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The coil–globule transition for a polymer chain confined in a tube:
A Monte Carlo simulation
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The behavior of a grafted polymer chain confined in a tube is investigated within a scaling theory
substantiated with biased Monte Carlo simulations of a self-avoiding walk~SAW! on a cubic lattice.
All the statistical and thermodynamic properties of the chain follow from the knowledge of the joint
distributionP(z,m) giving the probability to observe a lengthz anda number of contactsm, in a
model where the energy of the chain in a given configuration is proportional tom. The analysis is
based on the factorization ofP(z,m) into the a priori distribution P(z) and theconditional
probability P(muz) of finding m contacts given that the chain length isz. P(muz) is
well-approximated by a Gaussian distribution. Taking the variance^m2&2m̄2 of this distribution
into account, we obtain a nonmean-field expression for the free energy of the confined chain. We
show that the coil–globule transition of the confined chain is independent of its size but depends on
the pore diameter. Contrary to free, unconfined chains, it is always a continuous transition. ©2000
American Institute of Physics.@S0021-9606~00!50540-6#
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I. INTRODUCTION

The coil–globule transition has been studied theor
cally for quite a long time in a free interacting self-avoidin
walk ~SAW!, using various approaches based either o
Flory’s argument1–5 or on more complex methods.6,7 A phe-
nomenological approach based on numerical simulations
developed.8–10 On the other hand, the problem of squeezi
polymer chains in a pore, either in solution or in melt,
important and has been studied quite extensively.11–15 The
structure of a semidilute solution confined in a porous m
dium has been studied experimentally, using small an
neutron scattering.16 In a previous article,17 we have studied
the configurational statistics of a grafted polymer confined
a tube by Monte Carlo simulations. Our numerical model i
SAW on a cubic lattice; successive monomers occupy ne
boring sites and the occupancy of neighboring sites by n
consecutive monomers is called a contact. Within a p
interaction model, the~Flory! energy of the chain is directly
related to the number of contacts. The parameters of
system are the chain lengthN and the pore diameterD. We
have sampled the probability distributionP(z) for the length
of tubez occupied by the chain and proposed a scaling
pression for this distribution. We also proposed a scal
expression for the average number of contacts in the c
given the lengthz it occupies in the pore,m(z). A model
numerical expression for the free energy of the confin
chain as a function of the Flory parameterx was deduced. It
is valid only in the limit of smallx values and amounts to

a!Author to whom correspondence should be addressed. Electronic
sotta@lps.u-psud.fr
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mean-field approximation. Here, we want to give a mo
general scaling expression for the free energy of the confi
chain, in order to study in more details the polymer behav
in this one-dimensional confined geometry.

The coil–globule transition here is qualitatively differe
from that of a free, nonconfined polymer. The chain struct
in a pore of diameterD is expected to be a linear successi
of independent blobs of sizeD. The transition occurs almos
independently within each blob. What happens in a blob
not sensitive to the overall sizeN of the chain, hence, for a
given pore diameterD, no finite size effects are expected o
the mean^z&, ^m&, the density inside the chain, etc. Th
conjecture will be tested in this work. This argument requi
that confining effects operate even in the collapsed~globular!
state, or in other words that the globule phase fills more t
one blob, i.e., thatN.D3. Otherwise, a crossover from
three-dimensional~free chain! behavior ~in the condensed
state! to a one-dimensional~confined! behavior~in the coil
and stretched states! is expected.

Some qualitative features of the coil–globule transiti
for a free chain ind53 are inferred from the Flory expres
sion of the free energy,12

bF'
r 2

Na2 1na3
N2

r 3 , ~1!

in which the first term is the entropy of the chain and t
second one is the mean-field expression for excluded-volu
interactions~the short-range repulsion which fixes the de
sity in the globular phase is not included!. The adimensional
il:
6 © 2000 American Institute of Physics
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excluded-volume parametern is related to the Flory interac
tion parameterx by n5122x. Minimizing F gives the equi-
librium gyration radius

r F'an1/5N3/5. ~2!

The transition towards the Gaussian regime~the so-
calledu-solvent, in whichr'N1/2! occurs atnu'N21/2. This
N-dependence describes finite size effects. Note that
Flory expression, Eq.~1!, does not describe properly th
globule state, but rather the coil and/or stretched states o
chain.7

For a polymer confined in a tube of diameterD, the
Flory expression now writes18

bF'
z2

Na2 1na3
N2

zD2 , ~3!

which gives the equilibrium height of the chain in the por

zeq'a5/3n1/3D22/3N. ~4!

The scaling prediction, Eq.~4!, has been verified in
grafted polymer brushes.19 We seta51 in the following.
Introducing the reduced variableu5zD2/3/N, the free en-
ergy, Eq.~3! may be written

bF'ND24/3@u21~122x!u21#. ~5!

The N-dependence here is the same in all regim
Therefore, the coil–globule transition is expected to dep
on the pore diameterD but not onN. The aim of the presen
work is to go a step further than this rough approach and
give a more detailed, nonmean-field description of the co
globule transition for an isolated chain confined in a pore
is based on the sampling of the joint probability distributi
P(z,m), which gives the probability to obtain a configur
tion with a heightz anda number of contactsm.

The article is organized as follows: in Sec. II, we rec
scaling arguments and results previously obtained to rec
struct the full distribution~density of states! P(z,m). In Sec.
III, we present the results of the numerical simulations. T
results are discussed in Sec. IV, an expression for the
energy fitted with numerical results is presented. The f
tures of the coil–globule transition and of some physi
properties are discussed.

II. MODEL

Three-dimensional SAW of lengthN sites are generate
on a cubic lattice, using a Monte Carlo method. The chai
confined in a pore and grafted for simulation convenien

FIG. 1. Schematics of the grafted linear chain confined in a pore, simul
on a cubic lattice.
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~see Fig. 1!. The pore has a square section of surface a
S5D2. The grafting surface and the pore are unpenetra
walls. Elementary moves used to generate chain config
tions are free extremity rotations,L-inversions, and
kink-shifts.20,21 There is no bending energy. Different cha
lengths~N5150 to 500! and different pore sizes~D55 to
11! have been investigated.

The average length of the chain above the grafting s
face is defined as

z5
1

N (
i 51

N

zi , ~6!

wherezi is the distance of monomeri to the grafting surface.
It was shown previously that usingz or the gyration radiusr g

gives the same results, due to the one-dimensional geom
of this system.17 The variables sampled during the Mon
Carlo simulations arez andm, the total number of contact
between nonconsecutive monomers. The obtained histog
is the joint probability distribution~or density of states!
PN,D(z,m), which gives the relative number of configura
tions with a given lengthz anda given number of contactsm.
The modeling of the free energy presented here relies on
following factorization of the joint probability distribution
PN,D(z,m):

PN,D~z,m!5PN,D~z!PN,D~muz!. ~7!

The distributionPN,D(z) is the probability to obtain a
configuration with a lengthz and P(muz) is theconditional
probability to have a number of contactsm given thatthe
length isz.

Note that, in the dense conformations of the chain, th
is an important difference between the present case of a p
mer confined in a pore of diameterD and a free polymer. In
a free polymer, the Edwards’ screening lengthj tends to zero
~actually, to the monomer sizea! when the temperature de
creases or in poor solvent, whereas in the pore, it rem
comparable toD. One main heuristic assumption here is th
the same blob model as in the coil state, remains valid in
globule state.

A. The probability distribution P„z…

The distributionP(z) was studied previously.17 The fol-
lowing scaling form was established:

ln P~z!52ND25/3@P1u25/41P2u5/21P3u5#, ~8!

whereu is the reduced variableu5z/ND22/3. Note that the
quantity ND25/3 is simply the equilibrium number of blob
in the coil state.P1 , P2 , P3 are universal coefficients~i.e.,
independent ofN and D! which were determined numeri
cally. The valuesP1>0.275, P2>4.03, andP3>13 were
found. Equation~8! covers a range ofu from the condensed
state ~typically umin>0.08! to the stretched state~typically
umax>1.5!. No deviation from Eq.~8! at smallu values~i.e.,
higher-order terms! was experienced. However, very smallu
values, very close to the minimum accessible value, were
sampled. It was shown in Ref. 17 that logarithmic corre
tions to Eq.~8! are not observed.

d
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B. The average number of contacts m̄ „z…

The total number of contacts in a SAW confined in
pore as a function of the lengthz was computed previously.17

A scaling relation was established:

mD,N~z!2^mN,D&'ND25/3@M11M2u25/42M3u5/2#.
~9!

M1 , M2 , M3 are universal coefficients, with numerical va
uesM1>21.3, M2>0.54, andM3>3.6. TheM2-term cor-
responds to the compact side and theM3-term to the
stretched side. Note that Eq.~9! is valid in the globular re-
gime and in a large interval around the average valueum

>0.4. In the stretched regime,mD,N(z) deviates from the
above behavior and tends to zero contact.

C. The conditional probability P„m zz…

The mean-field approach implemented in Ref.
amounts toP(muz)[d(m2m̄(z)). In this approximation,
the partition function is

ZN,D~x!5EEdz dm P~z,m!exm5E dz P~z!exm. ~10!

Here, we use a better approximation, in which the con
tional probabilityP(muz) is written as a Gaussian distribu
tion

P~muz!5~2ps2!21/2e~m2m̄~z!!2/2s2~z!. ~11!

Then the partition function is

ZN,D~x!5~2ps2!21/2EEdz dm P~z!e~m2m̄~z!!2/2s2~z!1xm.

~12!

In the presence of theexm term, the distribution is cen
tered in m* (z)5m̄(z)1xs2(z), and integrating overm
leads to

ZN,D~z,x!5P~z!exm̄~z!1x2s2~z!/2. ~13!

In the Gaussian approximation, for eachz value, the condi-
tional probability is entirely determined by the averagem̄(z)
and the variances2(z), that can be fitted numerically.

The blob picture of the chain in the pore leads to t
following scaling properties forP(muz):

~1! In the ‘‘stretched state’’ ( z@ND22/3), the proper-
ties of the chain become independent of the pore diam
and the relevant variable isz/N. Thus, as a result of the
one-dimensionality of the chain in this regime, one expe
s2(z)/N to be a universal function~i.e., independent ofN
andD! of the reduced variablez/N.

~2! In the ‘‘coil’’ state (z>ND22/3), the relevant re-
duced variable isu5z/ND22/3. Still, the chain is a collec-
tion of B successive blobs which are statistically indepe
dent. This implies thatPN(muz) is of the form

PN~muz!'expF2
~mB2mB!2

2sB
2 GB

, ~14!

wheremB is the number of monomers per blob. The varian
in one blob is now independent ofN. The measured varianc
Downloaded 16 Sep 2002 to 134.157.8.17. Redistribution subject to AI
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s2(z) is equal toBsB
2, which leads to the scaling relatio

s2(z)/N independent ofN in this regime as well.
~3! in the ‘‘condensed’’ (globule) state(z'ND22

!ND22/3), it was shown in Ref. 9 that the conditional pro
ability may still be written in the form

PN~mur !'@pt~m/N!#N, ~15!

wherept(m/N) is an effective elementary probability, whic
accounts for correlations. The variablet, related to the den-
sity r5N/zD2 ~in 3D t5r5/4!, was introduced in Ref. 10 to
describe the coil–globule transition. The main differen
with a free chain is that theN-dependence is the same in a
regimes. Thus, the behavior is not expected to depend oN
as it is the case for a free polymer. There are however
ferent dependences onD in the various regimes.

Note that the number of contacts as a function ofz ~or
equivalentlyu! was computed in Ref. 17 as

mN,D~z!5
(mmPN,D~z,m!

(mPN,D~z,m!
. ~16!

Within the Gaussian approximation adopted here, it may
ternatively be computed from fitting the conditional pro
ability P(muz).

III. SIMULATIONS

A. Technicalities

In each simulation, typically 107 to 23107 MC steps
were performed~one MC step is a cycle ofN-attempted
elementary moves!. The system was equilibrated during
typical time t>0.25N2 MC steps before starting th
measurements.22,23

The distributionsPN,D(z,m) are accumulated during th
simulations. In order to sample a wide interval of the para
eterz, we biased the Monte Carlo simulation with an effe
tive Boltzmann factor~‘‘configurational bias’’! of the form
eKz ~using a Metropolis algorithm!, whereK is an adjustable
statistical weight. For eachK-value, a partial histogram
PN,D,K(z,m)5PN,D(z,m)eKz is obtained, wherePN,D(z,m)
is the unbiased distribution, sampled in az-interval which
would be impossible to attain in a unbiased simulatio
Simulations with positive~negative! values of K sample
large ~small! values of z. The enlarged distribution
PN,D(z,m) is obtained by merging together the histogram
PN,D,K(z,m) obtained with different values ofK.9,24,25 ~see
Appendix!. From PN,D(z,m), the distributionPN,D(z) is re-
covered as

PN,D~z!5(
m

PN,D~z,m!.

The following procedure may be used as well to get
curves P(z) quickly and accurately. The one-dimension
histogram obtained for a given valueK is hK(z)
5PN,D(z)eKz, wherePN,D(z) is ~a portion of! the unbiased
distribution.hK(z) has its maximum for a valuezm(K) such
that ]hK /]z50, i.e.,

]P

]z
1KP50, or K52

] ln P

]z
.
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Therefore, plottingK as a function ofum(K) gives

DK~u!52
]

]u F ln P

ND25/3G . ~17!

The conditional probabilityPN,D(muz) obtained with a sta-
tistical weightK doesnot depend onK, only the accessible
z-interval does. Thus, in a series of simulations with differe
statistical weightsK, PN,D(muz) may be obtained directly by
fitting the correspondingz-slice of PN,D,K(z,m).

In practice, 8 to 24 differentK-values, ranging from24
to 14 typically ~and down to240 in the casesN5500!,
were used in each simulation. Note that another advantag
this procedure is that simulations with differentK-values
may be run in parallel. In the two-dimensional probabil
distributions, typically 107 independent configurations@i.e.,
107 values for the couple of parameters (z,m)# are collected.
All fits are done by a least-square fit procedure with stati
cal weighting.

B. Results: The probability distribution PN,D„u …

The joint probability distributionsPN,D(z,m) have been
obtained for different values of the parametersN and D.
Then, projection alongm gives the distribution

PN,D~u!5(
m

PN,D~u,m!,

which is expressed here as a function of the reduced vari
u5zD2/3/N. This distribution was fitted in Ref. 17. The the
oretical minimumz andu values which would be obtained i
each simulation~corresponding to a completely compa
chain! and the minimum values effectively obtained in t
simulations, together with the corresponding densities,
summarized in Table I.

The procedure described in Eq.~17! has been used here
According to the scaling Eq.~8!,

DK~u!52
]

]u F ln P

ND25/3G

TABLE I. The theoretical minimum valuesumin
th are obtained by an exac

numbering of occupied layers in the tube when the chain is fully comp
~i.e., when the densityr51!. umin

scal5D24/3/2 are the scaling minimum values
Due to the discretization of the lattice,umin

th values are systematically large
than scaling valuesumin

scal. umin
exp are the approximate minimum values effe

tively sampled. The maximum density valuesrmax are computed asrmax

5N/2zminD
251/2umin

expD4/3 obtained from the values effectively obtaine
umin

exp . rav is the average density, i.e., the density obtained in the pore w
the chain has its average length.

N D umin
th umin

scal umin
exp rmax rav

150 5 0.0682 0.0585 0.1 0.68 0.2924
200 5 0.0658 0.0585 0.1 0.66 0.2924
200 7 0.0467 0.0373 0.1 0.47 0.1867
300 7 0.0435 0.0373 0.1 0.43 0.1867
400 7 0.0420 0.0373 0.1 0.42 0.1867
400 9 0.0322 0.0267 0.08 0.40 0.1335
500 5 0.0614 0.0585 0.08 0.765 0.2924
500 7 0.041 06 0.0373 0.068 0.6038 0.1867
500 11 0.025 52 0.0204 0.057 0.4477 0.1022
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should be a universal function~independent ofN andD!. In
Fig. 2, the curvesDK(u) are plotted for several values of th
parametersN and D. Excellent superposition on a uniqu
master curve is obtained. Here, the simulations have b
extended tou values smaller than in Ref. 17. Deviation fro
the perfect superposition is observed at very smallu values,
as it is shown in the inset in Fig. 2. This is due to the fin
minimum u value, which differs from one set of paramete
to the other. In particular, the discretization of the simula
system starts to play a role in this regime. Higher-order ter
have to be introduced at smallu values to get satisfactory
fits. The curves in Fig. 2 have been fitted with a function
the form

DK~u!52
]

]u F ln P~u!

ND25/3G
5 5

4 P1u29/41 5
2 P2u3/2

15P3D25/3u41~a11!P4u2a. ~18!

Fitting curves are shown in Fig. 2. A perfect fit is ob
tained in the wholeu range by adding a termu2a with an
effective exponenta of the order 6.72. Numerically, the fol
lowing model expression is obtained forP(u):

ln P~u!/ND25/3520.25u25/424u5/2

212.5D25/3u52P4u25.72. ~19!

The coefficientsP1 , P2 , P3 are fairly independent ofN
andD, as was checked already in Ref. 17. They are robus
introducing theP4-term. The coefficientP4 depends signifi-
cantly onD for a givenN value (N5500). P4 ranges from
1.731027 ~for D511! to 6.231027 ~for D55!.

ct

n

FIG. 2. The curvesDK(u) plotted as a function ofu, defined as the value
corresponding to the maximum of the one-dimensional biased histog
hK(z). The continuous curves correspond to fits with the function descri
in Eq. ~18!. The inset shows an expansion of the smallu region. n: N
5500,D511; h: N5500,D57; L: N5500,D55.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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C. The conditional probability P„m zz…

This is obtained by cutting a slice alongm in the 2D
distribution PN,D(z,m). P(muz) is shown in Fig. 3 for dif-
ferent values of the reduced variableu5z/ND22/3 corre-
sponding to the ‘‘coil’’ (u>0.4) or ‘‘globule’’ (u>0.12)
phase. The stretched case (u>1.5) is also illustrated. The
corresponding Gaussian fits are also shown in Fig. 3, in o
to illustrate the validity of the Gaussian approximatio
There is however a systematic, asymmetric deviation fr
the Gaussian fit, which indicates that higher moments of
distribution~in particular the third one! should be taken into
account also. However, this deviation remains small, eve
quite compact situations.

D. The average number of contacts

The quantity (mN,D(u)2^mN,D&)/ND25/3 is plotted as a
function of u in Fig. 4, in a range ofu values which corre-
sponds to the coil and compact regimes, for different val
of N andD. mN,D(u) was determined from the Gaussian
of the conditional probabilityP(muz). All curves superpose
quite exactly, even at very smallu values, in accordance t
the results in Ref. 17. A higher-order term may be introduc
in this regime to improve the fit further. The following nu
merical model expression gives an excellent fit in the wh
sampledu-range:

~mN,D~u!2^mN,D&!/ND25/3

50.54u25/423.62u5/210.00647u25/2. ~20!

The constant term@M1 term in Eq.~9!# represents only a
slight vertical shift of the curves in the fitted interval, whic
is negligible here. The coefficient in theu25/2 term depends
on D. This is due to the fact thatmN,D(u) tends to the maxi-
mum number of contacts 2N ~ignoring surface terms! when
u tends to the minimum valueumin'D24/3/2. The conjectures

FIG. 3. The logarithm of the conditional probability distribution lnP(muz)
for different valuesu corresponding to the stretched, coil, or globule pha
of the chain:n: u51.5003;h: u50.4025;L: u50.1281. The continuous
curves correspond to Gaussian fits ofP(muz), to illustrate the validity of the
Gaussian model~N5400,D57!.
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leading to the scaling expressions in Eqs.~8! and ~9! were
essentially based on the blob picture for the confined ch
More precisely, the portion of chain inside a blob shou
behave as a free chain, as regards its statistical beha
Thus, it may be checked that the numerical result in Eq.~20!
is in concordance with the number of contactsmN(R) in a
free polymer of the same size and density as the consid
blob. In Ref. 6, it was shown thatmN(R) may be written
mN(R)5aN1Bs215/42Cs25/22Ds5/21E, s being the re-
duced gyration radiuss5R/R0 with R0 the equilibrium gy-
ration radius of a SAW in good solvent. TheC-term is the
surface term, theB-term describes the compact sides
!1), and theD-term the coil region (s>1). mN(R) may be
rewritten in terms of the density defined asr5N/R3

5N/R0
3s3 ~given that R0>l0N3/5 with l050.396!:25

mN(r)'Nr5/42N22/3r25/6 ~only B andD terms have been
written!. Then, to compare to the case of a polymer in a po
N in the formula above should first be set equal to the nu
ber of monomers in one blobg5rD3, then the number of
contacts in one blob should be multiplied by the number
blobsB5N/g. Finally, given the numerical values in Ref. 6
the blob picture leads to

mN,D~r!'0.15Nr5/4214.2ND25r25/2. ~21!

Numerically, it was found in Ref. 17~only theB andD
terms are indicated! mN,D(r /r 0)'ND25/3 b1.65(r /r 0)25/4

20.35(r /r 0)5/2c, which may be rewritten, given thatr 0

5l1ND22/3 ~with l150.22! and r 5N/rD2 as

mN,D~r!'0.25Nr5/4215.4ND25r25/2. ~22!

The numerical coefficients in Eqs.~21! and ~22! are in-
deed quite close, even though geometrical details in the c
fined chain have been largely ignored. Thus, the compar
between Eqs.~21! and~22! strongly supports the blob mode
for the confined chain.

FIG. 4. The reduced number of contacts (mN,D2^mN,D&)/ND25/3 as a func-
tion of u, for several values ofN andD: h: N5500, D511; L: N5500,
D57; n: N5500,D55; ,: N5400,D59. The continuous curve is the fi
of the dataN5500,D511 with Eq.~20!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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E. Fit of the variance s2
„z…

As the average number of contactsm̄, the variance
s2(z) may be computed in two different ways, either fro
the Gaussian fit ofP(muz), or directly as

s25
( imi

2P~mi !

( i P~mi !
2m̄2. ~23!

We have checked that both measurements coin
within error bars. The second moment taken from the Gau
ian fit, that includes in an effective way higher-order stat
tical deviations, coincides with the actual variance, wh
justifies the Gaussian approximation adopted here. The v
ances2(z) shown in the forthcoming figures has been o
tained from the Gaussian fit ofP(muz).

The different regimes mentioned in Sec. II B may
distinguished as follows. According to the scaling laws
lated to the one-dimensional character of the chain, the qu
tity s2(z)/N should be independent ofN. In Fig. 5~a!, the
quantitys2(z)/N is plotted as a function of the variablez/N,
for different values ofN andD. The curves tend to collaps
on a single master curve at largez-values, and show a rela
tively good superposition property over a large range
z-values. This corresponds to the scaling quoted in Sec.

FIG. 5. ~a! The quantitys2(z)/N plotted as a function ofz/N, for different
values ofN andD. s2(z) is obtained by a least-square fit of the condition
probabilityP(muz) with a Gaussian function.~b! s2(z)/N plotted as a func-
tion of u.
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in the stretched regime, i.e., for largez-values. In thecoil
regime, the relevant variable isu. In Fig. 5~b!, the curves
s2(z)/N are plotted as a function ofu. Indeed, the curves
superpose relatively well in the coil regime, i.e., aroundu
50.4. In theglobule (u,0.4) regime, the relevant variabl
is the densityr5umin /u, or equivalently the variable relate
to it t5r5/4. umin is the minimum value ofu that would
correspond to a fully compact chain~r51!. In Fig. 6, the
curvess2(z)/N are plotted as a function oft. The valueumin

used to define the variablet in Fig. 6 is the actual value
denotedumin

th in Table I. The maximum density is the
rmax51 in the plot in Fig. 6.

It is observed in Fig. 6 that the curves corresponding
one given value ofD and variousN-values~from 150 to 500!
collapse on a single curve. There is however a signific
variation onD: the curves obtained for differentD values
have the same general behavior but do not superpose.

For a given value ofD, the quantitys2/N is proportional
to the variance in one blob, which depends onD only. Then,
it is expected that the larger the blob sizeD, the larger the
variance, which is indeed observed in Fig. 6. Thus, the
creasingD-variation observed in Fig. 6 is consistent with th
blob picture.

The quantity s2/N is the variance of the function
pt(m/N) as defined in Eq.~15!. The variance ofpt(m/N)
was measured for free, unconfined chains in Ref. 9. T
curves in Fig. 6 reflect a behavior within one blob qualit
tively similar to that observed in free chains. The numeri
values are however higher in the present case. In Ref. 9
curves were fitted to a function of the forms2(t)5s0

2

1s1
2t1s2

2ta ln t with a of the order 0.5 in three dimension
In Fig. 7, the curvess2/N corresponding toD57 and vari-
ous values ofN are plotted as a function oft. The curves can
be satisfactorily fitted by a function of the formf (t)
5S2ta ln t. There is however a significant difference wi
respect to free chains: the density~or equivalently the vari-
able t! as it is defined here does not tend to zero in
stretched regime in the limitN→`, but to a valuetmin

FIG. 6. The quantitys2(z)/N plotted as a function oft5(umin /u)5/4, for
different values ofN andD.
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5D25/2 ~which depends onD only!. To take this behavior
into account, we have fitted the curvess2(t)/N with a func-
tion of the form

f ~ t !5S2t8a ln t8 with t85
t2tmin

12tmin
. ~24!

This modificationt→t8 has no effect on the fit in the com
pact regime~i.e., for t close to one!. Good fits are obtained in
the whole range of the variablet8, as is shown in Fig. 7. The
adjustable parametersS2 anda are summarized in Table I
for N5500 and variousD-values. Note that Eq.~24! is a
purely phenomenological function. There is no theoreti
account for it at the moment.

IV. IS THERE A COIL–GLOBULE TRANSITION?

A. Free energy of the confined chain

A numerical model expression may now be proposed
the free energy of a SAW confined in a pore, within t
Gaussian approximation. In this model, each contact is s
posed to reduce the energy by an amountkBTx, wherex is
the Flory interaction parameter. The free energy, conside
as a function ofz ~or equivalentlyu! and x, is defined as
FN,D(z,x)52kBT ln ZN,D(z,x), where ZN,D(z,x) is the
z-partition function defined in Eq.~13!. This gives

FN,D~u,x!

kBT
52 ln PN,D~u!2xm~u!2

1

2
x2s2~u!. ~25!

FIG. 7. The quantitys2(z)/N plotted as a function oft5(umin /u)5/4, for
D57 and different values ofN. The continuous curve is a fit using Eq.~24!.

TABLE II. Fitting parameters obtained when fitting the curvess2(t)/N
with Eq. ~24!, for N5500 and various values of the pore diameterD.

N D S2 a

500 5 21.265 0.814
500 7 21.307 0.737
500 11 21.54 0.81
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The structure of the free energy, Eq.~25!, is similar to
the Flory expression. Compared to the mean-fi
expression,17 there is an extra factorx2s2/2, which is ex-
pected to vanish in the completely compact state of
chain. This term plays a role similar to the three-body te
in the Flory free energy.

The equilibrium valueueq(x) is obtained by minimizing
FN,D(u,x) for each given value ofx. An example of the
curvesueq(x) obtained in this way is shown in Fig. 8 for th
caseN5500 andD57. The continuous, horizontal line in
dicates the value ofu which would correspond to the fully
collapsed chain~r51!.

Replacingu by the equilibrium valueueq(x) in Eq. ~25!,
one may obtain the equilibrium free energy as a function
x, Feq(x), or equivalently as a function ofT(T51/x). It is
clear from Eq.~25! that the quantityFeq(x)/N is universal,
i.e., independent of the chain lengthN, given the scaling
relations, Eqs.~19!, ~20!, and~24!. This means that there i
no finite-size effect in the present problem. This is in contr
to the case of afreepolymer chain, in which the equilibrium
free energy depends on the chain lengthN. Given the nu-
merical values of the various terms in Eq.~25!, it is found
also that the scaled quantityFeq(x)/ND25/3 is independent
of D as well, to an excellent approximation.

B. Nature of the coil–globule transition

The main conclusion from this work is that the coil
globule transition for a chain confined in a pore is contin
ous. This result comes from two specific features. First,
chain confined in a linear pore may be analyzed as a lin
succession of statistically independent blobs. The free ene
is essentially extensive in the number of blobs. The transit
occurs within each blob independently. It results that
overall chain lengthN is not relevant to discuss finite siz
effects, but rather the numberg of monomers per blob. The
relevant quantity to describe the confined chain is then
Boltzmann–Gibbs distribution for one blobPg(t,x) @or
equivalently the free energy per blob as it may be defin

FIG. 8. The curveueq(x) obtained by minimizing the free energy, Eq.~25!,
for N5500 andD57.
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from Eq. ~25!#, expressed here in terms of the Flory para
eterx and the variablet defined in the same way as in Se
III E. It is shown in Refs. 10 and 26 that for small chains, t
coil–globule U-point always corresponds to a continuo
transition. Whereas for long chains the Boltzmann–Gib
distributionPN(t,x) is bimodal in some range ofx ~or tem-
peratureT!, giving rise to a first-order transition, it alway
has only one maximum for small chains, this maximum b
ing shifted continuously towards the globular state asx in-
creases~or asT decreases!.

Another potentially interesting consequence of the b
structure of the chain may be the chain response to stre
ing. It was shown in Refs. 27, 28 that applying a stretch
force to a chain collapsed in a poor solvent~i.e., in the globu-
lar state! gives rise to a discontinuous, first order unwindi
transition. It is expected in the present case that each
will unwind independently on stretching the confined cha
which will lead to a continuous unwinding.

V. CONCLUSION

The two-dimensional joint probability distributio
PN,D(z,m) for the lengthz and the number of contactsm of
a linear, neutral SAW of lengthN confined in a tube of
diameterD, contains all the relevant statistical informatio
on this system. This quantity has been investigated us
biased Monte Carlo simulations. WritingPN,D(z,m)
5PN,D(z)PN,D(muz), we have computed a nonmean-fie
expression for the free energy of the confined chain, by t
ing into account the second moment of the conditional pr
ability distribution PN,D(muz). This may be used to stud
the coil–globule transition in the confined chain as the te
perature or the quality of the solvent is varied. The resu
presented here strongly reinforce the ‘‘blob’’ picture: th
indicate that the transition occurs within each blob indep
dently. As a consequence, the transition is always cont
ous, contrary to the case of a free, unconfined linear cha

APPENDIX

The overall unbiased distributionsPN,D(z,m) is ob-
tained by merging together the biased two-dimensional pr
ability distributions~histograms! sampled numerically.

Suppose that two two-dimensional histogramshi(z,m)
and hj (z,m) have been generated with two different valu
of the statistical weight parameterKi and K j , respectively.
The distributions Hi(z,m)5hi(z,m)eKiz and H j (z,m)
5hj (z,m)eK jz are portions of thesame, unbiased distribu-
tion ~sampled on differentz-intervals, however!. The differ-
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ent portionsHi(z,m) are normalized and merged using st
tistical weighting, that is, the relative normalizatio
~translation! factor t i j is computed by minimizing the quan
tity

Q5(
z,m

l i j ~z,m!@ ln Hi~z,m!2 ln H j~z,m!2t i j #
2.

The weighting factorl i j (z,m) takes into account the
statistical weight in each file, i.e.,l i j (z,m)5@hi(z,m)21

1hj (z,m)21#21 @l i j (z,m)50 if one of the files,h(z,m), is
zero#.

This leads to

t i j 5
(z,ml i j ~z,m!@ ln Hi~z,m!2 ln H j~z,m!#

(z,ml i j ~z,m!
.

Then, all files are merged together to give the logarithm
the final, reconstructed distributionH(z,m)

ln H~z,m!5
( ihi~z,m!@ ln Hi~z,m!2t i0#

( ihi~z,m!
.
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