate even in the collap&gobula)
a tube by Monte Carlo simulations. Our numerical model is &ate, or in other words that the globule phase fills more than
SAW on a cubic lattice; successive monomers occupy neighgne biob. i.e.. thah>D?3. Otherwise. a crossover from a
boring sites and the occupancy of neighboring sites by Nongee.dimensionalfree chain behavior (in the condensed

consecutive monomers is called a contact. Within a pair'state) to a one-dimensionalconfined behavior(in the coil
interaction model, théFlory) energy of the chain is directly 5nq stretched stateis expected.

related to the number of contacts. The parameters of the gome qualitative features of the coil—globule transition
system are the chain lengthand the pore diametd. We ¢ 5 free chain ind=3 are inferred from the Flory expres-
have sampled the probability distributi®(z) for the length i1 of the free energy?

of tube z occupied by the chain and proposed a scaling ex-

pression for this distribution. We also proposed a scaling

expression for the average number of contacts in the chain r2 N2

given the lengthz it occupies in the porem(z). A model BF~Nzzt Va3r—3, ()
numerical expression for the free energy of the confined

chain as a function of the Flory paramejewas deduced. It

is valid only in the limit of smally values and amounts to a in which the first term is the entropy of the chain and the
second one is the mean-field expression for excluded-volume
dAuthor to whom correspondence should be addressed. Electronic mailnteractions(the short-range repulsion which fixes the den-
sotta@Ips.u-psud.fr sity in the globular phase is not includedhe adimensional
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Z > (see Fig. L The pore has a square section of surface area
S=D?. The grafting surface and the pore are unpenetrable

////// 72222272 L2 walls. Elementary moves used to generate chain configura-
% tions are free extremity rotationsl-inversions, and

é D kink-shifts2%?1 There is no bending energy. Different chain
% lengths(N=150 to 500 and different pore size€D =5 to
////// 7, 07 11) have been investigated.

The average length of the chain above the grafting sur-
FIG. 1. Schematics of the grafted linear chain confined in a pore, simulateg; ~a is defined as
on a cubic lattice.

1 N
z=—> z, (6)
. . Ni=1
excluded-volume parameteris related to the Flory interac-
tion parametely by v=1—2y. Minimizing F gives the equi- wherez; is the distance of monometo the grafting surface.
librium gyration radius It was shown previously that usiregpr the gyration radius,
15305 @) gives the same results, due to the one-dimensional geometry
' of this systent’ The variables sampled during the Monte
The transition towards the Gaussian regifiee so- Carlo simulations are andm, the total number of contacts
called 6-solvent, in whictr ~N?) occurs atv,~N~2 This  between nonconsecutive monomers. The obtained histogram
N-dependence describes finite size effects. Note that thig the joint probability distribution(or density of states
Flory expression, Eq(1), does not describe properly the Py ,(z,m), which gives the relative number of configura-
globule state, but rather the coil and/or stretched states of thgons with a given lengtlz anda given number of contacts.

r,:%av

chain/ The modeling of the free energy presented here relies on the
For a polymer confined in a tube of diametey the  following factorization of the joint probability distribution
Flory expression now writé& Pn,p(z,m):
2 N Py,o(2,M) =Py p(2) Py p(M|2) ()
o~ 3 N,D{%, N,D N,D .
BF Na2+7/a ZD2, (3)

The distributionPy 5(z) is the probability to obtain a
which gives the equilibrium height of the chain in the pore configuration with a lengtlz and P(m|z) is the conditional
zeq~a5’3v1’3D*2’3N. @ Ip()arrc])bab_ility to have a number of contaats given thatthe
gth isz
The scaling prediction, Eq(4), has been verified in Note that, in the dense conformations of the chain, there
grafted polymer brushé€.We seta=1 in the following. is an important difference between the present case of a poly-
Introducing the reduced variable=zD?3N, the free en- mer confined in a pore of diametBrand a free polymer. In
ergy, Eq.(3) may be written a free polymer, the Edwards’ screening lengtiends to zero
BE~ND “%u2+(1-2y)u"1]. 5) (actually, to_the monomer siz® when '_[he temperat_ure de-_
creases or in poor solvent, whereas in the pore, it remains
The N-dependence here is the same in all regimescomparable td. One main heuristic assumption here is that

Therefore, the coil-globule transition is expected to depenghe same blob model as in the coil state, remains valid in the
on the pore diametdd but not onN. The aim of the present globule state.

work is to go a step further than this rough approach and to
give a more detailed, nonmean-field description of the coil—
globule transition for an isolated chain confined in a pore. It L
is based on the sampling of the joint probability distributionA' The probability distribution  P(2)
P(z,m), which gives the probability to obtain a configura- The distributionP(z) was studied previoush/. The fol-
tion with a heightz anda number of contacts. lowing scaling form was established:

The article is organized as follows: in Sec. I, we recall - _
scaling arguments and results previously obtained to recon- InP(z)==ND"*Pyu~*+ Pu®+ Psu’l, ®)
struct the full distribution(density of statesP(z,m). In Sec.  whereu is the reduced variable=z/ND~ 23, Note that the
1, we present the results of the numerical simulations. Thequantity ND %2 is simply the equilibrium number of blobs
results are discussed in Sec. IV, an expression for the freia the coil stateP,, P,, P5 are universal coefficient§.e.,
energy fitted with numerical results is presented. The feaindependent ofN and D) which were determined numeri-
tures of the coil-globule transition and of some physicalcally. The valuesP;=0.275, P,=4.03, andP;=13 were
properties are discussed. found. Equation8) covers a range afl from the condensed
state (typically u,;;=0.08 to the stretched statéypically
Unac=1.5). No deviation from Eq(8) at smallu values(i.e.,
higher-order termswas experienced. However, very smaill

Three-dimensional SAW of lengtN sites are generated values, very close to the minimum accessible value, were not
on a cubic lattice, using a Monte Carlo method. The chain isampled. It was shown in Ref. 17 that logarithmic correc-
confined in a pore and grafted for simulation conveniencdions to Eq.(8) are not observed.

Il. MODEL
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B. The average number of contacts m(2) 0?(2) is equal toBa3, which leads to the scaling relation
a?(z)/N independent oN in this regime as well.

(3) in the “condensed” (globule) state(z=ND™?
<ND~?3), it was shown in Ref. 9 that the conditional prob-
ability may still be written in the form

The total number of contacts in a SAW confined in a
pore as a function of the lengtwas computed previously.
A scaling relation was established:

B - _5/ —5/4__ 5/2
Mp,n(2) = (M p)~ND ™My +Mpu™=Msu it Pu(mIr)=[p(m/N)IY, (19

uesM,=—1.3, M,=0.54, andM;=3.6. TheM,-term cor-  accounts for correlations. The varialilerelated to the den-
responds to the compact side and the-term to the Sity p=N/zD? (in 3D t=p**), was introduced in Ref. 10 to

=0.4. In the stretched regimeny n(z) deviates from the regimes. Thus, the behavior is not expected to depend on
above behavior and tends to zero contact. as it is the case for a free polymer. There are however dif-

ferent dependences @ in the various regimes.
Note that the number of contacts as a functiorz ¢br

" . equivalentlyu) was computed in Ref. 17 as
C. The conditional probability — P(m|z)

ZnMmPy p(z,m)

The mean-field approach implemented in Ref. 17 myp(z)= S Puozm)
m" N,D\ &

amounts toP(m|z)=8(m—m(z)). In this approximation,
the partition function is Within the Gaussian approximation adopted here, it may al-
ternatively be computed from fitting the conditional prob-

Znp(x)= ffdz dm F{z,m)eszf dz P(z)ex™. (10) ability P(m|z).

(16)

Here, we use a better approximation, in which the condi-

tional probability P(m|z) is written as a Gaussian distribu- . SIMULATIONS
tion A. Technicalities
P(m|z) = (27 a?) ~Yag(m-m2)%20%(2) (11 In each simulation, typically 70to 2x 10" MC steps

were performed(one MC step is a cycle oN-attempted

Then the partition function is elementary moves The system was equilibrated during a

B o o typical time 7=0.23N?> MC steps before starting the
Znp(x)=(270") 1/2f sz dm Rz)e(m MM, measurement&:?3
(12 The distributionsPy p(z,m) are accumulated during the

simulations. In order to sample a wide interval of the param-
eterz, we biased the Monte Carlo simulation with an effec-
tive Boltzmann factor(“configurational bias’) of the form

B eX? (using a Metropolis algorithinwhereK is an adjustable
Znb(z,x) = P(z)eXM@+x*0*@12 (13  statistical weight. For eactK-value, a partial histogram

' Pn.p k(z,m) =Py p(z,m)eX? is obtained, wheréy p(z,m)

is the unbiased distribution, sampled inzanterval which
would be impossible to attain in a unbiased simulation.
Simulations with positive(negative values of K sample
large (smal) values of z The enlarged distribution

foIIo(vI;niq st(;]allrlgtpr?pher(tjlest f?‘f(mgl)\;[),m) th Pn,p(z,m) is obtained by merging together the histograms
n the “stretched state ( z € Proper - p " «(z.m) obtained with different values df.%24?5 (see

ties of the chain become independent of the pore diamete . e ‘oo
and the relevant variable i®N. Thus, as a result of the ég\?;rg)g:rom Pn.o(z,m), the distributionPy p(2) is re

one-dimensionality of the chain in this regime, one expects
a?(2)/IN to be a universal functiofii.e., independent oN
andD) of the reduced variable/N. PN,D(Z)_§ Pn,o(z,m).

(2) In the “coil” state (z=ND~?9), the relevant re- _
The following procedure may be used as well to get the

duced variable is1=z/ND~ %3, Still, the chain is a collec- , : ,
tion of B successive blobs which are statistically indepen-CUves P(2) quickly and accurately. The one-dimensional

dent. This implies thaPy(m|z) is of the form histogram obtained for a given valu&k is hy(2)
=Py.0(2)e"% wherePy p(2) is (a portion of the unbiased

In the presence of theX™ term, the distribution is cen-
tered in m*(z)=m(z)+ xyo?(z), and integrating ovem
leads to

In the Gaussian approximation, for eazlalue, the condi-
tional probability is entirely determined by the averangz)
and the variance?(z), that can be fitted numerically.

The blob picture of the chain in the pore leads to the

. B . . . . .
(mg—mg)? distribution.hy(z) has its maximum for a valug,(K) such
F’N(m|2)*“3‘>“{_ 20 | 19 thatahyc/az=0, i.e.,
wheremg is the number of monomers per blob. The variance ﬁ YKP=0. or K=— dInP
in one blob is now independent bf The measured variance Jz ' Jz
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TABLE I. The theoretical minimum values™,, are obtained by an exact 500

numbering of occupied layers in the tube when the chain is fully compact

LR AR R LR RN RN R AR RN AR R RS R R

(i.e., when the density=1). uS%¥=D ~*¥2 are the scaling minimum values. ] ) 4004
Due to the discretization of the Iattica‘,,nhin values are systematically larger 400 4 | E
than scaling valuesss. u® are the approximate minimum values effec- 1) 3001 ]
tively sampled. The maximum density valupga., are computed agmax i) 3
=N/2z,,,D?=1/2uEPD*® obtained from the values effectively obtained 300 3 | 200+ E
UP. payis the average density, i.e., the density obtained in the pore when/_\ ) 1001
the chain has its average length. 3 3 3
S ER 0 ; : ‘ E
N D utmhin uxgl use Prmax Pav Q g 0.00 0.05 0.10 0.15 020
150 5 0.0682 0.0585 0.1 0.68 0.2924 E
200 5  0.0658 00585 0.1 0.66 0.2924 100 E
200 7 0.0467 0.0373 0.1 0.47 0.1867 E
300 7 0.0435 0.0373 0.1 0.43 0.1867 ] §
400 7 0.0420 0.0373 0.1 0.42 0.1867 0 ﬂ—n\HT
400 9 0.0322 0.0267 0.08 0.40 0.1335 B R R e A ARl LA AR LA
500 5 0.0614 0.0585 0.08 0.765 0.2924 0.0 0.2 04 0.6 0.8 10 12 14
500 7 0.041 06 0.0373 0.068 0.6038 0.1867
500 11 0.02552 0.0204 0.057 0.4477 0.1022 u

FIG. 2. The curve®K(u) plotted as a function ofi, defined as the value
corresponding to the maximum of the one-dimensional biased histogram
hk(z). The continuous curves correspond to fits with the function described

Therefore, plottingK as a function ofu,,(K) gives in Eq. (18). The inset shows an expansion of the smallegion. A: N
=500,D=11; 0: N=500,D=7; ¢: N=500,D=5.

Jd| InP
DK(W)=—-—-I\D 53| (17)

The conditional probability?y r(m|z) obtained with a sta- should be a universal functiaindependent oN andD). In
tistical weightK doesnot depend orK, only the accessible Fig. 2, the curve®K (u) are plotted for several values of the
zinterval does. Thus, in a series of simulations with differentparametersN and D. Excellent superposition on a unique
statistical weightX, Py p(m|z) may be obtained directly by master curve is obtained. Here, the simulations have been
fitting the corresponding-slice of Py p (z,m). extended tas values smaller than in Ref. 17. Deviation from
In practice, 8 to 24 differeni-values, ranging from-4  the perfect superposition is observed at very smalalues,
to +4 typically (and down to—40 in the caseN=500, as it is shown in the inset in Fig. 2. This is due to the finite
were used in each simulation. Note that another advantage @finimum u value, which differs from one set of parameters
this procedure is that simulations with differektvalues to the other. In particular, the discretization of the simulated
may be run in parallel. In the two-dimensional probability system starts to play a role in this regime. Higher-order terms
distributions, typically 10 independent configuratiofse.,  have to be introduced at smallvalues to get satisfactory
10" values for the couple of parametersrt) ] are collected.  fits. The curves in Fig. 2 have been fitted with a function of
All fits are done by a least-square fit procedure with statistithe form
cal weighting.

d | InP(u)
DK(u)=——|IND 5=
B. Results: The probability distribution Py p(u) au
The joint probability distribution®y (z,m) have been = 2P,u” Y4+ 5pP,u?
obtained for different values of the parametésand D. g4 W
Then, projection alongn gives the distribution +5P3D '+ (a+1)Pu . (18)
Pn,o(U) =2, Py p(u,m),  Fitting curves are shown in Fig. 2. A perfect fit is ob-
m tained in the wholau range by adding a term™ * with an

which is expressed here as a function of the reduced variabfffective exponeni of the order 6.72. Numerically, the fol-
u=zD?¥N. This distribution was fitted in Ref. 17. The the- 10Wing model expression is obtained fB(u):
oretical minimumz andu values which would be obtained in
each simulation(corresponding to a completely compact  InP(u)/ND~®3= —0.25) 54— 4452
chain and the minimum values effectively obtained in the 125D -535_p,y-572 (19
simulations, together with the corresponding densities, are ' 4 '
summarized in Table I.

The procedure described in Ed.7) has been used here.
According to the scaling E(8),

The coefficientd,, P,, P are fairly independent afl
andD, as was checked already in Ref. 17. They are robust to
introducing theP,-term. The coefficienP, depends signifi-

g | InP cantly onD for a givenN value N=500). P, ranges from
DKW=~ 25 IND52 1.7x10°7 (for D=11) to 6.2x10 7 (for D=5).

Downloaded 16 Sep 2002 to 134.157.8.17. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6970 J. Chem. Phys., Vol. 113, No. 16, 22 October 2000 Sotta, Lesne, and Victor

8 EIIIIIIIIII|IIIIII\I lllt||ll|l!l||||||| TTTT T T I I T[S T T T T TT§7T IKIIIE i TrTTTT TrrrrroorT '|||||7|'I||‘|\|||‘ ||‘|||‘||:
E © 1 1
63 3 b . ]
E % ] 1
53 3 = 204 ]
N E /E\ 1 1
3 43 E Vo] ]
£ 3 E i ] o 1
I E §, ] ]
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03 3 ] ‘
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 u

number m/N
reduced contact number 7. FIG. 4. The reduced number of contaatsy(p —(my p))/ND >3 as a func-

FIG. 3. The logarithm of the conditional probability distributionRgmz) ~ tion of u, for several values ol andD: [: N=500,D=11; ¢: N=500,
for different valuesu corresponding to the stretched, coil, or globule phaseD =7; A:N=500,D=5; V: N=400,D=9. The continuous curve is the fit
of the chain:A: u=1.5003;: u=0.4025; ¢: u=0.1281. The continuous ~ ©f the dataN=500, D =11 with Eq.(20).

curves correspond to Gaussian fitsRfin|z), to illustrate the validity of the

Gaussian modgiN=400,D=7).

leading to the scaling expressions in E¢®. and (9) were

C. The conditional probability — P(m|z) essentially based on the blob picture for the confined chain.
This is obtained by cutting a slice along in the 2D More precisely, the pqrtion of chain i.nside a plob shoulq

distribution Py p(z,m). P(m|z) is shown in Fig. 3 for dif- behave as a free chain, as regards its statistical behavior.
ferent values of the reduced variahle=2z/ND~ 23 corre-  Thus, it may be checked that the numerical result in(20)
sponding to the “coil” (u=0.4) or “globule” (u=0.12) is in concordance with the.number of cpntam§(R) in a
phase. The stretched case=(1.5) is also illustrated. The {reée polymer of the same size and density as the considered
corresponding Gaussian fits are also shown in Fig. 3, in orde?!0P- In Ref. 6, _'tlg’/“"as Srl%‘/’;’n thasgN(R) may be written
to illustrate the validity of the Gaussian approximation. ™w(R)=aN+Bs ™"-Cs >*~Ds*"+E, s being the re-
There is however a systematic, asymmetric deviation fronfluced gyration radius=R/R, with R, the equilibrium gy-
the Gaussian fit, which indicates that higher moments of th&&tion radius of a SAW in good solvent. Tii@term is the
distribution (in particular the third orleshould be taken into Surface term, theB-term describes the compact side (
account also. However, this deviation remains small, even in<1), and theD-term the coil region¢=1). my(R) may be

quite compact situations. rewritten in terms of the density defined as=N/R®
=N/R3s® (given that Ry=\oN*® with \,=0.396:%°
D. The average number of contacts my(p) ~Np>*=N"%% "5 (only B and D terms have been

. 3. written). Then, to compare to the case of a polymer in a pore,

The quantity (ny,p(U) —(mMy,p))/ND™>*is plotted as a N in the formula above should first be set equal to the num-
function of u in Fig. 4, in a range ofi values which corre- per of monomers in one blob=pD?3, then the number of

sponds to the coil and compact regimes, for different valuegontacts in one blob should be multiplied by the number of

of N-andD. my p(u) was determined from the Gaussian fit hjohsB=N/g. Finally, given the numerical values in Ref. 6,
of the conditional probability?(m|z). All curves superpose the blob picture leads to

quite exactly, even at very smallvalues, in accordance to
the results in Ref. 17. A higher-order term may be introduced ~ my p(p)~0.1Np%*—14.2ND5p =52 (21)
in this regime to improve the fit further. The following nu-
merical model expression gives an excellent fit in the whole ~ Numerically, it was found in Ref. 17only theB andD
sampledu-range: terms are 5i/r;dicate?d mNYD(r/rO)wND'*5’3[1.6'5(r/r0)*5’4
(mN,D(U)_<mN,D>)/ND_S/3 0.35(/rg)*4, which may be rewritten, given that,

=x\;ND~ %3 (with \;=0.22 andr=N/pD? as
=0.541"%4-3.621%2+0.006411 %2, (20)

The constant terrfiv; term in Eq.(9)] represents only a
slight vertical shift of the curves in the fitted interval, which The numerical coefficients in Eq&21) and (22) are in-
is negligible here. The coefficient in the >? term depends deed quite close, even though geometrical details in the con-
onD. This is due to the fact thamy p(u) tends to the maxi- fined chain have been largely ignored. Thus, the comparison
mum number of contactsN (ignoring surface termisvhen  between Egs(21) and(22) strongly supports the blob model
u tends to the minimum value,,,~D~¥2. The conjectures for the confined chain.

My o(p)~0.2Np°—15.ND 5p 52 (22
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FIG. 6. The quantityo®(z)/N plotted as a function of= (U, /u)®*, for
different values ofN andD.

= . L .

T in the stretched regimei.e., for largez-values. In thecoil
regime the relevant variable is. In Fig. 5b), the curves
a?(z)IN are plotted as a function af. Indeed, the curves
superpose relatively well in the coil regime, i.e., around
=0.4. In theglobule (u<0.4) regime, the relevant variable

] ] is the densityp=u,,/u, or equivalently the variable related
0.0 4 LI L L LI T T 5/4

00 o5 o s to it t=p>% Uy, IS the minimum value ofu that would
correspond to a fully compact chaip=1). In Fig. 6, the
curveso?(z)/N are plotted as a function of The valueu i,
FIG. 5. (@) The quantityo®(z)/N plotted as a function af/N, for different  used to define the variablein Fig. 6 is the actual value,
values ofN andD. ¢%(2) is obtained by a least-square fit of the conditional denoted uth- in Table I. The maximum density is then
probability P(m|z) with a Gaussian functiortb) o?(z)/N plotted as a func- o mn N

tion of L. Pmax=1 in the plot in Fig. 6.

It is observed in Fig. 6 that the curves corresponding to
one given value ob and various\-values(from 150 to 500
collapse on a single curve. There is however a significant
o _ variation onD: the curves obtained for differe values

As the average number of contaats, the variance have the same general behavior but do not superpose.
o*(z) may be computed in two different ways, either from  For a given value ob, the quantityo/N is proportional

E. Fit of the variance ¢?(2)

the Gaussian fit oP(m|z), or directly as to the variance in one blob, which dependsonly. Then,
Em-zP(m-) it is expected that the larger the blob si2e the larger the
i LY i hich is indeed observed in Fig. 6. Thus, the in-
o S.P(m) me<. (23 variance, which i g. 6. ,
I |

creasingD-variation observed in Fig. 6 is consistent with the
We have checked that both measurements coincidblob picture.

within error bars. The second moment taken from the Gauss- The quantity o?/N is the variance of the function

ian fit, that includes in an effective way higher-order statis-p;(m/N) as defined in Eq(15). The variance ofp,(m/N)

tical deviations, coincides with the actual variance, whichwas measured for free, unconfined chains in Ref. 9. The

justifies the Gaussian approximation adopted here. The varturves in Fig. 6 reflect a behavior within one blob qualita-

anceo?(z) shown in the forthcoming figures has been ob-tively similar to that observed in free chains. The numerical

tained from the Gaussian fit &f(m|z). values are however higher in the present case. In Ref. 9, the
The different regimes mentioned in Sec. IIB may becurves were fitted to a function of the form?(t)=o3

distinguished as follows. According to the scaling laws re-+ o5t + o5t Int with « of the order 0.5 in three dimensions.

lated to the one-dimensional character of the chain, the quarn Fig. 7, the curvesr?/N corresponding td =7 and vari-

tity o?(z)/N should be independent ®. In Fig. 5a), the  ous values oN are plotted as a function of The curves can

quantityo?(z)/N is plotted as a function of the varial#éN, be satisfactorily fitted by a function of the form(t)

for different values oN andD. The curves tend to collapse =32t*Int. There is however a significant difference with

on a single master curve at largevalues, and show a rela- respect to free chains: the densitr equivalently the vari-

tively good superposition property over a large range ofablet) as it is defined here does not tend to zero in the

z-values. This corresponds to the scaling quoted in Sec. Il Btretched regime in the limiN—c, but to a valuet,
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FIG. 7. The quantityo®(z)/N plotted as a function of= (uy,/u)®?, for
D=7 and different values dfl. The continuous curve is a fit using Eg4).

=D"%2 (which depends oD only). To take this behavior
into account, we have fitted the curve$(t)/N with a func-
tion of the form

t—tm
with t'= et

f(t)=32t'*Int’ )
() 1_tmin

(24)
This modificationt—t’ has no effect on the fit in the com-
pact regimgi.e., fort close to ong Good fits are obtained in
the whole range of the variabté, as is shown in Fig. 7. The
adjustable paramete®? and « are summarized in Table II
for N=500 and varioudD-values. Note that Eq(24) is a

purely phenomenological function. There is no theoretical

account for it at the moment.

IV. IS THERE A COIL-GLOBULE TRANSITION?

A. Free energy of the confined chain

Sotta, Lesne, and Victor
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0.4 3 -
03 3
: } é
i DD E
~ ] B
&S 027 r -
S o .
= - o ]
1 a 3
h a 1
O.Ij q —
0.0 Frrrrrr e e e -
0.0 0.2 0.4 0.6 0.8 1.0

Flory parameter

FIG. 8. The curvaug{x) obtained by minimizing the free energy, Eg5),
for N=500 andD=7.

The structure of the free energy, EQ5), is similar to
the Flory expression. Compared to the mean-field
expressiort/ there is an extra factog?o?/2, which is ex-
pected to vanish in the completely compact state of the
chain. This term plays a role similar to the three-body term
in the Flory free energy.

The equilibrium valueie(x) is obtained by minimizing
Fnp(u,x) for each given value of. An example of the
curvesugy x) obtained in this way is shown in Fig. 8 for the
caseN=500 andD=7. The continuous, horizontal line in-
dicates the value ofi which would correspond to the fully
collapsed chairip=1).

Replacingu by the equilibrium valuei.( x) in Eq.(25),

one may obtain the equilibrium free energy as a function of
X: Feq(x), or equivalently as a function af(T=1/x). Itis
clear from Eq.(25) that the quantityF¢ x)/N is universal,
i.e., independent of the chain lenghh given the scaling
relations, Eqs(19), (20), and(24). This means that there is
no finite-size effect in the present problem. This is in contrast

A numerical model expression may now be proposed fokg the case of dree polymer chain, in which the equilibrium
the free energy of a SAW confined in a pore, within thefree energy depends on the chain lenfthGiven the nu-
Gaussian approximation. In this model, each contact is sufimerical values of the various terms in Bg5), it is found

posed to reduce the energy by an amdgy, wherey is

also that the scaled quantife{x)/ND~*?is independent

the FlOI’y interaction parameter. The free energy, COI‘lSideregf D as We”, to an excellent approximation_

as a function ofz (or equivalentlyu) and y, is defined as
Fno(zox)=—keTInZyp(zx), where Zyp(z,x) is the
z-partition function defined in Eq13). This gives

F u,x) 1
%: —In Py p(u) —xm(u) - Exzcrz(u). (25)

TABLE II. Fitting parameters obtained when fitting the curve&(t)/N
with Eqg. (24), for N=500 and various values of the pore diameder

N D 32 a
500 5 —1.265 0.814
500 7 —-1.307 0.737
500 11 —1.54 0.81

B. Nature of the coil—globule transition

The main conclusion from this work is that the coil—
globule transition for a chain confined in a pore is continu-
ous. This result comes from two specific features. First, the
chain confined in a linear pore may be analyzed as a linear
succession of statistically independent blobs. The free energy
is essentially extensive in the number of blobs. The transition
occurs within each blob independently. It results that the
overall chain lengthN is not relevant to discuss finite size
effects, but rather the numbgrof monomers per blob. The
relevant quantity to describe the confined chain is then the
Boltzmann—Gibbs distribution for one bloBy(t,x) [or
equivalently the free energy per blob as it may be defined
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from Eq. (25)], expressed here in terms of the Flory param-ent portionsH;(z,m) are normalized and merged using sta-

eter y and the variablé defined in the same way as in Sec. tistical weighting, that is, the relative normalization

lIIE. Itis shown in Refs. 10 and 26 that for small chains, the(translation factor 7;; is computed by minimizing the quan-

coil-globule ©-point always corresponds to a continuoustity

transition. Whereas for long chains the Boltzmann—Gibbs

distribution Py(t, x) is bimodal in some range of (or tem- Q=>, Nij(zm)[InH;(z,m)—InH;(z,m)— 7;;12.

peratureT), giving rise to a first-order transition, it always zm

has only one maximum for small chains, this maximum be-  The weighting factor\;;(z,m) takes into account the

Ing shifted COﬂtIﬂUOUS'y towards the globular stateyas- statistical Weight in each file, i.eAij(z,m)z[hi(z,m)_l

creasesor asT decreasgs +h;(z,m) "1 [\;;(z,m)=0 if one of the filesh(z,m), is
Another potentially interesting consequence of the b|°bzero].

structure of the chain may be the chain response to stretch- This jeads to

ing. It was shown in Refs. 27, 28 that applying a stretching

force to a chain collapsed in a poor solvée., in the globu- ~ Zzmhij(zzm)[InHi(z,m)—InH;(z,m)]

lar state gives rise to a discontinuous, first order unwinding Tii 2, mhij(z,m) '

transition. It is expected in the present case that each blol?hen all files are meraed together to give the loaarithm of
will unwind independently on stretching the confined chain, ' 9 9 9 9

which will lead to a continuous unwinding. the final, reconstructed distributidi(z, m)

Zihi(z,m)[InH;(z,m) — 7;0]
V. CONCLUSION InH(z,m)= S hi(zm)

The two-dimensional joint probability distribution
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