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Monte Carlo simulation of a grafted polymer chain confined in a tube
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We study a grafted polymer chain confined in a tube by Monte Carlo simulations of a self-avoiding
walk on a cubic lattice. We measure the probability distribution of the one-dimensional gyration
radiusr and of the length of tube occupied by the chain. We use a biased Monte Carlo algorithm

in order to sample a large interval gfor z. A simple scaling law is proposed for the length of tube
zoccupied by the chain, in the regime where the chain behaves as a linear, one-dimensional packing
of units submitted to excluded-volunielobs. A simple scaling law is also proposed for the number

of contacts as a function af A model expression for the free energy of the confined chain is then
deduced. It has a scaling structure similar to that of a free self-avoiding walk, with a different
exponent ofz in the smallz regime. © 2000 American Institute of Physics.

[S0021-960600)50202-5

I. INTRODUCTION good solvent, i.e. described locally by the self-avoiding walk
(SAW) statistics.R, must have the scaling forfn,

The problem of squeezing a polymer chain of lenbth

monomers in a tube of diametBris important for a number Ri=Re®(R:/D). @

of reasons. Models to describe such a confined polymeg_ is the Flory gyration radius of a real chain in good sol-
chain, based on scaling arguments, have been developgdnt which scales &R~aN’, with »=3/5 in 3 dimensions
long ago, for polymers in solutidif or in melts? Also, the  gnda is the monomer length.
structure of a semidilute solution confined in a porous me-  gjnce there is no confinement in a thick tube. the func-
dium has been observed recently by small angle neutrofon ¢ has to meet the requiremedt— 1 when the ratio
scattering’ _ _ _ =Rp/D—0. In the strong confinement limik—c (thin

We consider here a closely related, but slightly d|fferent,tube, a scaling lawd (x)~x™ is assumedm is determined
problem. A self-avoiding chain is confined in a pore, andpy the condition thaR, be a linear function oN for strong
there is a perpendicular wall at some point in the pore, oRxonfinement, because the problem is then one-dimensional.

which the chain is grafted at one efig. 1). We consider For a<D <R, this leads to the following scaling:
this problem for two reasons. First, it may be related itself to
some interesting physical situation or applicat{@adhesion,

friction, permeation of an actual isolated polymer through a
pore or through a membranerhen, we intend to extend it s o
and use some of the results obtained here as a basis to un- AS S00n asb<aN"® the chain is extended along the
derstand the structure of grafted polymer brushes, their cof!P€:R>Re . The concentration inside the chain is indepen-

lapse in poor solvent or their stretched regitas it is pre- €Nt ofN,

a 2/3

RH%aN D

@

dicted for instance in grafted polyelectrolyte brushies. N 2\ 43
The aim of the present work is to study the coil-globule c~ 52?~a‘3 5 3)
I

transition for a neutral chain confined in a pore. The exten-
sion of the geometrical coil—-globule transition of a free, iso- The above considerations may be interpreted in terms of
lated chain to a confined chain is not straightforward, sincex “blob” picture. In a semidilute solution in good solvent, a
the geometry(and dimensionality of the problem is quite blob is a region of space occupied by a portion of a single
different. In particular, there are two geometrical control pa-chain. Inside each blob, excluded volume interactions be-
rameters, the pore diametBrand the chain lengtN. Basic  tween monomers areot screened, and the corresponding
physical quantities relevant in this problem are the length oportion of chain obeys the Flory statistics. Thus, the number
tube R, occupied by the chain, and the energy required taof monomers per bloly is given byag®®=D. Equation(2)
confine the grafted chain in it. We consider here a chain ins then obtained by packing a sequencéd blobs linearly
along the tube.

dAuthor to whom correspondence should be addressed; electronic mail: Fina”_y’ the_ elastic free energy of the chain confined in
sotta@Ips.u-psud.fr the pore is estimated as
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D the distribution for the gyration radiusof a linear polymer
<4+—> was established to b@nly r-dependent terms are retained
in d dimensions?
z ! InP N Na’ (] ' 5
nP(r)~ -3 Nal |’ ©)

where a=1/(vd—1)=5/4 andé=1/(1—v)=5/2 (we shall
consider the casd=3 in all what followg. Equation(5)
expresses the probabiliti?(r) to obtain an instantaneous
valuer for the gyration radius of the polym¢éP(r) is pro-
portional to the number of configurations giving a gyration
radiusr]. It was established on the basis of scaling consider-
ations, within a phenomenological approach, and tested nu-
merically for chains generated on a square lattfcé?®®
Then, for a chain squeezed in a tube of diamdderthe
characteristic length to be considered is the one-dimensional
gyration radius(measured along the tupbe,. Equation(5)
become¥

- /e

FIG. 1. Schematics of the grafted linear chain confined in a pore, simulated
on a cubic lattice.
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The second term on the right-hand side describes the
stretched regime. It corresponds to valuesasuch that the
chain is more stretched than due to the confinement in the
et (4 pore. Thus, the statistics becomes independent of the pore
D diameter in this regime. The first term describes the col-

This corresponds to attributing a free enefgyT per lapsed regime, in which the number of configurations is a
. . . . 2
blob. Equation(4) is the same as for a free chain in the limit function of the concentration inside the tulee=N/r,D

a 5/3

Feonr=KgTN

of large elongation. only. Equation(6) may be rewritten in the scaling form,
Scaling predictions, Eq€2) and (3), have been estab- -5/3
lished on a firm basis in grafted polymers and brugitas/e InP(r,)~—N 3 [x 54+ x52], (7)

investigate here the statistics of the lengtin gyration ra-

dius) ry occupied in a tube by a linear self-avoiding chainx=r /r,, is the (one-dimensionalreduced gyration radius,

squeezed in it. The equilibrium quanti® mentioned above with r =Na(D/a) %3 the equilibrium elongation of the

is simply the thermal average of this length. Our approactehain, obtained as the value corresponding to the maxi-

relies on a geometricdl'blob” ) model describing the struc- mum of the distributiorP(r,). Note that the exponent2/3

ture of the chain, substantiated both with previously obtainegs not trivial. It is directly related to the Flory exponent .

distributions of the radius of gyration of a SAW;**and |t reflects the fact that there is an excluded volutftory)

Monte Carlo simulations. behavior at small spatial scales and a screened behavior at
The paper is organized as follows. In Sec. II, we presentarger scales, with a crossover in between the two regimes.

a model for the distribution of the lengthoccupied by a The crossover occurs at a certain correlation length, and the
chain confined in a tube. This is a straightforward extensiom|ob concept is based on this correlation length.

of the previously obtained distribution for the gyration radius  The linear relatiorr ,~N may not hold in the interme-

of a SAW. We conjecture also an expression for the numbegiate regime in whichr, is comparable tdD. In this case,

of contacts, i.e., the energy, in such a chain. Technicalities ofyhich corresponds to weak confinement, the number of

the Monte Carlo simulations are presented in Sec. Ill. Replobs is essentially equal to one.

sults are presented in Sec. IV. Numerical, scaling expres- The power law at large, values is the same for a free

sions are proposed for the number of configurations and thgnd confined polymdiEgs.(5) and(6)]. This corresponds to

number of contacts as a function of the lengtiiFrrom these g linearly stretched polymer. In this regime, the polymer may

expressions, an expression for the free energy may be dge described as a linear packing of blobs of sizevith g

duced, as it is presented in Sec. V. =(¢&/a)Y” monomers per blob, leading to the following re-
lation between the sizg, of the polymer and its lateral di-
mensioné, r,=Na' ¢~ By comparing the lateral sizé&

1. MODEL to the pore diameteD, one finds the crossover to the

r,-regime in which the polymer becomes insensitive to the

pore confinement. This condition is=Na(D/a)~?*=r,,.

The approach in terms of a distribution for the gyration Thus, the same behavior as that of a free polymer would be
radius of a polymer chain has been initiated long ago. Firstexpected in the whole domam=r .

A. Scaling form for the gyration radius distribution
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Note finally that, for a linearly stretched polymer, which C. The number of contacts in a polymer chain
is a one-dimensional system, it is equivalent to consider theonfined in a pore
one-dimensional gyration radiug or the (linearly) averaged

'c | The number of contacts in a SAW with a gyration radius
lengthz Both quantities are expected to be proportional.

r obeys the scaling law,

a

my(r)~aN1+ _Nﬁ' (12)

B. Logarithmic corrections rd
As a consequence of its unidimensional confinement, thgvith a=(vd—1)"1=5/4 ands=(1— ) '=5/2. Equation

chain behaves as a succession of statistically independept may be written equivalently m. (r)—aN

subunits(“blobs™ ), whose size is fixed.by thg pore diameter. ~ (R /r)¥(8-D 1RV with Re=aN?. V’\\Ilithin the

we Iook'for the total number of .cqnﬁguranovﬂsNVD(r) of blob picture described above, the average number of contacts

anN-chain which has a characteristic lengjtalong the tube within a blob of sizeg is

(this length being measured either by the one-dimensional

gyration radiug or by the average length). The chain is a g |Mod-1 p)Ui-»

succession oB=N/g statistically independent blob®ote my(D)~ag 1+<F) —(—) . (12
that B depends orz). Then, 9
QN‘D(r”):[Qg(D)]N/Q:[,u,ggy_lpg(D)]N/g Note that this is théotal number of contacts in the blob,

not the average number of contgetr monomerThe num-
ber of blobs per chain isl/g, andg~ND/z. Thus, from Eq.
(8) (12), the total number of contacts in the chain is finally, for
d=3 andv=3/5,

= Ng(7~LN/gg~N[(ga®/D*)*+(D/ga)’]

The occupied length, is ry=DB=DN/g. This gives

the complete form of Eq6), Mp n(Fy) ~N[1+D =53 54— p 53572 (13
3\ « 6
q_ bt | Na N in which x is the (one-dimensionalreduced gyration radius,
INQyp(r)~(1-7y) =In N 7 : .
‘ D ND r,D Na as in Egs(7) and(10). The second term corresponds to the
€) compact side and the third one to the stretched side. Contacts
which may be rewritten, between different blobs have been ne_glected. It was shown in
Ref. 12 that a surface term has to be introduced in(E8).to
InQp p(ry)=~InPyp(ry) reproduce simulated results, for a frésolated SAW. The
_5/3 situation here is different, even though the surface-to-volume
~—N|— {(7_ 1)xInx ratio of the confined polymer is higher than for a free poly-
a mer, since both the volume and surface are linear in the chain

lengthN. Thus, the effect of the surface is simply to multiply
, (100  the number of contacts by a constant amdimdependent of

5 D
-3 1)xIn—+ x5+ x5/
a X), of the order +1/D.

with x=(r,/r,)=(r,/Na)(D/a)?® as before. Hence, loga-

rithmic corrections to Eq(7) appear in Eq(10). For a given

value of the pore diameterD, the scaling form  TECHNICALITIES OF THE SIMULATIONS

In Py p(r,)/ND %= f(x) is retained. In three dimensions, the

universal exponeny—1=1/62 The termsx~ %4 andx®? are Three-dimensional self-avoiding walks of lendthsites
only the first, dominant terms of a series expansion, and thare generated on a square lattice, using a Monte Carlo
right-hand side of Eq(10) should also contain power-law method. The chain is both grafted and confined in a ffeee
terms of higher order. These will be discussed later. The=ig. 1). The pore has a square section of surface &ea
chain here is supposed to be uniformly stretched =D?2. The grafting surface and the pore are defined by un-
squeezey i.e., the density is the same in all the blobs. Thispenetrable walls. Unit moves used to generate chain configu-
means that a saddle point approximation is done; for a givemations are free extremity rotationd, -inversions and
total elongatiornr, the chain is supposed to acquire a con-kink-shifts®1” There is no bending energy. Different chain
formation with the same average density in each blob. Thudengths (N=150-400) and different pore sizeB£5-9)
configurations with nonequivalent blobs are supposed tovere investigated. In each simulation, typically 4@
have a negligible statistical weight. This argument is nox 10’ MC steps were performe@ne MC step is a cycle of
longer relevant in the stretched regirti@rgez or r| values, N attempted elementary movesThe system was equili-
in which different blobs areot independent. However, in brated during a typical timer=0.25N?> MC steps before
this regime, the statistics is independent of the blob diametestarting the measuremerit¥® The free, grafted chain of
and scaling terms of the form,;/N%? (and higher order length N=150—300 was placed in a box of lateral dimen-
terms are retained only. A first part of this work shall consist sions 2/N with periodic boundary conditions on the lateral
in testing the scaling prediction Eq7) and examining walls.

whether logarithmic corrections may be measured. Two quantities were measured:
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1»6j L j z should theoretically range fromy,~Na(D/a) 2 t0 Zpax
14

——N=150 D=5 ] ~Na. In practice, the simulated values range in a much nar-
——N=200D=5

124

rower interval aroundy, from zy/2 to 2z, typically. In order
to get a large number of configurations in a wide interval of
the parameter (or equivalently,r;), we biased the Monte
Carlo algorithm with an effective Boltzmann factor of the
form e, whereK is an adjustable statistical weight. As a
result, for eachK value, a partial histogran®y p (z,m)
= P,\,,D(z,m)eKZ is obtained, wheréy p(z,m) is the unbi-
ased distribution, sampled inzinterval which depends it-
self onK. The major advantage of the technique is that the
statistical weightPy p(z,m) in this K-dependent-interval
would be impossible to measure in a unbiased simulation.
u=z/ND23 The enlarged distributioRy 5(z,m) is obtained by merging
FIG. 2. The reduced densigD** as a function of the reduced distance to together the hIStOQ!’anBNvaK(Z’m) obtained with different
the grafting surfac&/ND 2% (hereZ denotes the distance to the surface  Va@lues ofK, according to a well documented procedE?fé?
Simulations with positivéresp. negativevalues ofK sample
large (resp. sma)l values ofz andr,. Note that the number
) ) ) ) _of contactamy p (z) [or my p k(r,)] obtained with a statis-
1) The_ one-ghmensmnal gyration radius along the pore diyjcg) weightK does not depéﬁd ok [see Eq(18)], only the
rection, given by zinterval (or r-interva) does. Thus, in a series of simula-

cD33

104
0.8—3
06-
0.45

0.2

0.0 3

0.0 0.5 1.0 1.5

1 XN ) w2 tions with different statistical weights, the whole function
n= W;J; (z—2) (14) my.p(ry) is computed directly as
(2) The average length of the chain above the grafting sur- ZPno k(T My p k(7))
face, given by My, ()= SProrl) : (19

1 N In practice, 8—16 differerk values, ranging from-4 to
z= N;l z. (19 +4 typically, were used in each simulation. Note that an-
other advantage of this procedure is that simulations with

The distributionsPy p(r;) and Py p(z) were accumu- differentK values may be run in parallel.

lated during the simulations. Typically,and z were mea-

sured 16-4x 10° times. The average concentration profile IV. RESULTS

d(Z) along the pore _direction was meas_ured additionally, Scaling law for the gyration radius

(here Z denotes the distance to the grafting surjacehe

concentration profiles for different values bf and D are ry is the one-dimensional gyration radius as defined in

shown in Fig. 2. The concentration is uniform over quite aEd. (14). The reduced gyration radius is defined herepas

largeZ interval, as expectetsee Sec. )l Also, in Fig. 2, the =1 /ND~?®(r, is the most probablg, value, i.e., the value

profiles are normalized to show the scaling behavior of theat the maximum of the distributionNeglecting the influence

concentration, according to E¢B). of the logarithmic term in Eq(10), one expects the quantity
In a second series of simulations, two-dimensional jointG(p)/ND~>*=In(P(r)/P(r,))/ND"** to be a universal

distributions Py p(r,,m) and Py p(z,m) were measured; function of the reduced gyration radius. In Fig. 3 the curves

Py.o(zm) [or similarly Py, 5(z,m)] give the number of con-  G(p)/ND~>* are plotted as a function o, for different

figurations with a given lengt (or r;) anda given number values ofN and D. Within experimental uncertainties, all

of contactsm. The distributionPy, (2) [or Py p(r,)]is re-  curves collapse on a unique master curve. This result dem-

covered as onstrates the validity of the scaling law in EJ), i.e., the
universal behavior of the distributioR(r;). Note that no
_ statistical weighting was applied here, so that only a small
P =2, P ,m). 16 . .
n.o(2) % n.o(2:m) (16) interval is sampled.

Figure 4 shows the radius of gyratiop, corresponding

The number of contacts as a functionzfor r) is given 4 the” maximum of the distributio®(r,), i.e., the most

by probabler  value. The quantity ,D?? is plotted as a func-
S MPy p(z,m) tion of N, for different values oN andD. The scaling law,
Myp(2) = ——=—"—. a7 Eq. (2), is verified. A linear fit of the data in Fig. 3 gives
' ZmPn,p(z,m) o3
The averagenumber of contact§my p) is determined fm=bND 20
by with a prefactorb=0.22+0.005, which, compared to Eq.
(2), would correspond to an effective monomer sizeb®®
(M o) = 2,My,p(2)Py,p(2) 18 =0.40314. This value may be compared to that obtained for
N.D S,Pnp(2) free, isolated SAW in 2D simulationsbE& 0.348+0.002)
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FIG. 3. The distributiorG(p) = In(P(r,)/P(r))/ND~>" plotted as a function FIG. 5. The d'St”bUt'OFG(U)f[rlz(lelf’(z)/P(z_nQ)/ND plotted as a function

of the reduced gyration radiys=r,/ND~ 23, for different values oN and of the reduced lengtli=2/ND""", for different values ofN and D. All

D. All curves collapse on a uniq"ue mastér curve. which demonstrates th&Urves collapse on a unique master curve, which demonstrates the universal
universal behavior of the distributioR(r ). behavior of the distributio(2).

(Ref. 11 or in 3D simulations using a pivot algorithfh
(there, however, the gyration radius as a functiorNofvas
not measured explicitly In Ref. 20, the valuea=0.396 was
measured in a 3D SAW. Thus, our value agrees within 2%
accuracy to that latter one. This value leads to an unper-
turbed gyration radiuR:=8 (for N=150) to Rr=14.6 (for

N=400), which is typically 1.5 time larger than the largest , i
pore diameteD studied here, for each value b The prefactob’=0.4+0.01, which would correspond to an

effective monomer siza=b'%°=0.577.
Thus, it has been shown that the distributions for both
quantitiesr; and z have the same universal behavior, de-
In the same way as above, the distributiét@) for the  scribed by Eq. (7). This reflects essentially the one-
average lengtla [defined in Eq(15)] were measured. In Fig. dimensional behavior of the confined chain, in the liRj
5, the quantityG(u)/N D 5B3= In(P(z)/P(zm))/ND‘5’3 is plot- >D, i.e., the fact that the chain is essentially a collection of
ted as a function of the reduced lengikz/ND~23, for statistically independent blobs for all densities, i.e., through-
different values oN andD. All curves collapse on a unique out the distribution. This behavior is evidenced as well by
master curve, which demonstrates that the scaling law in E¢he scaling of the density, as it was shown in Fig. 2. It is
(7) is verified by the distributiorP(z) as well. On the other important to notice that the one-dimensional character of the
hand, it suggests that the influence of the logarithmic term ighain statistics is established for values of the r&idD as

rather weak. The average length, corresponding to the
maximum of the distributior?(z) was measured for the dif-
erent values oN andD. We find

z,=b'ND~ 23 (21)

B. Scaling law for the average length of the chain

low as 1.5.
However, it is clear that only very limited rangesrgfor
100 T T z are sampled in Figs. 3 and 5. The rangeuoWhich is
90 4 sampled in Fig. 5 is typically 08u=<0.55. For example, for
80 4 ] D=5, the theoretically accessiblevalues range fronu,,
0] ] =D"*32=0.0585 t0 U,,=D?3/2=1.462. It is therefore
] necessary to biase the simulations to explore a significant
o 607 ] part of the configurational space.
Q= 50 1 7 In the following, we apply a statistical weigkgffective
T _ Boltzmann factorof the form exfi? (see Sec. Illand we use
30 N the distributionPy p(z) to characterize the statistical prop-
] ] erties of the chain. In Fig. 6, the curv&(u)/ND5? are
- . plotted as a function ofi, for different values ofN andD.
101 7 Here, each curve has been obtained on a enlaugeterval
L e A by merging together the distributions obtained with different

T
0 50 100 150 200 250 300 350 400 values of the parametét. All curves collapse on a unique

N master curve to a very good approximation. This result dem-
FIG. 4. The quantity ,D?* plotted as a function o, for different values onstrates the L_mlversal beh_aV|or_ of t_he dlstrlbUtmD(z)
of N andD. r, is the gyration radius corresponding to the maximum of the [Eq (7)] The interval obtained in Flg. 6 is 0.xu<1.3,
distribution P(r,). which is very close to the theoretical interval.
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o
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S ] = 1
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= | | ]
-10 « L=200D=7 - .
8 s L=300D=7 1
1 4 L=400 D=7 T
1 > L=200D=5 1 3
o L=150D=5 ]
-15—_ + L=400 D=9
S —————————S———————. _ A
0.0 05 1.0 15 u=2ND
u=z7/ND23 FIG. 8. The curveG(u) obtained folN=400 andD =7 (same as in Fig.)6

The continuous curve is a fit to an equation of the fogtu)=P,
FIG. 6. CurvesG(u) obtained for different values dff andD (same as in = + p,u~54+ P,u%2+ P,u® [see Eq.(23) in Sec. IV d. An excellent fit is

Fig. 5. Here the curvess(u) have been obtained by merging together obtained in the whole range of obtainadralues.
histograms obtained with statistical weights of the foeff. Thus the
curves span a much largetinterval than in Fig. 5.

cide at larget values. It is clear from Fig. 7 thdi(t)/t tends
C. Fit of the distribution Py p(2) to a linear behavior at large(large z) with a roughly con-

In the stretched regime, finite size effects may come intgt@nt limiting: slope, which gives\;=—17.73=1.4. This
play. The term corresponding to the largeegime in Eq(7) shows that an additional power term has to be introduced to

is the first term of a series expansion in termszéRa, fit the_ distribution Py p(2z) at Iargezsvalues, and that this
which writes InP(2)~N[(zNa)*?+ (z/Na)°+---]. In terms term is of the expected fori(z/Na)”.

of the new variablé=(z/N)%?, this gives the following ex- _ 1he curvesG(u)= In(P(z)/P(z,lgs)/4were 1;i/t2ted to 2 func-
pansion: tion of the formg(u)=P;+P,u™ "+ Psu>“+P,u>. The
fitting was done for different values & and D, using the
~ InPyp(2) 5 enlarged distribution®y, p(z) obtained in series of biased
h(t)= N =Nsmail 1) T Aot Aqt” (22) simulations. An example of the obtained fit is shown in Fig.

8. The results of the fits are summarized in Table |. For each
of the curves, the agreement between theory and simulation
is excellent. It is not possible to isolate and estimate loga-
rithmic corrections in a satisfactory way. Indeed, both the
fact that the fit is excellent for each curve and that curves
obey the scaling behavidEq. (7)] to a very good approxi-
mation, indicates that logarithmic terms are only very small

5 . _ o corrections to the scaling behavior and can be neglected here.

hsma(t) describes the behavior at smallvalues (i.e., at
small z valueg and verifieshg,,(t)—0 whent is large. A
higher order tern\; has been introduced. In Fig. 7 the quan-
tity h(t)/t is plotted as a function of The different histo-
grams have been normalized so that all curliéy/t coin-

. . In contrast, the higher order tera? cannot be ignored.
1 1 From the values in Table |, we may finally propose the
1 1 following approximate form:
o ] G(u)/ND~%2=—0.251 5~ 4.02u°?- 13D ~*3y?®,
= o] : @3
E ] 4
& ]
E |
- 1 TABLE I. The reduced histogramésee Figs. 6 and )8G(u)/ND°?
] 1 =In(P(u)/P(u,))/ND~>? as a function ofi=2z/ND~?? were fitted to a func-
i ] tion of the formg(u) =P+ P,u™%*+ P5u®?+ P,D %35,
-5 n Chain lengthN  Pore diameteD P, P, P,
0.00 : 150 5 -0.277 -3.83 -11.32
t= (Z/N)5/2 200 5 —0.246 —-3.77 —-12.31
200 7 —0.278 —-3.81 —16.96
FIG. 7. The quantith(t)/t=In(P(2)/P(z,))/Nt as a function of the variable 300 7 —0.242 —-4.10 —13.87
t=(z/N)%? for different values ofN and D. The curves tend to a linear 400 7 -0.232 -4.09 -12.94
behavior at large, with the same slope for all curves, which is in agreement 400 9 -0.269 —4.57 —10.5

with Eqg. (22) in the text.
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FIG. 9. The distributiorG(u) = In(P(2)/P(z.))/N plotted as a function of the

reduced lengthu=z/N, for isolated, grafted chains of different lengtNs FIG. 10. The quantity(t) =In(P(2/P(z,))/Nt as a function of the variable
The curves are obtained by merging histograms with diffe(positive t=(z/N)>? for isolated, grafted chains of different lengtNs The curves
values ofK. Only the parz=z,, is drawn. All curves collapse on a unique superpose at largewhich is in agreement to E¢R2) in the text. The curve
master curve, which demonstrates the universal behavior of the distributiofi(t) for a chain confined in a poré\(=200,D=5) in shown for compari-
P(z). son.

or equivalently,  G(u)/ND %*=-0.808@/u,) >*  dure described in Eq$17) and(19). Largez andr intervals
—0.408(/uy) *?—0.13D 3(u/uy,)®, in whichu,, is theu  were sampled using series of biased simulations. The uncer-
value at the maximum of the distributidaccording to Eq. tainties in these curves is of the order one contact. The av-

(21), u,=0.4]. erage numbers of contactmy p) were determined follow-
ing Eq.(18). The values obtained f¢gmy p) and the average
D. Comparison to free, grafted chains number of contactsny p=my p(z,) corresponding to the

value z,, at the maximum of the distributioR(z) are sum-
marized in Table Il. Both valuegmy p) andmy p coincide

to an excellent approximation. In agreement with EL3),

the ratio(my p)/N (which is the average number is contacts
typer monomeris constant, within experimental uncertainties.
In particular, the number of contacts is independent of the

At high elongation, the distribution for a polymer in a
pore is expected to coincide with that of a free polyrtsze
Sec. Il A). Thus, simulations were done for a polymer chain
grafted on a flat surface, without lateral walls. The quanti
In(P(2))/N is plotted as a function ofi=z/N in Fig. 9, for
frge chains of Iength=150—300. Each curve has bgen ob- pore diameter. Then, the quantitymo(u)—(my o))/
tained on a large interval by merging together the distribu- \ 553 s 14 be a universal function af=2z/ND~ 22 This
tions obtained with different po_s,ltlye yalues of the_ par":“materquantity is shown in Fig. 11 for different values NfandD.

K, T_hus, oply the part of the distribution on the right of the A universal curve is obtained at smalland in a large inter-
maX|ml,!m(|._e., the pare=zy,) has been obtained hgre and is val aroundu=u,,. This demonstrates the scaling behavior
plotted in Fig. 9. All three curves .colla'\pse on a unique mas'expressed in Eq13). At large values of, my p(u) is ex-

ter curve to a very good_ _apprOX|mat|on. This result show ected to tend to zero contact and therefore to deviate from
that the_terms_ with a positive power piN [s_ee Eq(6)] a'® " the behavior in Eq(13). The curvesny p(u) were fitted to a
predominent in the whole range=z,,, leading to a practi- '

; _ —5/4 512 _
cally universal behavior of the distributioR(z) in all this  TUnction of the formf (u) =P+ Pou™ "+ Psu™, in the do
. mainz=<z,. Very good fits are obtained in the whole range,
interval of z values.

The quantityh(t) as defined in Eq22), is plotted vst in whlch curves superpose. An example.of f!tt|ng function is
B 52 . . shown in Fig. 11. In contrast to free chains in good solvent,
=(2IN) in Fig. 10 for free chains of lengthN no surface term needs to be introduced here, due to the par-
=150-300. In this case as weli(t) tends to a linear be- ' P

havior at larget values, with a slopé; comparable to the
one obtained previousl¥i;= —16.33. The curve for a chain TABLE II. The average numbers of contadisy p) have been computed
confined in a poreN=200,D =5) is shown for comparison. according to Eq(18). m is the number of contacts(z,,) corresponding to
Both curves have a linear asymptotic behavior with the sam#?e maximumz, of the distributionPy p(2).

slopeAs. On the other hand, the point at which the curves  cp,in jengthn Pore diameteb (myIN TN
deviate from one another depends on the pore dianieter

150 5 0.2736 0.2727

200 5 0.2714 0.2749

E. The number of contacts 200 7 0.2612 0.2598
The numbers of contactsi p(z) and my p(r,) were igg ; 8'223 g'ggig
obtained from 2D histograms giving the joint probability dis- 400 9 02435 02512

tributionsPy p(m,z) or Py p(m,r), according to the proce-
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FIG. 11. The reduced number of contacts—(m))/ND~>? as a function
of u=z/ND ™23, for different values oN andD. The continuous curve is a

fit to Eq. (13), in the domairu<u,,. All curves collapse on a unique maste
curve foru<uy,.
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FIG. 13. The average reduced length=z,,/ND~?? as a function of the
Flory interaction parametey, in the caséN =200 andD =5. The horizontal

line represents the valug,,;, which would correspond to a completely col-
lapsed chain.

r

ticular geometry of this problem, as mentioned in Sec. Il Cbehavior is the same as in Fig. 11. If both quantities

The influence of the surface is limited here to the extremity(my p(u)—(my p))/ND~ >3

and [y p(p)—(Myp))/

of the chain and is negligible. Finally, the following scaling ND~°? are plotted as a function of the reduced quantities

form may be proposed:

My,p(U) —(Myp)
ND*5/3 ="

1.3+0.54u %4—3.6u52 (24)

or  equivalently (g p(u)—(myp))/ND *P=-13
+1.65U/uy) ~¥4—0.35U/uy,) 2

Note that the coefficienP, may be estimated theoreti-
cally. For a completely collapsed chain, the lengtlzjs,

u/u,, and p/p.,, respectively, both curves superpose quite
exactly.

V. FREE ENERGY OF THE CONFINED CHAIN

A SAW of N steps, confined in a pore, is characterized
by its lengthz (or r;) and the contact numben. Each contact
is supposed to reduce the energy by an am&ghjy, where

~N/D?, thusup,/un=D~*?, and the number of contacts per , is the Flory interaction parameter. From the joint probabil-

monomer is of the order 2, which, in the limit—«, leads
to P,=2-0.26=1.74 (with (my p)=0.26). This is roughly
comparable to the value 1.65 above.

In Fig. 12, the quantity iy p(r,) —(my p))/ND %2 is
plotted as a function of the reduced gyration radjus
=r,/ND 3 for different values ofN and D. The scaling

(r - <mN>)/N

(m,

T frerrr prrrerTTT T anae prerTTT T e e
00 01 02 03 04 05 06 07 08 09

p = 1/N D-5/3

FIG. 12. The reduced number of contacts—(m))/ND~5? as a function
of p=r,/ND~2%, for different values oN andD. All curves collapse on a
unique master curve far<uy,.

ity distribution Py p(z,m), which gives the number of con-
figurations havingnm contacts and a length one can com-
pute thez-partition functionZy p(z,x). defined as

Znp(zX) =2 Pyp(zme™ (25)

The thermal and geometrical properties of the chain may
be obtained fronZy p(z,x). Then, from Eq(25), a numeri-
cal model expression may be derived for the free energy of
the chain, defined &5y p(z,x) = —kgT InZyp(zx). The av-
erage lengthz,, of the chain is then found by minimizing
Fn,p(z, x) for each value ofy. An example is shown in Fig.
13, in which the average reduced length=z,,/ND~?? is
plotted as a function of the Flory parameterin the case
N=200,D=5. The horizontal line at higly values(corre-
sponding to bad solvent cagespresents the minimum value
of u,,, which would correspond to the completely collapsed
(densé chain.

An analytic expression fof p(z,x) may be derived at
small x values. IfZy p(z,x) is written formally as

Zn p(2,x) =Py p(2) Mo ®X), (26)

then Py p(z) andeX™.0(2X) are defined, respectively, as

EN,D(Z)=§m: PN,D(va)v (27)
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S mPn.p(z,m)ex™ pied by the chain, on the one hand, and the number of con-
’ (28)  tacts as a function of this length, on the other hand. Thus, we
have been able to propose a numerical, model expression for
Note that only in the limity—0 may the contact number the free energy of the grafted, confined chain as a function of
given by Eq.(19) be identified tofy p(z,x) defined in Eq.  the Flory interaction parametgr Discarding numerical co-
(28). Thus, using Eqs(23) and(24), one gets the following efficients, this model expression has a scaling form

eXMn,p(ZX) =

EmPN,D(Zym)

model expression fdfy p(z,x) at smally values, as afunc-  F ;(z,x)~kgTND ¥3((1—2y)u¥*+(1+x)u®?, in

tion of the reduced length=2/ND~ %", whichu=zD?3N is a reduced length of the chain. Thus, the
Frno(Zx) e " thermal behavior is not affected by confinement in this
I(B_I_TQE(O257_054)()U +(403+ 36)()U . model.

(29
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