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This paper introduces an extension of recurrence analysis to symbolic sequences. Heuristic argu-
ments based on Shannon–McMillan–Breiman theorem suggest several relations between the sta-
tistical features of “symbolic” recurrence plots and the entropy per unit time of the dynamics;
their practical efficiency for experimental sequences of finite length is checked numerically on
two paradigmatic models, namely discretized logistic map trajectories and Markov chains, and
also on experimental behavioral sequences. Specific advantages of RP analysis are presented,
among which is the detection of nonstationary features.
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1. Introduction

Recurrence plots (RPs) have been introduced by
Eckmann et al. [1987] for continuous-valued time
series to visually represent and investigate a key
feature of their underlying nonlinear dynamics, that
is, recurrence; they are now an acknowledged tool
for nonlinear time series analysis [Marwan et al.,
2007]. On the other hand, in several contexts, the
relevant time series under consideration are sym-
bolic sequences originating either from a dynam-
ical system with intrinsically discrete states or
from a proper encoding that turns the original

continuous-valued trajectories into discrete ones
[Badii & Politi, 1999; Daw et al., 2003].

We here propose to extend RPs to symbolic
analysis. Application of RPs in a symbolic con-
text has already been developed for analyzing the
recurrence of order patterns, namely the symbolic
encoding of a continuous-valued trajectory (xt)t≥0

according to the ordering of a few successive terms,
e.g. (xt, xt+1, xt+2); this approach is very efficient
for quantifying dynamic features of bivariate time
series (especially when the two components of the
bivariate series take their values in different spaces
and are not directly comparable) [Bandt et al.,
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2008; Groth, 2005]. We shall here consider more
general symbolic sequences. The methodology that
we develop here is in particular motivated by behav-
ioral studies, where encoding the observed behav-
ior (e.g. video-recorded behavior) into a symbolic
sequence is an acknowledged approach allowing to
prune irrelevant information and to alleviate the
impact of individual variability [Faure et al., 2003;
Maubourguet et al., 2008]. Symbolic sequences are
also currently used in case of short time series,
where turning to a symbolic sequence by a suit-
able partition of the phase space is a first means
to weaken finite-size effects and extract statistically
meaningful features [Lesne et al., 2009]. In such
symbolic frameworks, the system state is described
in a coarser way and so is the notion of recurrence;
in counterpart, a recurrence appears now to be a
clear-cut event, namely the identity of two sequence
stretches (“words”) hence involving no arbitrary
closeness threshold while introducing additional
symmetry properties. We show several fruitful out-
comes allowed by this approach, e.g. investigation
of the recurrence of patterns (“words”) through
higher-order RPs, dissection of the contribution of
each specific pattern through analysis of partial
RPs, estimation of the entropy per unit time of
a stationary source, and analysis of nonstationary
dynamics.

The ensuing “symbolic” RPs are closely related
to word statistics and as such, their interpretation
could be based on information-theoretic results. In
particular, we derive an entropy estimator related
to the cumulative length distribution of diagonal
lines, appearing as the discrete analogue of the
acknowledged entropy estimation method from RPs
in a continuous phase space [Faure & Korn, 1998;
Marwan et al., 2007] and possibly circumventing the
statistical stationarity required in standard sym-
bolic methods of entropy estimation [Lesne et al.,
2009; Letellier, 2006] (Sec. 2). Nevertheless, these
analytical results rely on limit theorems valid for
infinite-length sequences and words, hence their
applicability for practical purposes is questionable.
Accordingly, we have implemented numerical sim-
ulations in order to appreciate finite-size effects
and check the accuracy and practical efficiency of
the proposed entropy estimation procedure. We
thus investigated two paradigmatic models, logistic
map trajectories possibly spoiled by experimental
noise or affected with a slow drift in the dynam-
ical parameter and Markov chains with tunable
characteristic times (Sec. 3). Technical details on

numerical simulations are given in an Appendix. We
also investigated the efficiency of symbolic RPs and
associated entropy estimator for analyzing experi-
mental data, namely behavioral sequences encod-
ing mouse displacement in an open-field (Sec. 4).
We conclude with some perspectives for exploiting
additional features of symbolic RPs and widening
the scope of their applications (Sec. 5).

2. Theoretical Basis

2.1. General properties of
symbolic RPs

2.1.1. Definition

Data are given under the form of a symbolic
sequence x = (xi)i=1,...,N of length N , written with
an alphabet of k-symbols. The discrete analogue
of m-embedding is to consider m-words, denoted
wm,i = [xi, . . . , xi+m−1]. (We do not speak of m
as a delay nor refer to embedding [Marwan et al.,
2007] because our methodology also intends to deal
with intrinsically symbolic sequences, e.g. genomic
sequences or behavioral sequences.) A dot (i, j) is
present in the recurrence plot relative to m-words
(henceforth termed m-RP) if and only if m-words
starting at times i and j coincide: wm,i = wm,j .
A recurrence (i, j) is thus an intrinsic feature (i.e.
not depending on some observer choices) of the
symbolic sequence at the given time scale m. The
number of m-words that can be extracted from the
sequence is N −m + 1, hence the m-RP is a square
matrix of size (N − m + 1) × (N − m + 1). In 1-
RPs, at most k nonidentical column patterns can
be seen, each associated to a symbol x; the num-
ber of dots in a column associated with x gives
the symbol occurrence Nx in the sequence, and
Nx/N provides an unbiased estimate of the sym-
bol frequency p1(x). In 2-RPs, there is at most k2

nonidentical column patterns, each associated to a
2-word xy; the number of dots in a column associ-
ated with xy gives the word occurrence Nxy in the
sequence, and Nxy/Nx provides an unbiased esti-
mate of the transition probability from x to y while
Nxy/(N − 1) estimates the word probability p2(xy).
In fact, some of these 2-words might be absent if
they are forbidden or of very low probability. We
shall see below (Sec. 2.2.4) a quantitative state-
ment about the absence of some m-words in a m-
RP, all the more valid since m is large, and making
the number of actually observed m-words far lower
than its upper bound km. Note that in experimental
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reconstruction and exploitation of RPs, an addi-
tional reduction is observed, namely the absence of
some words due to undersampling, that will be all
the more stringent that m is small.

All RPs are obviously symmetric with respect
to the (fully occupied) diagonal {(i, i)}. But dis-
crete RPs exhibit more systematic symmetries than
their continuous counterparts due to the exact-
ness of recurrences: indeed if (i, j1) and (i, j2) are
recurrences, then (j1, j2) is also a recurrence. Lines
and columns associated to the same word w are
identical, so that the contribution (if any) of the
m-word w to the m-RP (what we shall term the par-
tial RPm(w)) has a square lattice motif. This very
strong symmetry property can be used in “error cor-
rection”, since a line and column sharing a point
(i, j) should be identical, unless this recurrence is
spurious, leading either to eliminate the recurrence
(i, j) or to correct the line j or column i.

2.1.2. Recurrence of specific words and
partial RPs

A recurrence plot for m-words is the superposi-
tion of disjoint recurrence plots RPm(w), one for
each possible m-word w. The idea is to dissect the
respective contribution of each word to the com-
plete RPm (see for instance the implementation
illustrated in Figs. 5(d), 5(e) and 6(f)). Indeed,
each of these “partial” recurrence plots RPm(w)
gives access to the statistics of recurrence time
of w (e.g. its minimum, maximium, mean, stan-
dard deviation, median, and cumulative distribu-
tion). It has a quite trivial structure, since all the
nonempty columns and lines are identical, describ-
ing the successive occurrences of the considered
word: as already underlined above, it is isomorphic
to a regular (but in general nonperiodic) square
grid. (Note that such partial RPs have no sim-
ple continuous counterpart.) The fraction of occur-
rences of the m-word w in the sequence x of length
N can be estimated as

f̂ (N)
m (w|x) =

1
N − m + 1

N−m+1∑
i=1

δ(w,wm,i)

where δ(w,w′) is the Kronecker symbol, equal to 1
if w = w′ else 0, and wm,i the ith m-word in the
sequence x.

A mere application of the law of large numbers
ensures that

lim
N→∞

f̂ (N)
m (w|x) = pm(w) almost surely

(i.e. for any typical sequence x) where pm(w) is
the probability of emission of the m-word w by the
source. It would be directly given by the fraction of
dots in any line or row of the partial plot RPm(w).

This limit statement is valid except in the case
where the source exhibits very strong (noninte-
grable) correlations. In most situations, correlations
are integrable and do not spoil the law of large num-
bers; they only slow down the convergence towards
the asymptotic limit, lowering the convergence rate
by a factor proportional to the correlation range (at
least m here since words overlap), as if the length
of the sequence were reduced by the same factor
[Lesne et al., 2009]. This statement can equally be
seen as a consequence of Birkhoff pointwise theorem
under the assumption that the source is stationary
and ergodic. A recurrence is observed in (i, j) asso-
ciated with the word w if δ(w,wm,i)δ(w,wm,j) = 1,
hence the probability of observing such a recur-
rence is 〈δ(w,wm,i)δ(w,wm,j)〉 that in general dif-
fers from 〈δ(w,wm,i)〉〈δ(w,wm,j)〉 = pm(w)2: at this
local level, correlations matter. On the contrary,
the (estimator of the) overall density of recurrences
associated with the m-word w writes

ρ̂(N)
m (w|x) =

1
(N − m + 1)2

×
N−m+1∑

i=1

N−m+1∑
j=1

δ(w,wm,i)δ(w,wm,j)

= [f̂ (N)
m (w|x)]2

so that almost surely

ρm(w) = lim
N→∞

ρ̂(N)
m (w|x)

= lim
N→∞

[f̂ (N)
m (w|x)]2 = pm(w)2

Hence at the level of the whole RPm(w), ρm(w) =
pm(w)2 and correlations no longer matter. The par-
tial density ρ̂

(N)
m (w|x) of recurrences estimated from

the sequence x and the total density of recurrences
ρ̂

(N)
m =

∑
w ρ

(N)
m (w|x) (where the sum runs over all

the possible m-words) are thus asymptotically triv-
ial, simply related to the m-word frequencies; cor-
relations do not influence the limiting result but
only the rate of almost sure convergence towards
the asymptotic limit N → ∞. Essential information
about the source correlations and temporal orga-
nization of the sequence thus lies in intermediate-
range structures exhibited by the RPs, and in
the relative organization and positioning of partial
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recurrence plots. This information reflects in par-
ticular in diagonal lines, an essential feature of the
whole m-RP that will be exploited in the following
(see Sec. 2.3).

In this subsection, we have explicitly indicated
that the recurrence fraction in a line f̂

(N)
m (w|x) and

the density ρ̂
(N)
m (w|x) depend not only on the recur-

rent word w but also on the experimental sequence
x from which the RP is drawn; this dependence on
x is ubiquitous in all the statistical quantities rela-
tive to the RPs and will be henceforth omitted for
alleviating the notations.

2.2. Three theorems

The quantitative analysis and interpretation of RPs
statistical features, in particular the design of esti-
mation procedures for the source entropy rate h,
will be rooted in three theorems of information the-
ory. These theorems are valid under the assump-
tions that the symbolic source is stationary and
ergodic and that the source entropy per unit time
h does not vanish (h > 0). But they do not require
any assumption about the deterministic or stochas-
tic nature of the source hence, like the very notion
of entropy per unit time h on which they rely, they
equally apply to sequences generated by discrete-
state stochastic processes or encoding of a deter-
ministic dynamics.

2.2.1. Asymptotic equipartition property
(Shannon–McMillan–Breiman)

Shannon–McMillan–Breiman theorem [Breiman,
1957; Cover & Thomas, 2006; McMillan, 1953;
Shannon, 1948] states that the number of typical
m-words (i.e. that have the same properties corre-
sponding to almost sure behavior) behaves like emh

as m → ∞ where the exponent h is the entropy
rate of the source. This entropy rate h is cur-
rently defined as the limit h = limm→∞ Hm/m =
limm→∞(Hm+1 − Hm) where Hm is the Shan-
non entropy of the m-word distribution pm(·),
namely Hm = −∑w pm(w) ln pm(w) where the
sum runs over all the possible m-words. A corol-
lary of the Shannon–McMillan–Breiman theorem
is the Asymptotic Equipartition Property, stating
that the probability pm(w) of a typical m-word w
takes asymptotically the value e−mh common to all
typical m-words, hence the name “equipartition”.
Formally, the statement has to be made more rigor-
ous since the limiting behavior of the probabilities

when m → ∞ is still a function of m. Introduc-
ing the random variables P̂m (depending on the
whole realization x of the symbolic sequence) such
that P̂m(x) = pm(x0, . . . , xm−1), the asymptotic
equipartition property writes more precisely

lim
m→∞

(
− 1

m

)
ln P̂m → h in probability (1)

i.e. for any δ > 0 and ε > 0 (arbitrary small),
there exists a word-size threshold m∗(δ, ε) such that
Prob({x, pm(x0, . . . , xm−1) > em(−h+δ)}) < ε and
Prob({x, pm(x0, . . . , xm−1) < em(−h−δ)}) < ε for
any m ≥ m∗(δ, ε), or equivalently, in terms of m-
word subset, pm({w, pm(w) > em(−h+δ)}) < ε and
pm({w, pm(w) < em(−h−δ)}) < ε. Another corol-
lary of Shannon–McMillan–Breiman theorem is to
describe quantitatively how h accounts in an effec-
tive way for the correlations present within the
sequence. Namely, the “effective” probability of a
new symbol, knowing the sequence of length l that
precedes, is asymptotically (l → ∞) either e−h or 0
whether the ensuing (l + 1)-word is typical or not,
instead of being equal to the symbol frequency as
it is the case when there are no correlations within
the sequence.

Shannon–McMillan–Breiman theorem and its
corollaries will be the basis of the entropy estima-
tion method from RPs developed and numerically
checked in the next sections. Beforehand, we shall
state two other limiting theorems and give their
interpretation in terms of RPs; their practical appli-
cability and scope would similarly deserve system-
atic investigations and numerical checks in future
works.

2.2.2. Recurrence time (Wyner–Ziv)

Recurrence time theorem due to Wyner and Ziv
(Theorem 1.a in [Wyner & Ziv, 1989]) states that
the minimal recurrence time T̂m at the level of
m-words (that is, the smallest time t such that
(x0, x1, . . . , xm−1) = (xt, xt+1, . . . xt+m−1)) behaves
as emh when m → ∞, namely

lim
m→∞

(
1
m

)
ln T̂m → h in probability (2)

Note that from its very definition T̂m is a random
variable (a fact indicated by the hat) depending on
the whole realization x of the symbolic sequence;
statistical stationarity of the source ensures that
T̃m defined as that the smallest time t such
that (x0, x1, . . . , xm−1) = (x−t, x−t+1, . . . x−t+m−1)
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exhibits the same statistical features as T̂m. The
statement (2) means that for any δ > 0 and
any ε> 0 (arbitrary small), there exists a word-
size threshold m∗(δ, ε) such that for any m ≥
m∗(δ, ε), Prob[T̂m > em(h+δ)] < ε and Prob[T̂m <
em(h−δ)] < ε.

2.2.3. Recurrence length (Wyner–Ziv)

The same authors proved a related result (Theo-
rem 1.b in [Wyner & Ziv, 1989]) that can be refor-
mulated in our RP context as follows: let L̂(N) be
the length of the longest diagonal line in a RP of
size N × N for single symbols. Like T̂m, L̂(N) is a
random variable over the sequence space. Its mean-
ing is that of a “recurrence length” i.e. the length
of the largest recurrent word. Then

lim
N→∞

ln N

L̂(N)
→ h in probability (3)

meaning that for any δ > 0 and ε > 0 (arbitrary
small), there exists a size threshold N∗(δ, ε) such
that for N ≥ N∗(δ, ε), Prob[L̂(N) > (ln N)/(h−
δ)] < ε and Prob[L̂(N) < (ln N)/(h + δ)] < ε. In
other words, (ln N)/L̂(N) ≈ h with an arbitrarily
small precision δ and an arbitrarily small proba-
bility ε of making a wrong statement for N large
enough. The same asymptotic statement obviously
holds as well for the length L̂

(N)
m = L̂(N) + m− 1 of

the longest diagonal line (if any) in the (N − m +
1) × (N − m + 1) m-RPL̂

(N)
m .

2.2.4. Practical meaning and use of these
theorems

Shannon–McMillan–Breiman and Wyner–Ziv the-
orems at the same time justify to treat all the
observed m-words on the same footing and pro-
vide the value of the associated uniform probabil-
ity, recurrence time and recurrence length; we can
indeed assume, according to the very definition of
typicality, that all the observed m-words are typical
for m enough large, since nontypical ones are too
rare to be ever observed. Nevertheless, an impor-
tant caveat is the asymptotic nature of these theo-
rems, making their application to finite words and
finite sequences an a priori questionable extrapo-
lation: simulations are required to appreciate the
actual impact of finite-size effects, that motivates
the numerical study presented in Sec. 3.

A first exploitation of these theorems is to give a
self-consistent assessment of the quality and faith-
fulness of statistical analysis of the sequence and
associated RPs. For large m and large N , an esti-
mate of the average number of occurrences in the
sequence of a typical m-word is Npm(w) ∼ Ne−mh.
This estimate leads to distinguish two regimes in
constructing the m-RP:

— good statistics, if Ne−mh � 1: each typical m-
word is present a large number of times in the
sequence; in particular all the typical words will
be encountered in the m-RP;

— bad statistics, if Ne−mh 	 1: each typical m-
word is present at most a few times in the
sequence, and most often is not represented; in
particular, multiple occurrences will be rare.

Accordingly, a trade-off has to be done in the choice
of the word-length m between the applicability of
asymptotic theorems (m → ∞) and the statistical
quality of the sampling (emh 	 N) hence of the esti-
mations. When this trade-off can be achieved, that
requires long enough sequences, the number of non-
identical lines in a m-RP is expected to behave as
emh. It means that in a m-RP with m large enough,
the maximal number km of nonidentical columns
reduces to emh, each one being the signature of a
typical word in the RP, and accounting for its occur-
rence pattern in the observed sequence.

2.3. Estimation of the entropy (per
unit time) of the source

A striking feature of RPs are diagonal lines. In a
continuous context, going beyond the mere visual
observation and analyzing their statistics yields a
powerful entropy estimation method [Faure & Korn,
1998; Marwan et al., 2007]. We shall here demon-
strate that it is also the case in a discrete context.
A diagonal line of length l starting in (i, j) in the
m-RP means that wm+l−1,i = wm+l−1,j , namely the
coincidence of two (m+ l−1)-words. It corresponds
to a diagonal line of length l + 1 in the (m − 1)-
RP and a single dot in the (m − l + 1)-RP. All the
quantities introduced below regarding the statistics
of diagonal lines are relative to a given realization
of the m-RP and they depend not only on m but
also on the sequence length N and its realization
x (not mentioned explicitly). We shall first assume
that Shannon–McMillan–Breiman theorem, which
centrally involves the entropy rate h of the source,
is valid at the leading order, and that the size of
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the m-RP (or equivalently the sequence length N)
is large enough so that the law of large numbers
applies and allows to identify quantities computed
in one realization of the m-RP and their statisti-
cal average. This yields potential ways, presented
below, of estimating the entropy per unit time h;
their validity and efficiency in practical situations
will be investigated numerically in the next section
for map-generated trajectories and Markov chain
realizations and in Sec. 4 for experimental behav-
ioral sequences.

2.3.1. Number of diagonal lines of a given
length

Considering a large enough diagonal length l so
that at most double occurrences of (m + l − 1)-
word arise, the probability of double occurrence of
a typical (m + l − 1)-word multiplied by the num-
ber eh(m+l−1) of these (nonidentical) typical words
yields the number ν

(N)
m (l) of diagonal lines of length

l in the upper triangle of the m-RP, notwithstand-
ing the main diagonal line:

ν(N)
m (l) =

(N − l − m + 2)(N − m − l + 1)
2

× e−h(l+m−1) (4)

(It comes: ν
(N)
m (l) =

∑
q≥2 (q(q − 1)/2)eh(m+l−1)

Cq
N−m−l−q+2e

−(m+l−1)qh[1− e−(m+l−1)h]N−m−l−q+2

when multiple occurrences are no longer neglected.)
In this counting, a diagonal line of length (l + r)
contributes (r + 1) times to ν

(N)
m (l) since it corre-

sponds to the double occurrence of (r + 1) typical
and nonidentical (m+ l−1)-words. Introducing the
number η

(N)
m (l) of diagonal lines of length exactly

equal to l, we get:

ν(N)
m (l) =

∑
r≥0

(r + 1) η(N)
m (l + r) (5)

Considering the difference ν
(N)
m (l) − ν

(N)
m (l + 1)

straighforwardly yields the number φ
(N)
m (l) of diag-

onal lines of length larger than l:

φ(N)
m (l) ≡

∑
r≥0

η(N)
m (l + r)

= ν(N)
m (l) − ν(N)

m (l + 1) (6)

Since m + l 	 N we may identify N − l − m + 2
and N − l − m + 1 with N , that yields:

ν(N)
m (l) ∼

(
N2

2

)
e−h(l+m−1) (7)

so that a semi-log plot of ν
(N)
m (l) with respect to l

will exhibit a slope −h in its linear region, and

ln

(
ν

(N)
m (l)

ν
(N)
m (l + 1)

)
= h + h.o. (8)

Using ν
(N)
m (l) − ν

(N)
m (l + 1) ≈ −dν

(N)
m (l)/dl finally

yields the scaling behavior of the number φ
(N)
m (l):

φ(N)
m (l) ≡

∑
r≥0

η(N)
m (l + r) ≈ −dν

(N)
m (l)
dl

∼
(

hN2

2

)
e−h(l+m−1) (9)

The probability Φm(l) of observing diagonal lines of
length larger than l is obtained by a mere normal-
ization of φ

(N)
m (l) according to:

Φm(l) ≡ φ
(N)
m (l)

φ
(N)
m (l = 1)

=

∑
r≥0

η(N)
m (l + r)

∑
r≥0

η(N)
m (1 + r)

so that Φm(1) = 1 (10)

Its l-dependence obviously satisfies the same scaling
law hence it does not matter whether we consider a
number φ

(N)
m (l) or a probability Φ(N)

m (l) when inves-
tigating their scaling behavior.

2.3.2. Average length

The number η
(N)
m (l) of diagonal lines of length

exactly equal to l gives straighforwardly the average
length of the diagonal lines in the m-RP:

〈lm〉 =

∑
l≥1

l η(N)
m (l)

∑
l≥1

η(N)
m (l)

=
ν

(N)
m (1)

ν
(N)
m (1) − ν

(N)
m (2)

(11)

At the leading order, the scaling
∑

r≥0 η
(N)
m (l+r) ∼

(hN2/2)e−h(l+m−1) yields 〈lm〉 ∼ eh/(eh − 1) and
even 〈lm〉 ∼ 1/h if h 	 1, giving an interpretation
of 1/h as a characteristic time (correlation time) of
the source. (Recall that labeling along the axes of
RPs corresponds to time, and line lengths to time
intervals).

2.3.3. Maximal length

Writing that the probability of double occurrence
for a given word multiplied by the number e−mh of
possible m-words is lower than 1, we get a threshold
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of single occurrence

(N − m + 1)(N − m)
2

e−mh(1 − e−mh)N−m−1 ≤ 1

(12)

yielding (using m 	 N and e−mh 	 1) the max-
imal length m∗ − 1 of words occurring more than
once in the sequence:

N2e−mh ≤ 2 i.e. m ≥ m∗ =
2 ln N

h
+ h.o. (13)

Let us denote L̂
(N)
m the largest diagonal length in the

m-RP. It means that no (m+ l−1)-word with l > L̂
has double (or multiple) occurrences. This maximal
length of a diagonal line is simply related with the
above threshold m∗ according to L̂

(N)
m = m∗ − m.

We finally get:

m + L̂
(N)
m =

2 ln N

h
+ h.o. i.e.

h =
2 ln N

m + L̂
(N)
m − 1

+ h.o.
(14)

Another method comes from the theorem (3) of
Wyner and Ziv about the length L̂(N) of the longest
diagonal line, Sec. 2.2.3: it can be exploited in prac-
tice by plotting (ln N)/L̂(N) as a function of N in
order to evidence a stabilization at the value h at
large N .

3. Numerical Experiments

In order to check in practice the validity and accu-
racy of entropy estimation from the statistical anal-
ysis of m-RP diagonal lines, we performed four
series of numerical experiments:

(1) entropy estimation from symbolic encoding of
logistic map trajectories;

(2) entropy estimation from symbolic encoding of
logistic map trajectories in the presence of a
variable amount of experimental noise;

(3) entropy estimation from symbolic encoding of
logistic map trajectories in the case where the
control parameter of the evolution law experi-
ences a slow drift;

(4) entropy estimation from Markov chains with
various numbers k of states and various char-
acteristic times.

In these four cases, the parameters of the under-
lying dynamics are tunable, and the exact value
of the entropy h per unit time (that depends
on these parameters) is either reachable by an

independent simulation (cases 1–3) or known
analytically (case 4). We extracted from the RPs
of the simulated trajectories the number φ

(N)
m (l)

of diagonal lines of length longer or equal to l
and plot its logarithm as a function of l (semi-
log plot). From the asymptotic scaling behavior
φ

(N)
m (l) ∼ e−h(m+l−1) demonstrated in Sec. 2.3,

Eq. (9), we expect that the modulus of the slope
of this monotonically decreasing curve in the region
where it is linear (i.e. once the asymptotic regime is
reached and before finite-sampling estimation issue
sets in) yields an estimation of h. The purpose of
our numerical experiments is to check the accuracy
and robustness of this estimator for finite-length
sequences, in other words to check quantitatively
whether the range of practical validity of φ

(N)
m (l)

scaling behavior could include real data. Note that
the choice of m does not matter in this entropy esti-
mation since diagonal-line lengths are related when
considering two RPs associated with different word-
lengths m and m + q in a way that does not affect
the scaling relation (explicitly, the histograms are
related according to φ

(N)
m+q(l) = φ

(N)
m (l + q)).

3.1. Logistic maps

We first investigated the logistic map ga(z) = az(1−
z) on the interval [0, 1] with binary encoding associ-
ated with the generating partition [0, 1/2]∪ ]1/2, 1]
(see Appendix). The implementation of the RP
estimation procedure for logistic map trajectories
is presented in Fig. 1. Very different types of
dynamics, ranging from periodic to fully chaotic,
are encountered in a complicated and intermingled
way when a is varied between 3 and 4. In such a
case where the symbolic sequence follows from the
phase space discretization of continuous-valued tra-
jectories by means of a generating partition, the
entropy rate of the symbolic source coincides with
the metric entropy h(a) of the underlying dynam-
ics and, according to Pesin equality [Castiglione
et al., 2008], with the Lyapunov exponent γ(a). The
exact value h(a) can thus be computed by com-
puting γ(a) on a long enough run, and the qual-
ity of the proposed estimation procedure checked
in all deterministic dynamic regimes by comparing
the estimated and exact values of h(a) for all val-
ues of a. The results presented in Figs. 2(a) and
2(b) show a very good agreement since even the fine
details of the curve a → h(a) are captured by the
estimator. We have as expected obtained identical
results with a quaternary encoding (see Appendix).
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Fig. 1. Principle of entropy estimation from RP of logistic map trajectories’ symbolic encoding. (a) Time series (zi)i=1,...,N

of length N = 2000 obtained from logistic map ga(z) = az(1 − z) in [0, 1] with a = 3.6532 and (b) corresponding symbolic
sequence (xi)i=1,...,N , written with an alphabet of k = 2 symbols. Symbolic encoding of logistic map trajectories is made
using the simple rule: if zi > 0.5 then xi = 1 else xi = 0. (c) RP obtained from (xi)i=1,...,200, a = 3.6532 and m = 4. γ
indicates the exact value of the entropy per unit of time calculated from an independent simulation as the Lyapunov exponent

value. (d) Histogram of the number φ
(N)
m (l) of diagonal lines of length longer or equal to l, counted in the RP obtained

from (xi)i=1,...,2000. (inset) Semi-log representation of φ
(N)
m (l); the absolute value −α of the slope of the fitting line yields an

estimation of h. (e, f) Same as (c, d), with a = 3.9422.
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(a) (b)

(c) (d)

Fig. 2. Accuracy and robustness of entropy estimation. (a) Comparison of the estimated value of h(a) from RP (red line)
compared with Lyapunov exponent value γ(a) (black line). h(a) is estimated from symbolic encoding of logistic map trajecto-
ries of length N = 2000 where a is varied from 3 to 4 with a step of 0.001. (b) Enlargement of the left graph, with 3.6 ≤ a ≤ 3.8.
Note that a negative value of γ(a) corresponds to an entropy value h(a) = 0, whereas Pesin equality ensures h(a) = γ(a)
for positive values of γ(a). (c) Variation of estimated h(a) with the length N of the symbolic sequence for two values of a,
a = 3.6532 (black circles) and a = 3.9422 (red circles). Values of the corresponding Lyapunov exponents are indicated by
horizontal dashed lines. N is varied from 250 to 7000. (d) Robustness of h(a) estimation of the symbolic sequence of length
N = 2000 for two values of a, a = 3.6532 (black circles) and a = 3.9422 (red circles) in the presence of experimental noise.
The initial time series is modified by randomly inverting (1 → 0 and 0 → 1) a given percentage (% permutation) of symbols,
corresponding to the noise strength. % permutation is varied from 0 to 1 with step of 0.01. Values of the corresponding
Lyapunov exponents are indicated by horizontal dashed lines.

Investigating the size dependence of the estimation
quality, Fig. 2(c), shows that the sequence length
has to be larger than N = 1000 to get an accurate
estimation of h(a).

3.2. Noise effect on entropy
estimation

We also investigated numerically the robustness
of the entropy estimation procedure with respect
to experimental noise, that is, noise spoiling the
recorded sequence but not amplified by the dynam-
ics. We mimicked the effect of such a noise by ran-
domly flipping symbols with a tunable probability

ε, corresponding to the strength of the noise (see
Appendix) in sequences obtained by encoding logis-
tic maps trajectories, for several values of the
control parameter a. As expected, the quality of
the estimate markedly decreases when the noise
strength increases [Fig. 2(d)], up to reaching the
maximal value ln 2 for the entropy rate of a binary
sequence with no track of the underlying deter-
ministic value. Note the spurious symmetry of the
curves with respect to the flipping probability ε =
1/2 (see Appendix): ε > 1/2 amounts to flipping
the mirror sequence x ′

i = 1 − xi (having the same
entropy and symmetric statistical features) with a
probability 1 − ε.
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3.3. Entropy estimation for a
nonstationary dynamics

A key assumption in entropy estimation is the sta-
tistical stationarity of the source: RPs allow to
get a visual support of this assumption or con-
versely warn that it might fail. RPs visually hint at

nonstationary features like the presence of a drift
in the evolution law (reflecting in inhomogeneous
lower right and upper left corners, compared to
the RP core), the occurrence of transitions (reflect-
ing in disruptions within the RP) or periodicities
(reflecting in periodic patterns in the RP). In such

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Entropy estimation for nonstationary dynamics. (a) Variation of a from 3.6 to 3.8 in the course of the simulation,
following a sigmoidal function. Value of a in the nth stage of the simulation is given by an = 3.6 + (2/(10 ∗ (1 + exp(−λn))))
with λ = 0.5, 1, 2, 5 and n = 1, . . . , 100. (b) Time series obtained from concatenation of time series [zan(i)]i=1,...,1000 from
logistic map gan(z) = anz(1 − z) for n = 1, . . . , 100, with an varying from 3.6 to 3.8 as explained in (a), for λ = 0.5 (top)
and λ = 5 (bottom). The last point (i = 1000) of a time series zan(i) is used as the initial point (i = 1) to calculate the
following zan+1(i) series. (c)–(f) Variation of h along the nonstationary dynamics. h is estimated on successive overlapping
windows of length N = 1000 with a shift of 100 time steps. (c) Estimate of h (black circles), superimposed with the value of
Lyapunov exponent (red points) calculated for each value of an, n = 1, . . . , 100, calculated here with λ = 0.5. (d) Same as (c)
with λ = 1.0, (e) λ = 2.0, (f) λ = 5.0.
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nonstationary situations, statistical analysis and in
particular entropy estimation should be restricted
to time windows where the RP is statistically homo-
geneous. We have numerically implemented this
procedure, taking as a benchmark trajectories gen-
erated by a logistic map whose control parame-
ter a slowly increases by small steps δa in the
course of evolution; this increase is slow enough
for a quasi-stationary approximation to make sense
and allow to consider an entropy rate h(a) cor-
responding to the instantaneous value of a and
characterizing the nonstationary dynamics during
the associated transient stage. It amounts for the
dynamical system to scan the curve a → h(a) with
a resolution corresponding to step-sizes δa. Figure 3
shows that the ensuing evolution of the entropy
rate, although very irregular, can be faithfully

captured by entropy estimation in a sliding win-
dow. In order to mimic experimental situations,
the analysis of numerical trajectories is done with-
out involving a priori knowledge of the underly-
ing nonstationarity: the size of the sliding window
and the number of time steps by which it is recur-
sively shifted are chosen arbitrarily (in practical
situations, additional knowledge or hint about the
system could be invoked in this choice). We have
checked (data not shown) the robustness of the
entropy estimation with respect to specific values
of these observation parameters within an appro-
priate range that can be determined from visual
inspection of the RP or, adaptively, from the out-
come of the local analysis. This robustness supports
the consistency and relevance of the local estimation
procedure.
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0.25 0.75
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Fig. 4. Entropy estimation for Markov chains. (a) RP from a two-symbol Markov chain. The transition matrix is given in
inset. (b) Comparison of the estimated value of h(a) from RP (black points, mean ±95% confidence interval, average over
n = 10 trajectories of length N = 3000) compared with the exact value of h(a) computed from the transition matrix as the

average conditional entropy (red points). General form of the matrix is given in inset, where a = e−1/τ gives the characteristic
time τ of the Markov chain; a is varied from 0.1 to 0.9. (c, d) Entropy estimate for five-symbols Markov chains. (c) Trajectories
of length N = 5000 are generated from six different matrices (see text and Appendix) with six quadruplets (a, b, c, d). (d)
Corresponding estimated value of h(a) from RP (black points, mean ±95% confidence interval, average over n = 10 chains)
and exact value calculated analytically from the transition matrix as the average conditional entropy (red points).
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3.4. Markov chains

The dynamics of a Markov chain of order 1 is fully
determined by the transition matrix R, that is, the
matrix whose element Rij is the conditional proba-
bility of transition from symbol i to symbol j; each
line of R thus sums up to 1. Denoting Hm the Shan-
non entropy of m-words, its entropy rate h expresses
exactly as H2 − H1 or equivalently as the aver-
age conditional entropy (that is, the average with
respect to the stationary distribution pstat of the
conditional entropies i.e. Shannon entropies of the
lines (Rij)j each seen as a probability distribution):

h = −
∑

i

pstat(i)
∑

j

Rij ln Rij (15)

where
∑

j Rij = 1 and
∑

i pstat(i)Rij = pstat(j).
With such an analytical benchmark, we were in a
position to investigate the quality of entropy esti-
mation from RPs. We considered two families of
Markov chains (see Appendix) with respectively 2
and 5 states and tunable eigenvalues, corresponding
to tunable characteristic times (equivalently corre-
lation times in the stationary regime or relaxation
times towards the stationary state since it can be
shown that they coincide [Gaveau et al., 1999]).

Results for a two-state Markov chain are shown
in Figs. 4(a) and 4(b) and exhibit good agreement
given the limited length of the sequences. Finite-size
effects are as expected stronger for a Markov chain
with five states, as shown in Figs. 4(c) and 4(d).
Our systematic numerical study evidences a signifi-
cant negative bias that might be due to undersam-
pling: estimated entropy underestimates the actual
value. This bias here appears to be lower at low
h, for more correlated sequences; additional finite-
size effects might come from the relative influence
of the transient regime before the stationary dis-
tribution is reached. But we underline that trends

are preserved and the qualitative behavior of the
entropy as a function of the control parameters of
the dynamics is captured.

4. Applications to Experimental
Sequences

Tracing, from analysis of spontaneous activity,
mouse cognitive functions and decision making, and
alteration of these functions in mutant mice is a
current challenge in behavior analysis. Open-field
behavior has been studied in rodents for long time
and such experiment is today a central element in
the battery of tests used in laboratories. Establish-
ing a quantitative description of such behavior is
then important but a detailed description of the
structure of the animal displacement in the open-
field is generally ignored. We have developed an
analysis of open-field behavior based on symbolic
analysis. Encoding behavioral records into symbolic
sequences is an acknowledged approach allowing to
eliminate information nonpertinent to the investi-
gated issue, to improve the statistics by reducing
the dimension of the phase space and to reduce
the part of individual variability. Animal trajec-
tories where position and velocity are recorded at
each step, and represented by a sequence of symbols
{PI,CI,PAp,PAc,CA}, that correspond to Activity
or Inactivity in the Periphery or in the Center of
the arena. Two different symbols PAp and PAc are
introduced to distinguish peripheral movement that
follows inactivity in the periphery (PI), and periph-
eral movement that follows central movement (CA).
This distinction have been made in order to obtain
a first-order Markov dynamics [Maubourguet et al.,
2008].

We first described transitions among the five
states (the residence time in each state is not taken
into account here [Maubourguet et al., 2008]) in
mice trajectories by transition matrices having the
general parametrized form:

R(i) =




0.0 0.03 0.97 0.0 0.0
0.12 0.0 0.0 0.88 0.0

a = 0.64 − i ∗ 0.05 0.0 0.0 0.36 + i ∗ 0.05 0.0
0.0 b = 0.27 + i ∗ 0.05 0.0 0.0 0.73 − i ∗ 0.05

c = 0.76 − i ∗ 0.05 0.0 0.0 0.24 + i ∗ 0.05 0.0




(16)

and we analyzed the modification of the entropy per unit time with its parameter i. We generated trajecto-
ries of length N = 500 (the typical length of experimental sequences) for i = 0 to 10, constructed for each
of them the corresponding m-RP with m = 4 and extracted the cumulative histogram φ

(N)
m (l) of the length
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Fig. 5. Entropy estimation for a five-state Markov chain model of behavioral sequences. (a) General form R(i) of the transition
matrix (in inset) and values of (a, b, c) used to generate trajectories of length N = 500. (b) Comparison of the estimated value
of h(a) from RP (black points, mean ±95% confidence interval, average over n = 25 trajectories) compared with the exact
value of h(a) computed from the transition matrix as the average conditional entropy (red points). The fraction % rec of
recurrence points in the RP (for m = 4) is also represented (blue points). (c1, c2, c3) Three RPs illustrating the recurrence
pattern for values i = 1, 5 and 10 of the matrix parameter. (d) The recurrence plot for 4-words such as that represented for
i = 10 in (c3) is the superposition of five disjoint recurrence plots RP4(wj) with j = 0, 1, 2, 3, 4, each corresponding to words
of length m = 4 that begin with symbol j. The partial RP4(wj=1) is represented on the left. The percentage of recurrence

%rec can accordingly be dissociated into five parts, %rec =
P4

j=0 %rec(j) where %rec(j) is the percentage of recurrence in
RP4(wj). Variation with i of %rec and %rec(j) for j = 0, 1, 2, 3, 4 is represented on the right.

diagonal lines. Variation of a, b, and c [Fig. 5(a)]
encompasses a large range, allowing to cover most
of the cases observed in experimental situations,
e.g. with different mouse strains. Variation of

theoretical entropy obtained from the matrix R(i)
is well recovered by entropy estimation from RP
diagonal lines. The percentage of recurrence (%rec)
is also a good indicator of the modification of the
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Fig. 6. Analysis of experimental data. (a) Example of recurrence plot from wild type (WT) and (b) β2-/- mutant mice
(right) symbolic trajectories. (c) Partial RPm(w) for m = 4 and w = [0202] in WT and (d) β2-/- animals, illustrating that
checkerboard structure characterizing WT symbolic trajectories are mainly repeated [02] sequences. (e1) Comparison of the
estimated entropy h(a) and (e2) %rec from simulated and experimental RPs (m = 4). Simulated data are obtained using
the transition matrix estimated from experimental data. n indicates the number of trajectories, i.e. the number of mice or
simulation runs in each group. (f) Comparison in WT (black points) and β2-/- mice (red points) of the distribution of %rec(j)
(bullets) and of cj (triangles). %rec(j) is calculated in RPm(wj) for j = 0, 1, 2, 3, 4 and normalized by the total recurrence

%rec. cj correspond to the normalized square percentage of symbols j = 0, 1, 2, 3, 4 in the sequence, namely cj = N2
j /

P4
i=0 Ni

(averaged over several trajectories) with Nj being the total number of symbols j in the sequence. The rationale of this
comparison is the fact that %rec(j)/%rec = cj for a sequence of independent and identically distributed random variables.
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recurrence structure when the transition probabili-
ties are modified [Fig. 5(b)]. Typical RPs obtained
for i = 1, 5 and 10 [Fig. 5(c)] illustrate the modifi-
cation of checkerboard structures: Generally, square
clusters in a m-RP reveal the presence of repeats
of a r-word w∗ (with r ≤ m); most often, rather
than fully-filled clusters, we observe checkerboards,
composed of staggered rows and lines that are not
continuous but composed of interspersed dots in
diagonal arrays, revealing the recurrence of a r-
word with now r > m. This staggered-row structure
can also be encountered in continuous RPs where it
reveals a transient and recurring quasi-periodicity.
The meaning of checkerboards as regards the under-
lying dynamics is here more delicate to assess than
for continuous RPs; in particular, the association of
checkerboards with quasi-equilibria (in case of diag-
onal checkerboard) or intermittency (several aligned
off diagonal checkerboards) that is often valid in
continuous RPs is less straightforward for symbolic
RPs. The repetition of a symbol (or word) has a
weaker meaning than a quasi-equilibrium, revealing
only a succession of features associated with the
same symbol (or word). Thus, there is no general
statement going beyond the equivalence between
the observation of a checkerboard and the occur-
rence (in case of a diagonal checkerboard) or recur-
rence (in case of a off-diagonal checkerboard) of a
repeat sequence [w, . . . , w] where w is either a single
symbol or a word; further interpretation has to be
done on a case-by-case basis. For instance, in the
present behavioral study, it would indicate phases
of perseveration, during which the animal performs
several times in a row the same behavioral pattern
corresponding to the recurring m-word.

Figures 5(d) and 5(e) implement the notion
of partial RPs. The left part of the figure rep-
resents the total RP for 4-words, RP4, which is
the superposition of five partial recurrence plots
RP4(wj) describing the recurrence of 4-words begin-
ning by a given symbol j = 0, . . . , 4. The right part
of the figure represents the percentage of recur-
rence of each subset of words wj as a function
of the parameter i of the dynamics. The inter-
est of this analysis is to dissect which words give
the dominant contribution to the full RP. Going
beyond a global view on recurrences is specially
important in a behavioral context, where we seek
to extract specific behavioral patterns, in order to
understand what determines the specific moments
where animals “make a decision” and change their
movement.

RPs of experimental data obtained from wild-
type mice (WT, n = 32 mice) are compared with
those obtained in knock-out mutant mice (β2-/-,
n = 33 mice). The terminology β2-/- for the mutant
mice is the standard way of meaning that both
alleles of the gene coding for the β2 subunit of
the acetylcholine receptor have been knocked out
hence are no longer expresed in the animals. RP of
WT animals [Fig. 6(a)] for m = 4 shows a num-
ber of checkerboard structures. Investigating more
precisely the contribution of the different partial
RP4(w) shows that checkerboards mainly originate
from the repetition of sequences [0,2] i.e. [PI, PAp];
this observation evidences that typical behavior in
WT animals consists of alternating movements and
pauses at the periphery intermingled with sequences
of center movement. In β2-/- mice checkerboards
are significantly reduced [Figs. 6(c) and 6(d)].

We also compared the percentage of recur-
rent points in WT and β2-/- mice [Fig. 6(e)].
%rec corresponds to what is formally and less
straight forwardly denoted ρ̂

(N)
m in Sec. 2.1.2, with

ρ̂
(N)
m =

∑
w ρ̂

(N)
m (w) where the sum runs over

all possible m-words. Letting the sum run only
over m-words beginning by the symbol j yields
a partial percentage %rec(j), such that %rec =∑4

j=0 %rec(j). Without any correlation between the
successive symbols, we would have %rec(j)/%rec =
[f̂1(j)]2/

∑4
i=0[f̂1(i)]2 where f̂1(j) is the observed

frequency of the symbol j in the sequence or equiva-
lently %rec(j)/%rec = N2

j /
∑4

i=0 N2
i ≡ cj where Nj

is the number of occurrences of the symbol j in the
sequence. The discrepancy between the two ratios
observed in a given experiment [Fig. 6(f)] reflects
the presence of correlations and the fact that recur-
rence of words (corresponding here to behavioral
sequences) differs from a succession of symbol recur-
rences. In the example presented here, recurrence of
symbol j = 0 noticeably increases the probability of
recurrence of 4-words starting with j = 0, evidenc-
ing a short-range correlation between j = 0 and the
subsequent symbols, in agreement with the fact that
the relevant dynamic model allowing to reproduce
the recorded data is a Markov chain rather than a
sequence of independent and identically distributed
random variables.

5. Conclusion

In this paper, we introduced an extension of RPs for
symbolic sequences. In practice, symbolic RPs are
specially useful when there is no known underlying
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continuous-state dynamics and the data are intrin-
sically symbolic (e.g. behavioral sequences and
genomic sequences). Our main point was to assess
the validity of using RPs for analyzing such data.
We developed heuristic arguments and checked on
both simulated and experimental data that such
symbolic RPs offer a faithful and accurate way for
estimating the entropy rate h of the underlying
dynamics, even for relatively short sequences. As in
the continuous counterpart, estimation is based on
the analysis of the length cumulative distribution of
diagonal lines. We used the logistic maps (trajecto-
ries in a continuous phase space and their symbolic
encoding using a generating partition) as a well-
known benchmark to check that symbolic RPs actu-
ally give access to the entropy per unit time, with
no need to rely on the underlying continuous tra-
jectories. Entropy rate h is relevant for both deter-
ministic and stochastic dynamics. Such a feature
alleviates data analysis from the need for assessing
the deterministic nature of the dynamics and makes
the same estimation procedure valid in both cases.
This is illustrated above on a special instance of
discrete-state stochastic processes, namely Markov
chains.

The underlying theoretical result is the
Shannon–Breiman–McMillan theorem. It states a
striking feature of the word statstics, known as
asymptotic equipartition property, namely that for
a word-length m large enough, only two classes of
m-words are to be distinguished: those that have a
negligible probability to be observed, in particular
that will never be observed in experiments or sim-
ulations (non typical words) and the typical words,
having all the same probability of occurrence e−mh

controlled by the entropy rate h of the source. Not
only does it support to treat all the observed (hence
typical) words on the same footing, but it also gives
access to h. What we have evidenced in this paper
through a systematic numerical investigation, is the
nontrivial fact that this asymptotic equipartition
regime sets in very rapidly, for moderate values of
m (here m = 4) and yields efficient ways of estimat-
ing the entropy rate h even for short sequences, for
instance, of length N between 1000 and 3000 in case
of symbolic encoding of an underlying deterministic
dynamics. Finite-size effects are expectedly stronger
for stochastic trajectories, flawing the estimation
with a systematic bias (h is systematically under-
estimated due to undersampling) and an accurate
entropy estimate would require longer sequences;
nevertheless, even for short sequences, the trend of

the entropy as a function of the control parameters
of the dynamics is preserved, hence the estimated
value can be used for classification or discrimination
between several dynamics.

The acknowledged benefit of estimating
entropy is to get a quantitative and integrated
appreciation of the strength of correlations and tem-
poral organization of the dynamics. The counter-
part of this very advantage is the fact that entropy
is only an asymptotic feature, giving only an overall
appreciation of the dynamic correlations. A possible
way yet to be explored, to get further information,
and capture and quantify dynamic correlations at
different scales, would be to perform a multiscale
analysis and adapt to symbolic RPs the method of
windowed RPs introduced in [Casdagli, 1997]. The
idea is to consider square cells of linear size q (an
integer) and to compute the local density ρ

(∆)
IJ of

recurrence in the cell (I, J) as a sum of m-word con-
tributions ρ

(∆)
IJ =

∑
w ρ

(∆)
IJ (w). This coarse descrip-

tion involves an average over time scales smaller
than q while keeping track of the exact recurrences
of m-words. The result can be represented either
using a grayscale or introducing a threshold on ρ

(∆)
IJ

for considering that (I, J) is a “meta-recurrence”
[Casdagli, 1997]. As mentioned in Sec. 2.1.2, a
noticeable feature revealed by this multiscale anal-
ysis is the fact that local correlations average out
at the level of the whole RP (correlations simply
slow down the convergence toward ρm(w) of the w-
recurrence densities ρ̂

(N)
m (w) as N → ∞) whereas

they are likely to have a non-negligible effect at
intermediary scales q; these correlations would thus
reflect in local heterogeneities and, quantitatively,
in the discrepancy between ρ

(∆)
IJ (w) and q2ρm(w).

A strength of RPs is to be suitable for statis-
tical analysis of symbolic sequences (extraction of
average or integrated features like the entropy or
the average recurrence time) while keeping track
of the temporal location, hence also allowing to
evidence visually and locate dynamic transitions
and more generally nonstationary features of the
evolution. Indeed, entropy is not always the more
meaningful index, and has not a direct interpreta-
tion in terms of dynamic structure, e.g. structure
of a decision process in a behavioral context. For
instance, several very different dynamics, from a
behavioral viewpoint, might have the same entropy.
But several other specific RP features are not yet
fully exploited. Additional quantification indices,
focusing on intermediate-scale features (motifs,
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checkerboards, recurrence of a specific subset of
words, e.g. words beginning by a given symbol)
are yet to be developed. For instance, checker-
board structures would deserve a deeper quantifica-
tion and interpretation since they are likely to give
unique information about the dynamic organization
at intermediate scales, out of reach of other methods
of analysis. m-RPs would also allow to investigate
the recurrence of a motif w− gap−w′ where w and
w′ are two different or identical m-words. Denot-
ing g the distance between the beginning of w and
w′, the recurrence of the motif reflects in the cor-
relation between the occupancy of the points (i, j)
and (i + g, j + g). A quantitative assessment would
then be obtained by computing the ratio r(i, g), at
a given i, of the number of pairs of recurrences (i, j)
and (i + g, j + g) divided by the number of occu-
pied pairs (i, j). Indeed, this ratio r(i, g) equals 1
when there is a perfect correlation and the word
w always followed at a distance g by the word w′.
Also nonstationary features (e.g. sharp transitions,
slow drift) can be detected if the appropriate tools
are developed. In particular, we have shown that
symbolic RPs analysis allows to compute entropy
of symbolic sequences without the requirement of
statistical stationarity: the RP methodology pre-
sented here allows to capture a slow variation in
the (local) entropy per unit time following from a
slow drift in a control parameter of the dynamics.
Finally, an interesting research direction is to deter-
mine in what respect the coarse-grained description
of a symbolic RP and its quantification would allow
to perform a multiscale analysis of the dynamics, as
it could be sometimes done in a continuous context
[Casdagli, 1997].
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Appendix A

A.1. Logistic map simulations

For deterministic dynamics generated in a contin-
uous phase space by a map g, symbolic sequences
result from the discretization of continuous-valued
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trajectories using a partition of the phase space
in k subsets A

(1)
x , with zi ∈ A

(1)
xi being the posi-

tions along the continuous trajectory underlying
the symbolic sequence x. The partition is said to
be generating when the knowledge of the semi-
infinite symbolic sequence (xi)i≥0 fully determines a
unique initial condition z0 ∈ A

(1)
x0 in the continuous

phase space. In this case, the symbolic encoding is
asymptotically faithful, with no loss of information
compared to the continuous-valued trajectory. A
loss of information nevertheless occurs when encod-
ing trajectories of finite length. On the other hand,
quantitative analysis, and specifically entropy esti-
mation, is expected to be statistically more faithful
when performed on symbolic sequences, i.e. trajec-
tories in a finite phase space.

For an unimodal map g of the interval, a gen-
erating partition is known: A0 ∪ A1 where A0 =
[0, z∗[ and A1 = [z∗, 1] if the critical point is
z∗, in particular z∗ = 1/2 for logistic maps.
Other generating partitions are obtained from the
basic one by considering A

(2)
xx′ = Ax ∩ g−1(Ax′)

(leading to a 4-symbol partition) or more gener-
ally A

(m)
x1,...,xm = Ax1 ∩ g−1(Ax2) ∩ · · · ∩ gm−1(Axm)

(leading to a 2m-symbol partition). It amounts to
code a point z1 ∈ [0, 1] by the m-word describing
to which half-interval belong the successive images
z1, z2 = g(z1), . . . , zm = g(zm). Binary and quater-
nary encodings are expected to give identical results
as regards entropy estimation. Indeed, symbols in
the quaternary encoding correspond to 2-words in
the binary encoding; more generally, m-words in the
quaternary encoding correspond to (m + 1)-words
in the binary encoding and diagonal lines of length l
corresponds to diagonal lines of length l+1. Accord-
ingly, the scaling of the histogram of diagonal-line
length with respect to l, hence the resulting entropy
estimation, will not depend on the choice of m.
We have checked this point (data not shown) hence
present only the binary case results in the main text.

A.2. Perturbing the symbolic
sequences by a controlled
amount of noise

Currently, the way to add noise on a binary
sequence is to flip each symbol with a (small) proba-
bility ε, see e.g. [Collet et al., 2007]. Obviously, such
a procedure is valid only for small ε since for ε = 1,
we do not get a fully disordered sequence but rather
the mirror-symmetric sequence of the original one.

A more proper way to generate a noisy sequence
would be to proceed in two steps: for each sym-
bol, consider it with a probability ε then, if it is
considered, redraw its value with an unbiased prob-
ability 1/2 (a fully random sequence would now
be obtained for ε = 1). In contrast to the first
method, this procedure is not restricted to binary
sequences but would be efficient for any symbolic
sequence, whatever the size of the alphabet. Nev-
ertheless, it is computationally more heavy and the
issue of entropy estimation robustness only makes
sense for moderate levels of experimental noise, for
which the first procedure for adding noise is suffi-
cient (we do not expect to have any faithful access
to the the entropy of the underlying deterministic
dynamics when experimental noise is strong); we
thus implemented the first method.

For ε 	 1, the probability to destroy an exist-
ing recurrence is 2mε for the simple flip and mε
when using the second option for adding noise (up
to O(ε2), that amounts to ignore double flips). It is
difficult to assess analytically the probability of false
recurrence (it would require to assess the number
in the noiseless sequence of quasi-recurrences where
only one symbol misses to get a true recurrence) but
given a noiseless sequence, we could ensure that this
probability scales as ε.

A.3. Markov chain simulations

We devise the transition matrix R (with the con-
vention that Rij is the conditional probability of a
transition from i to j) as R = SDS−1 where D is
the diagonal matrix of eigenvalues (1 ≥ a ≥ b ≥ c ≥
d ≥ · · ·), the lines of the matrix S−1 are the right
eigenvectors of R and the columns of matrix S are
the left eigenvectors of R; hence the first line of
S−1, corresponding to the stationary distribution,
has strictly positive components if R is nondegen-
erate (i.e. if 1 is a single isolated eigenvalue) and is
normalized to 1, the other lines sum up to 0, and
the first column of S has all its components equal
to 1. Additional conditions arise on the eigenvalues
to ensure the positivity of all the components of
the transition matrix R. Considering 2× 2 matrices
with equiprobable states in the stationary regime:

S−1 =
(

0.5 0.5
0.5 −0.5

)
S =

(
1 1
1 −1

)

D =
(

1 0
0 a

) (A.1)
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it becomes:

R(a) =
1
2
·
(

1 + a 1 − a

1 − a 1 + a

)
(A.2)

The characteristic time of the stochastic dynamics generated by R(a) is related to the nontrivial eigenvalue
a > 0 according to τ(a) = 1/ ln(1/a). The exact value of the entropy per unit time h(a) can be computed
analytically as the average conditional entropy:

h(a) = −
(

1 + a

2

)
ln
(

1 + a

2

)
−
(

1 − a

2

)
ln
(

1 − a

2

)
(A.3)

Considering 5 × 5 matrices with equiprobable states in the stationary regime and

D =




1 0 0 0 0
0 a 0 0 0
0 0 b 0 0
0 0 0 c 0
0 0 0 0 d




(A.4)

it becomes:

R(a, b, c, d) =
1
5
·




1 + 4a 1 − a 1 − a 1 − a 1 − a

1 − 4a + 3b 1 + a + 3b 1 + a − 2b 1 + a − 2b 1 + a − 2b
1 − 3b + 2c 1 − 3b + 2c 1 + 2b + 2c 1 + 2b − 3c 1 + 2b − 3c
1 − 2c + d 1 − 2c + d 1 − 2c + d 1 + 3c + d 1 + 3c − 4d

1 − d 1 − d 1 − d 1 − d 1 + 4d




(A.5)

requiring the consistency conditions: 1 − 4a +
3b ≥ 0, 1 − 3b + 2c ≥ 0 and 1 − 2c + d ≥ 0 on the
eigenvalues (assuming 1 > a ≥ b ≥ c ≥ d ≥ 0)
in order that R(a, b, c, d) is actually a transition
matrix. The eigenvalues give the relaxation times,
the largest one being τ such that a = e−1/τ . More-
over, it can be shown (using the spectral decom-
position of the transition matrix) that correlation

functions CB1,B2(t) of pairs (B1, B2) of observ-
ables decrease exponentially fast to 0 with correla-
tion times that coincide with the relaxation times,
thus widening the interpretation of the eigenvalues
[Gaveau et al., 1999]. As in the case of a 2×2 matrix,
the exact value of the entropy per unit time can be
computed analytically as a function of a, b, c and d.
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