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Monte Carlo simulation of a grafted polymer chain confined in a tube
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We study a grafted polymer chain confined in a tube by Monte Carlo simulations of a self-avoiding
walk on a cubic lattice. We measure the probability distribution of the one-dimensional gyration
radiusr i and of the length of tubez occupied by the chain. We use a biased Monte Carlo algorithm
in order to sample a large interval ofr i or z. A simple scaling law is proposed for the length of tube
z occupied by the chain, in the regime where the chain behaves as a linear, one-dimensional packing
of units submitted to excluded-volume~blobs!. A simple scaling law is also proposed for the number
of contacts as a function ofz. A model expression for the free energy of the confined chain is then
deduced. It has a scaling structure similar to that of a free self-avoiding walk, with a different
exponent ofz in the smallz regime. © 2000 American Institute of Physics.
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I. INTRODUCTION

The problem of squeezing a polymer chain of lengthN
monomers in a tube of diameterD is important for a number
of reasons. Models to describe such a confined poly
chain, based on scaling arguments, have been devel
long ago, for polymers in solution1,2 or in melts.3 Also, the
structure of a semidilute solution confined in a porous m
dium has been observed recently by small angle neu
scattering.4

We consider here a closely related, but slightly differe
problem. A self-avoiding chain is confined in a pore, a
there is a perpendicular wall at some point in the pore,
which the chain is grafted at one end~Fig. 1!. We consider
this problem for two reasons. First, it may be related itsel
some interesting physical situation or application~adhesion,
friction, permeation of an actual isolated polymer through
pore or through a membrane!. Then, we intend to extend i
and use some of the results obtained here as a basis to
derstand the structure of grafted polymer brushes, their
lapse in poor solvent or their stretched regime~as it is pre-
dicted for instance in grafted polyelectrolyte brushes.5–7!

The aim of the present work is to study the coil-globu
transition for a neutral chain confined in a pore. The ext
sion of the geometrical coil–globule transition of a free, is
lated chain to a confined chain is not straightforward, sin
the geometry~and dimensionality! of the problem is quite
different. In particular, there are two geometrical control p
rameters, the pore diameterD and the chain lengthN. Basic
physical quantities relevant in this problem are the length
tube Ri occupied by the chain, and the energy required
confine the grafted chain in it. We consider here a chain

a!Author to whom correspondence should be addressed; electronic
sotta@lps.u-psud.fr
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good solvent, i.e. described locally by the self-avoiding wa
~SAW! statistics.Ri must have the scaling form,2

Ri5RFF~RF /D !. ~1!

RF is the Flory gyration radius of a real chain in good so
vent, which scales asRF'aNn, with n53/5 in 3 dimensions
anda is the monomer length.

Since there is no confinement in a thick tube, the fun
tion F has to meet the requirementF→1 when the ratiox
5RF /D→0. In the strong confinement limitx→` ~thin
tube!, a scaling lawF(x)'xm is assumed,m is determined
by the condition thatRi be a linear function ofN for strong
confinement, because the problem is then one-dimensio
For a!D!RF , this leads to the following scaling:

Ri'aNS a

D D 2/3

. ~2!

As soon asD!aN3/5, the chain is extended along th
tube,Ri@RF . The concentration inside the chain is indepe
dent ofN,

c'
N

D2Ri
'a23S a

D D 4/3

. ~3!

The above considerations may be interpreted in term
a ‘‘blob’’ picture. In a semidilute solution in good solvent,
blob is a region of space occupied by a portion of a sin
chain. Inside each blob, excluded volume interactions
tween monomers arenot screened, and the correspondin
portion of chain obeys the Flory statistics. Thus, the num
of monomers per blobg is given byag3/55D. Equation~2!
is then obtained by packing a sequence ofN/g blobs linearly
along the tube.

Finally, the elastic free energy of the chain confined
the pore is estimated as
il:
5 © 2000 American Institute of Physics
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Fconf'kBTNS a

D D 5/3

. ~4!

This corresponds to attributing a free energykBT per
blob. Equation~4! is the same as for a free chain in the lim
of large elongation.

Scaling predictions, Eqs.~2! and ~3!, have been estab
lished on a firm basis in grafted polymers and brushes.8,9 We
investigate here the statistics of the length~or gyration ra-
dius! r i occupied in a tube by a linear self-avoiding cha
squeezed in it. The equilibrium quantityRi mentioned above
is simply the thermal average of this length. Our approa
relies on a geometrical~‘‘blob’’ ! model describing the struc
ture of the chain, substantiated both with previously obtain
distributions of the radius of gyration of a SAW,10–14 and
Monte Carlo simulations.

The paper is organized as follows. In Sec. II, we pres
a model for the distribution of the lengthr occupied by a
chain confined in a tube. This is a straightforward extens
of the previously obtained distribution for the gyration radi
of a SAW. We conjecture also an expression for the num
of contacts, i.e., the energy, in such a chain. Technicalitie
the Monte Carlo simulations are presented in Sec. III. R
sults are presented in Sec. IV. Numerical, scaling exp
sions are proposed for the number of configurations and
number of contacts as a function of the lengthr. From these
expressions, an expression for the free energy may be
duced, as it is presented in Sec. V.

II. MODEL

A. Scaling form for the gyration radius distribution

The approach in terms of a distribution for the gyrati
radius of a polymer chain has been initiated long ago. F

FIG. 1. Schematics of the grafted linear chain confined in a pore, simul
on a cubic lattice.
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the distribution for the gyration radiusr of a linear polymer
was established to be~only r-dependent terms are retaine!
in d dimensions,10

ln P~r !'2NF S Na3

r 3 D a

1S r

NaD dG , ~5!

wherea51/(nd21)55/4 andd51/(12n)55/2 ~we shall
consider the cased53 in all what follows!. Equation~5!
expresses the probabilityP(r ) to obtain an instantaneou
value r for the gyration radius of the polymer@P(r ) is pro-
portional to the number of configurations giving a gyrati
radiusr#. It was established on the basis of scaling consid
ations, within a phenomenological approach, and tested
merically for chains generated on a square lattice.10–12,15

Then, for a chain squeezed in a tube of diameterD, the
characteristic length to be considered is the one-dimensi
gyration radius~measured along the tube! r i . Equation~5!
becomes10

ln P~r i!'2NF S Na3

r iD2D a

1S r i

NaD dG . ~6!

The second term on the right-hand side describes
stretched regime. It corresponds to values ofr i such that the
chain is more stretched than due to the confinement in
pore. Thus, the statistics becomes independent of the
diameter in this regime. The first term describes the c
lapsed regime, in which the number of configurations is
function of the concentration inside the tubec5N/r iD2

only. Equation~6! may be rewritten in the scaling form,

ln P~r i!'2NS D

a D 25/3

@x25/41x5/2#. ~7!

x5r i /r m is the ~one-dimensional! reduced gyration radius
with r m5Na(D/a)22/3 the equilibrium elongation of the
chain, obtained as ther i value corresponding to the max
mum of the distributionP(r i). Note that the exponent22/3
is not trivial. It is directly related to the Flory exponentnF .
It reflects the fact that there is an excluded volume~Flory!
behavior at small spatial scales and a screened behavi
larger scales, with a crossover in between the two regim
The crossover occurs at a certain correlation length, and
blob concept is based on this correlation length.

The linear relationr m'N may not hold in the interme-
diate regime in whichr i is comparable toD. In this case,
which corresponds to weak confinement, the number
blobs is essentially equal to one.

The power law at larger i values is the same for a fre
and confined polymer@Eqs.~5! and~6!#. This corresponds to
a linearly stretched polymer. In this regime, the polymer m
be described as a linear packing of blobs of sizej, with g
5(j/a)1/n monomers per blob, leading to the following re
lation between the sizer i of the polymer and its lateral di
mensionj, r i5Na1/nj121/n. By comparing the lateral sizej
to the pore diameterD, one finds the crossover to th
r i-regime in which the polymer becomes insensitive to
pore confinement. This condition isr i>Na(D/a)22/3[r m .
Thus, the same behavior as that of a free polymer would
expected in the whole domainr i>r m .

d

P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



h
th

th
de
r

n

-

e

th

h

is
ve
n
u

n

te

ist

us

acts

,

or

,
he
tacts
n in

me
ly-
ain

ly

arlo

a
un-
gu-

in

f

f
n-
al

1567J. Chem. Phys., Vol. 112, No. 3, 15 January 2000 Grafted polymer chain in a tube
Note finally that, for a linearly stretched polymer, whic
is a one-dimensional system, it is equivalent to consider
one-dimensional gyration radiusr i or the~linearly! averaged
lengthz. Both quantities are expected to be proportional.

B. Logarithmic corrections

As a consequence of its unidimensional confinement,
chain behaves as a succession of statistically indepen
subunits~‘‘blobs’’ !, whose size is fixed by the pore diamete
We look for the total number of configurationsVN,D(r ) of
anN-chain which has a characteristic lengthr i along the tube
~this length being measured either by the one-dimensio
gyration radiusr i or by the average lengthz!. The chain is a
succession ofB5N/g statistically independent blobs~note
that B depends onz!. Then,

VN,D~r i!5@Vg~D !#N/g5@mggg21Pg~D !#N/g

5mNg~g21!N/ge2N@~ga3/D3!a1~D/ga!d#.

~8!

The occupied lengthr i is r i5DB5DN/g. This gives
the complete form of Eq.~6!,

ln VN,D~r i!'~12g!
r i

D
ln

r i

ND
2NF S Na3

r iD2D a

1S r i

NaD dG ,
~9!

which may be rewritten,

ln VN,D~r i!' ln PN,D~r i!

'2NS D

a D 25/3F ~g21!x ln x

2
5

3
~g21!x ln

D

a
1x25/41x5/2G , ~10!

with x5(r i /r m)5(r i /Na)(D/a)2/3 as before. Hence, loga
rithmic corrections to Eq.~7! appear in Eq.~10!. For a given
value of the pore diameterD, the scaling form
ln PN,D(ri)/ND25/35 f (x) is retained. In three dimensions, th
universal exponentg21>1/6.2 The termsx25/4 andx5/2 are
only the first, dominant terms of a series expansion, and
right-hand side of Eq.~10! should also contain power-law
terms of higher order. These will be discussed later. T
chain here is supposed to be uniformly stretched~or
squeezed!, i.e., the density is the same in all the blobs. Th
means that a saddle point approximation is done; for a gi
total elongationr i , the chain is supposed to acquire a co
formation with the same average density in each blob. Th
configurations with nonequivalent blobs are supposed
have a negligible statistical weight. This argument is
longer relevant in the stretched regime~largez or r i values!,
in which different blobs arenot independent. However, in
this regime, the statistics is independent of the blob diame
and scaling terms of the formr i /N5/2 ~and higher order
terms! are retained only. A first part of this work shall cons
in testing the scaling prediction Eq.~7! and examining
whether logarithmic corrections may be measured.
Downloaded 16 Sep 2002 to 134.157.8.17. Redistribution subject to AI
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C. The number of contacts in a polymer chain
confined in a pore

The number of contacts in a SAW with a gyration radi
r obeys the scaling law,12

mN~r !'aN11S N

r dD a

2
r

N
d, ~11!

with a5(nd21)2155/4 andd5(12n)2155/2. Equation
~11! may be written equivalently mN(r )2aN
'(RF /r )d/(nd21)2(r /RF)1/(12n) with RF5aNn. Within the
blob picture described above, the average number of cont
within a blob of sizeg is

mg~D !'agF11S g

DdD 1/~nd21!

2S D

g D 1/~12n!G . ~12!

Note that this is thetotal number of contacts in the blob
not the average number of contactper monomer. The num-
ber of blobs per chain isN/g, andg'ND/z. Thus, from Eq.
~12!, the total number of contacts in the chain is finally, f
d53 andn53/5,

mD.N~r i!'N@11D25/3x25/42D25/3x5/2# ~13!

in which x is the~one-dimensional! reduced gyration radius
as in Eqs.~7! and ~10!. The second term corresponds to t
compact side and the third one to the stretched side. Con
between different blobs have been neglected. It was show
Ref. 12 that a surface term has to be introduced in Eq.~13! to
reproduce simulated results, for a free~isolated! SAW. The
situation here is different, even though the surface-to-volu
ratio of the confined polymer is higher than for a free po
mer, since both the volume and surface are linear in the ch
lengthN. Thus, the effect of the surface is simply to multip
the number of contacts by a constant amount~independent of
x!, of the order 121/D.

III. TECHNICALITIES OF THE SIMULATIONS

Three-dimensional self-avoiding walks of lengthN sites
are generated on a square lattice, using a Monte C
method. The chain is both grafted and confined in a pore~see
Fig. 1!. The pore has a square section of surface areS
5D2. The grafting surface and the pore are defined by
penetrable walls. Unit moves used to generate chain confi
rations are free extremity rotations,L-inversions and
kink-shifts.16,17 There is no bending energy. Different cha
lengths (N5150– 400) and different pore sizes (D55 – 9)
were investigated. In each simulation, typically 107– 2
3107 MC steps were performed~one MC step is a cycle o
N attempted elementary moves!. The system was equili-
brated during a typical timet>0.25N2 MC steps before
starting the measurements.8,18 The free, grafted chain o
length N5150– 300 was placed in a box of lateral dime
sions 2AN with periodic boundary conditions on the later
walls.

Two quantities were measured:
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~1! The one-dimensional gyration radius along the pore
rection, given by

ri5F 1

2N2 (
i51

N

(
j51

N

~zi2zj!
2G1/2

. ~14!

~2! The average length of the chain above the grafting s
face, given by

z5
1

N (
i 51

N

zi . ~15!

The distributionsPN,D(r i) and PN,D(z) were accumu-
lated during the simulations. Typically,r and z were mea-
sured 106– 43106 times. The average concentration profi
d(Z) along the pore direction was measured additiona
~here Z denotes the distance to the grafting surface!. The
concentration profiles for different values ofN and D are
shown in Fig. 2. The concentration is uniform over quite
largeZ interval, as expected~see Sec. II!. Also, in Fig. 2, the
profiles are normalized to show the scaling behavior of
concentration, according to Eq.~3!.

In a second series of simulations, two-dimensional jo
distributions PN,D(r i ,m) and PN,D(z,m) were measured
PN,D(z,m) @or similarly PN,D(z,m)# give the number of con-
figurations with a given lengthz ~or r i! and a given number
of contactsm. The distributionPN,D(z) @or PN,D(r i)# is re-
covered as

PN,D~z!5(
m

PN,D~z,m!. ~16!

The number of contacts as a function ofz ~or r! is given
by

mN,D~z!5
(mmPN,D~z,m!

(mPN,D~z,m!
. ~17!

The averagenumber of contactŝmN,D& is determined
by

^mN,D&5
(zmN,D~z!PN,D~z!

(zPN,D~z!
. ~18!

FIG. 2. The reduced densitycD4/3 as a function of the reduced distance
the grafting surfaceZ/ND22/3 ~hereZ denotes the distance to the surface!.
Downloaded 16 Sep 2002 to 134.157.8.17. Redistribution subject to AI
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z should theoretically range fromzmin'Na(D/a)22 to zmax

'Na. In practice, the simulated values range in a much n
rower interval aroundz0 , from z0/2 to 2z0 typically. In order
to get a large number of configurations in a wide interval
the parameterz ~or equivalently,r i!, we biased the Monte
Carlo algorithm with an effective Boltzmann factor of th
form eKz, whereK is an adjustable statistical weight. As
result, for eachK value, a partial histogramPN,D,K(z,m)
5PN,D(z,m)eKz is obtained, wherePN,D(z,m) is the unbi-
ased distribution, sampled in az-interval which depends it-
self onK. The major advantage of the technique is that
statistical weightPN,D(z,m) in this K-dependentz-interval
would be impossible to measure in a unbiased simulat
The enlarged distributionPN,D(z,m) is obtained by merging
together the histogramsPN,D,K(z,m) obtained with different
values ofK, according to a well documented procedure.13,19

Simulations with positive~resp. negative! values ofK sample
large ~resp. small! values ofz and r i . Note that the number
of contactsmN,D,K(z) @or mN,D,K(r i)# obtained with a statis-
tical weightK does not depend onK @see Eq.~18!#, only the
z-interval ~or r i-interval! does. Thus, in a series of simula
tions with different statistical weightsK, the whole function
mN,D(r i) is computed directly as

mN,D~r i!5
(kPN,D.K~r i!mN,D.K~r i!

(kPN,D.K~r i!
. ~19!

In practice, 8–16 differentK values, ranging from24 to
14 typically, were used in each simulation. Note that a
other advantage of this procedure is that simulations w
different K values may be run in parallel.

IV. RESULTS

A. Scaling law for the gyration radius

r i is the one-dimensional gyration radius as defined
Eq. ~14!. The reduced gyration radius is defined here asr
5r i /ND22/3 (r m is the most probabler i value, i.e., the value
at the maximum of the distribution!. Neglecting the influence
of the logarithmic term in Eq.~10!, one expects the quantit
G(r)/ND25/35 ln(P(ri)/P(rm))/ND25/3 to be a universal
function of the reduced gyration radius. In Fig. 3 the curv
G(r)/ND25/3 are plotted as a function ofr, for different
values ofN and D. Within experimental uncertainties, a
curves collapse on a unique master curve. This result d
onstrates the validity of the scaling law in Eq.~7!, i.e., the
universal behavior of the distributionP(r i). Note that no
statistical weighting was applied here, so that only a smar
interval is sampled.

Figure 4 shows the radius of gyrationr m corresponding
to the maximum of the distributionP(r i), i.e., the most
probabler i value. The quantityr mD2/3 is plotted as a func-
tion of N, for different values ofN andD. The scaling law,
Eq. ~2!, is verified. A linear fit of the data in Fig. 3 gives

r m5bND22/3 ~20!

with a prefactorb50.2260.005, which, compared to Eq
~2!, would correspond to an effective monomer sizea5b3/5

50.40314. This value may be compared to that obtained
free, isolated SAW in 2D simulations (b50.34860.002)
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~Ref. 11! or in 3D simulations using a pivot algorithm16

~there, however, the gyration radius as a function ofN was
not measured explicitly!. In Ref. 20, the valuea50.396 was
measured in a 3D SAW. Thus, our value agrees within
accuracy to that latter one. This value leads to an unp
turbed gyration radiusRF>8 ~for N5150! to RF>14.6 ~for
N5400!, which is typically 1.5 time larger than the large
pore diameterD studied here, for each value ofN.

B. Scaling law for the average length of the chain

In the same way as above, the distributionsP(z) for the
average lengthz @defined in Eq.~15!# were measured. In Fig
5, the quantityG(u)/ND25/35 ln(P(z)/P(zm))/ND25/3 is plot-
ted as a function of the reduced lengthu5z/ND22/3, for
different values ofN andD. All curves collapse on a uniqu
master curve, which demonstrates that the scaling law in
~7! is verified by the distributionP(z) as well. On the other
hand, it suggests that the influence of the logarithmic term

FIG. 3. The distributionG(r)5 ln(P(ri)/P(rm))/ND25/3 plotted as a function
of the reduced gyration radiusr5r i /ND22/3, for different values ofN and
D. All curves collapse on a unique master curve, which demonstrates
universal behavior of the distributionP(r i).

FIG. 4. The quantityr mD2/3 plotted as a function ofN, for different values
of N andD. r m is the gyration radius corresponding to the maximum of t
distributionP(r i).
Downloaded 16 Sep 2002 to 134.157.8.17. Redistribution subject to AI
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rather weak. The average lengthzm corresponding to the
maximum of the distributionP(z) was measured for the dif
ferent values ofN andD. We find

zm5b8ND22/3. ~21!

The prefactorb850.460.01, which would correspond to a
effective monomer sizea5b83/550.577.

Thus, it has been shown that the distributions for bo
quantitiesr i and z have the same universal behavior, d
scribed by Eq. ~7!. This reflects essentially the one
dimensional behavior of the confined chain, in the limitRF

@D, i.e., the fact that the chain is essentially a collection
statistically independent blobs for all densities, i.e., throu
out the distribution. This behavior is evidenced as well
the scaling of the density, as it was shown in Fig. 2. It
important to notice that the one-dimensional character of
chain statistics is established for values of the ratioRF /D as
low as 1.5.

However, it is clear that only very limited ranges ofr i or
z are sampled in Figs. 3 and 5. The range ofu which is
sampled in Fig. 5 is typically 0.3<u<0.55. For example, for
D55, the theoretically accessibleu values range fromumin

5D24/3/250.0585 to umax5D2/3 /251.462. It is therefore
necessary to biase the simulations to explore a signific
part of the configurational space.

In the following, we apply a statistical weight~effective
Boltzmann factor! of the form expKz ~see Sec. III! and we use
the distributionPN,D(z) to characterize the statistical prop
erties of the chain. In Fig. 6, the curvesG(u)/ND25/3 are
plotted as a function ofu, for different values ofN and D.
Here, each curve has been obtained on a enlargedu interval
by merging together the distributions obtained with differe
values of the parameterK. All curves collapse on a unique
master curve to a very good approximation. This result de
onstrates the universal behavior of the distributionPN,D(z)
@Eq. ~7!#. The interval obtained in Fig. 6 is 0.11,u,1.3,
which is very close to the theoretical interval.

he

FIG. 5. The distributionG(u)5 ln(P(z)/P(zm))/ND25/3 plotted as a function
of the reduced lengthu5z/ND22/3, for different values ofN and D. All
curves collapse on a unique master curve, which demonstrates the univ
behavior of the distributionP(z).
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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C. Fit of the distribution PN,D„z…

In the stretched regime, finite size effects may come i
play. The term corresponding to the largez regime in Eq.~7!
is the first term of a series expansion in terms ofz/Na,
which writes lnP(z)'N@(z/Na)5/21(z/Na)51¯#. In terms
of the new variablet5(z/N)5/2, this gives the following ex-
pansion:

h~ t ![
ln PN,D~z!

N
>hsmall~ t !1A2t1A3t2. ~22!

hsmall(t) describes the behavior at smallt values ~i.e., at
small z values! and verifieshsmall(t)→0 when t is large. A
higher order termA3 has been introduced. In Fig. 7 the qua
tity h(t)/t is plotted as a function oft. The different histo-
grams have been normalized so that all curvesh(t)/t coin-

FIG. 7. The quantityh(t)/t5 ln(P(z)/P(zm))/Nt as a function of the variable
t5(z/N)5/2, for different values ofN and D. The curves tend to a linea
behavior at larget, with the same slope for all curves, which is in agreem
with Eq. ~22! in the text.

FIG. 6. CurvesG(u) obtained for different values ofN andD ~same as in
Fig. 5!. Here the curvesG(u) have been obtained by merging togeth
histograms obtained with statistical weights of the formeKz. Thus the
curves span a much largerz interval than in Fig. 5.
Downloaded 16 Sep 2002 to 134.157.8.17. Redistribution subject to AI
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cide at larget values. It is clear from Fig. 7 thath(t)/t tends
to a linear behavior at larget ~large z! with a roughly con-
stant limiting slope, which givesA35217.7361.4. This
shows that an additional power term has to be introduce
fit the distributionPN,D(z) at largez values, and that this
term is of the expected formN(z/Na)5.

The curvesG(u)5 ln(P(z)/P(zm)) were fitted to a func-
tion of the form g(u)5P11P2u25/41P3u5/21P4u5. The
fitting was done for different values ofN and D, using the
enlarged distributionsPN,D(z) obtained in series of biase
simulations. An example of the obtained fit is shown in F
8. The results of the fits are summarized in Table I. For e
of the curves, the agreement between theory and simula
is excellent. It is not possible to isolate and estimate lo
rithmic corrections in a satisfactory way. Indeed, both t
fact that the fit is excellent for each curve and that curv
obey the scaling behavior@Eq. ~7!# to a very good approxi-
mation, indicates that logarithmic terms are only very sm
corrections to the scaling behavior and can be neglected h
In contrast, the higher order termu5 cannot be ignored.

From the values in Table I, we may finally propose t
following approximate form:

G~u!/ND25/2>20.257u25/424.03u5/2213D25/3u5,
~23!

t

FIG. 8. The curveG(u) obtained forN5400 andD57 ~same as in Fig. 6!.
The continuous curve is a fit to an equation of the formg(u)5P1

1P2u25/41P3u5/21P4u5 @see Eq.~23! in Sec. IV C#. An excellent fit is
obtained in the whole range of obtainedu values.

TABLE I. The reduced histograms~see Figs. 6 and 8! G(u)/ND25/3

5 ln(P(u)/P(um))/ND25/3 as a function ofu5z/ND22/3 were fitted to a func-
tion of the formg(u)5P11P2u25/41P3u5/21P4D25/3u5.

Chain lengthN Pore diameterD P2 P3 P4

150 5 20.277 23.83 211.32
200 5 20.246 23.77 212.31
200 7 20.278 23.81 216.96
300 7 20.242 24.10 213.87
400 7 20.232 24.09 212.94
400 9 20.269 24.57 210.5
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or equivalently, G(u)/ND25/3>20.808(u/um)25/4

20.408(u/um)5/220.133D25/3(u/um)5, in which um is theu
value at the maximum of the distribution@according to Eq.
~21!, um50.4#.

D. Comparison to free, grafted chains

At high elongation, the distribution for a polymer in
pore is expected to coincide with that of a free polymer~see
Sec. II A!. Thus, simulations were done for a polymer cha
grafted on a flat surface, without lateral walls. The quan
ln(P(z))/N is plotted as a function ofu5z/N in Fig. 9, for
free chains of lengthN5150– 300. Each curve has been o
tained on a largeu interval by merging together the distribu
tions obtained with different positive values of the parame
K. Thus, only the part of the distribution on the right of th
maximum~i.e., the partz>zm! has been obtained here and
plotted in Fig. 9. All three curves collapse on a unique m
ter curve to a very good approximation. This result sho
that the terms with a positive power ofz/N @see Eq.~6!# are
predominent in the whole rangez>zm , leading to a practi-
cally universal behavior of the distributionP(z) in all this
interval of z values.

The quantityh(t) as defined in Eq.~22!, is plotted vst
5(z/N)5/2 in Fig. 10 for free chains of lengthN
5150– 300. In this case as well,h(t) tends to a linear be
havior at larget values, with a slopeA3 comparable to the
one obtained previously,A3>216.33. The curve for a chain
confined in a pore (N5200,D55) is shown for comparison
Both curves have a linear asymptotic behavior with the sa
slopeA3 . On the other hand, the point at which the curv
deviate from one another depends on the pore diameterD.

E. The number of contacts

The numbers of contactsmN,D(z) and mN,D(r i) were
obtained from 2D histograms giving the joint probability di
tributionsPN,D(m,z) or PN,D(m,r i), according to the proce

FIG. 9. The distributionG(u)5 ln(P(z)/P(zm))/N plotted as a function of the
reduced lengthu5z/N, for isolated, grafted chains of different lengthsN.
The curves are obtained by merging histograms with different~positive!
values ofK. Only the partz>zm is drawn. All curves collapse on a uniqu
master curve, which demonstrates the universal behavior of the distribu
P(z).
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dure described in Eqs.~17! and~19!. Largez andr i intervals
were sampled using series of biased simulations. The un
tainties in these curves is of the order one contact. The
erage numbers of contacts^mN,D& were determined follow-
ing Eq.~18!. The values obtained for^mN,D& and the average
number of contactsm̄N,D[mN,D(zm) corresponding to the
valuezm at the maximum of the distributionP(z) are sum-
marized in Table II. Both valueŝmN,D& andm̄N,D coincide
to an excellent approximation. In agreement with Eq.~13!,
the ratio^mN,D&/N ~which is the average number is contac
per monomer! is constant, within experimental uncertaintie
In particular, the number of contacts is independent of
pore diameter. Then, the quantity (mN,D(u)2^mN,D&)/
ND25/3 should be a universal function ofu5z/ND22/3. This
quantity is shown in Fig. 11 for different values ofN andD.
A universal curve is obtained at smallu and in a large inter-
val aroundu5um . This demonstrates the scaling behav
expressed in Eq.~13!. At large values ofu, mN,D(u) is ex-
pected to tend to zero contact and therefore to deviate f
the behavior in Eq.~13!. The curvesmN,D(u) were fitted to a
function of the formf (u)5P11P2u25/41P3u5/2, in the do-
mainz<zm . Very good fits are obtained in the whole rang
in which curves superpose. An example of fitting function
shown in Fig. 11. In contrast to free chains in good solve
no surface term needs to be introduced here, due to the

on

FIG. 10. The quantityh(t)5 ln(P(z)/P(zm))/Nt as a function of the variable
t5(z/N)5/2, for isolated, grafted chains of different lengthsN. The curves
superpose at larget, which is in agreement to Eq.~22! in the text. The curve
h(t) for a chain confined in a pore (N5200,D55) in shown for compari-
son.

TABLE II. The average numbers of contacts^mN,D& have been computed
according to Eq.~18!. m̄ is the number of contactsm(zm) corresponding to
the maximumzm of the distributionPN,D(z).

Chain lengthN Pore diameterD ^m&/N m̄/N

150 5 0.2736 0.2727
200 5 0.2714 0.2749
200 7 0.2612 0.2598
300 7 0.2572 0.2617
400 7 0.2637 0.2646
400 9 0.2435 0.2512
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ticular geometry of this problem, as mentioned in Sec. II
The influence of the surface is limited here to the extrem
of the chain and is negligible. Finally, the following scalin
form may be proposed:

mN,D~u!2^mN,D&
ND25/3 >21.310.54u25/423.6u5/2 ~24!

or equivalently (mN,D(u)2^mN,D&)/ND25/3>21.3
11.65(u/um)25/420.35(u/um)5/2.

Note that the coefficientP2 may be estimated theoret
cally. For a completely collapsed chain, the length iszmin

'N/D2, thusumin /um5D24/3, and the number of contacts pe
monomer is of the order 2, which, in the limitN→`, leads
to P2>220.2651.74 ~with ^mN,D&>0.26!. This is roughly
comparable to the value 1.65 above.

In Fig. 12, the quantity (mN,D(r i)2^mN,D&)/ND25/3 is
plotted as a function of the reduced gyration radiusr
5r i /ND25/3 for different values ofN and D. The scaling

FIG. 11. The reduced number of contacts (m2^m&)/ND25/3 as a function
of u5z/ND22/3, for different values ofN andD. The continuous curve is a
fit to Eq. ~13!, in the domainu<um . All curves collapse on a unique maste
curve foru<um .

FIG. 12. The reduced number of contacts (m2^m&)/ND25/3 as a function
of r5r i /ND22/3, for different values ofN andD. All curves collapse on a
unique master curve foru<um .
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y
behavior is the same as in Fig. 11. If both quantit
(mN,D(u)2^mN,D&)/ND25/3 and (mN,D(r)2^mN,D&)/
ND25/3 are plotted as a function of the reduced quantit
u/um and r/rm , respectively, both curves superpose qu
exactly.

V. FREE ENERGY OF THE CONFINED CHAIN

A SAW of N steps, confined in a pore, is characteriz
by its lengthz ~or r i! and the contact numberm. Each contact
is supposed to reduce the energy by an amountkBTx, where
x is the Flory interaction parameter. From the joint probab
ity distribution PN,D(z,m), which gives the number of con
figurations havingm contacts and a lengthz, one can com-
pute thez-partition functionZN,D(z,x). defined as

ZN,D~z,x!5(
m

PN,D~z,m!exm. ~25!

The thermal and geometrical properties of the chain m
be obtained fromZN,D(z,x). Then, from Eq.~25!, a numeri-
cal model expression may be derived for the free energy
the chain, defined asFN,D(z,x)52kBT ln ZN,D(z,x). The av-
erage lengthzm of the chain is then found by minimizing
FN,D(z,x) for each value ofx. An example is shown in Fig
13, in which the average reduced lengthum5zm /ND22/3 is
plotted as a function of the Flory parameterx, in the case
N5200, D55. The horizontal line at highx values~corre-
sponding to bad solvent cases! represents the minimum valu
of um , which would correspond to the completely collaps
~dense! chain.

An analytic expression forFN,D(z,x) may be derived at
small x values. IfZN,D(z,x) is written formally as

ZN,D~z,x!5 P̄N,D~z!exm̃N,D~z,x!, ~26!

then P̄N,D(z) andexm̃N,D(z,x) are defined, respectively, as

P̄N,D~z!5(
m

PN,D~z,m!, ~27!

FIG. 13. The average reduced lengthum5zm /ND22/3 as a function of the
Flory interaction parameterx, in the caseN5200 andD55. The horizontal
line represents the valueumin which would correspond to a completely co
lapsed chain.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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exm̃N,D~z,x!5
(mPN,D~z,m!exm

(mPN,D~z,m!
. ~28!

Note that only in the limitx→0 may the contact numbe
given by Eq.~19! be identified tom̃N,D(z,x) defined in Eq.
~28!. Thus, using Eqs.~23! and ~24!, one gets the following
model expression forFN,D(z,x) at smallx values, as a func-
tion of the reduced lengthu5z/ND22/3,

FN,D~z,x!

kBTND25/3>~0.25720.54x!u25/41~4.0313.6x!u5/2.

~29!

Terms independent ofu have been discarded, and on
leading power terms have been retained. The right-hand
in Eq. ~29! doesnot depend on the pore diameterD. Thus,
the thermal behavior of the chain~i.e., the temperature a
which the coil–globule transition occurs! is not affected by
the confinement in the pore. Indeed, the model expres
Eq. ~29! has a scaling structure similar to that of a free SA
in three dimensions.12 The main difference is the expone
25/4 in the first term of the right-hand side, which describ
the compact configurations of the chain.

VI. CONCLUSION

We have studied a polymer chain~a SAW! grafted at
one end on a surface and confined in a pore, in the reg
where the pore diameter is relatively small compared to
unperturbed size of the chain. The scaling of the radius
gyration along the tube as a function of both the chain len
and the pore diameter, shows that a one-dimensional reg
is established for a ratioRF /D as low as 1.5. We have mea
sured the probability distribution for the length of tube occ
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pied by the chain, on the one hand, and the number of c
tacts as a function of this length, on the other hand. Thus,
have been able to propose a numerical, model expressio
the free energy of the grafted, confined chain as a functio
the Flory interaction parameterx. Discarding numerical co-
efficients, this model expression has a scaling fo
FN,D(z,x)'kBTND25/3((122x)u25/41(11x)u5/2), in
which u5zD2/3/N is a reduced length of the chain. Thus, t
thermal behavior is not affected by confinement in th
model.

1M. Daoud and P. G. de Gennes, J. Phys.~France! 38, 85 ~1977!.
2P. G. de Gennes,Scaling Concepts in Polymer Physics~Cornell Univer-
sity Press, Ithaca, 1979!.

3F. Brochard and P. G. de Gennes, J. Phys.~France! 40, L-399 ~1979!.
4J. Lal, S. K. Sinha, and L. Auvray, J. Phys. II7, 1597~1997!.
5O. V. Borisov, T. M. Birshtein, and E. B. Zhulina, J. Phys. II1, 521
~1991!.

6E. B. Zhulina, O. V. Borisov, and T. M. Birshtein, J. Phys. II2, 63 ~1992!.
7O. V. Borisov, E. B. Zhulina, and T. M. Birshtein, Macromolecules27,
4795 ~1994!.

8A. Chakrabarti and R. Toral, Macromolecules23, 2016~1990!.
9Pik-Yin and K. Binder, J. Chem. Phys.95, 9288~1991!.

10D. Lhuillier, J. Phys.~France! 49, 705 ~1988!.
11J. M. Victor and D. Lhuillier, J. Chem. Phys.92, 1362~1990!.
12J. M. Victor, J. B. Imbert, and D. Lhuillier, J. Chem. Phys.100, 5372

~1994!.
13J. B. Imbert and J. M. Victor, Mol. Simul.16, 399 ~1996!.
14J. B. Imbert, A. Lesne, and J. M. Victor, Phys. Rev. E56, 5630~1997!.
15M. Bishop and C. J. Saltiel, J. Chem. Phys.95, 606 ~1991!.
16J. Reiter, T. Edling, and T. Pakula, J. Chem. Phys.93, 837 ~1990!.
17J. Reiter, Macromolecules23, 3811~1990!.
18M. T. Gurler, C. C. Crabb, D. M. Dahlin, and J. Kovac, Macromolecu

16, 398 ~1983!.
19A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett.61, 2635~1988!.
20J. B. Imbert, Ph.D. thesis, Universite´ Paris VI, 1995.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


