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In Brandman et al. [Brandman et al. (2005) Science 310, 496] it was proposed that interlinked
fast and slow positive feedback loops are a frequent motif in biological signaling, because such a
device can allow for a rapid response to an external stimulus (sensitivity) along with a certain
noise-buffering capacity (robustness), as soon as the two loops operate on different time scales.
Here we explore the properties of the nonlinear system responsible for this behavior. We argue
that (a) the noise buffering is not linked to the stochastic nature of the stimulus, but only to
the time scale of the stimulus variation compared to the intrinsic time scales of the system, and
(b) this buffering of stimulus variations follows from the stabilization of a region of the state
space away from the equilibrium branches of the system. Our analysis is based on a slow-fast
decomposition of the dynamics. We analyze the strength of this buffering as a function of the
time scales involved and the Boolean logic of the coupling between dynamic variables, as well as
of the amplitude of the stimulus variations. We underline that such a nonequilibrium regime is
universal as soon as the stimulus time scale is smaller than the larger time scale of the system,
and it prevents to predict the behavior from the features of the bifurcation diagram or using a
linear analysis.
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1. Introduction

1.1. Background

Motivated by graph theory and nonlinear dynamics, an influential trend of research in systems biology
currently attributes properties of biological function to specific regulatory motifs [Brandman & Meyer,
2008; Novak & Tyson, 2008]. Examples include circuits of negative feedback loops [Pigolotti et al., 2007],
interlinked feedback loops acting on different time scales [Brandman et al., 2005], regulatory devices capable
of adaptation [Ma et al., 2009], the composition of a system out of regulatory units [Milo et al., 2004] and
their relation to robustness [Klemm & Bornholdt, 2005; Kaluza et al., 2007; Kaluza & Mikhailov, 2007;
Kaluza et al., 2008; Lesne, 2008], and the number of positive and negative feedback loops in regulatory
circuits [Kwon & Cho, 2008].

One of the intrinsic challenges such regulatory devices often face is to respond rapidly to some external
signal and, at the same time, filter out spurious stimuli and fluctuations arising from the environment.

In the context of gene regulation based on the action of transcription factors, Alon and co-workers
[Shen-Orr et al., 2002; Alon, 2007] have argued that feedforward loops, with activation thresholds suitably
tuned during biological evolution, can serve as a delay element, where only persistent stimuli lead to an
activation of the bottom-level element in the feedforward loop, while spurious, noise-like stimuli get filtered
out by the consistency check between the other two elements.

Based on a broad range of examples from cell biology, Brandman and co-workers [Brandman et al.,
2005] proposed that a frequent motif in signaling, two interlinked positive feedback loops, which act on
different time scales, may serve the dual purpose to unite sensitivity and robustness to noise. They support
their hypothesis by a qualitative analysis of numerical simulations obtained with a minimal model of such
interlinked feedback loops (see next section for more details on this model). However, they do not provide
an analysis of the underlying dynamical mechanism at work. We here re-analyze the observations from
[Brandman et al., 2005] using the general framework of slow-fast decomposition.

Given the dynamics producing a bistable switch, as is typically obtained from a positive feedback
loop [Thomas & Kaufman, 2001], we want to understand the influence of the different time scales in the
dynamics. The observable we analyze is the system response to a step-wise, oscillatory or noisy stimulus. We
conduct an analytical and numerical study to better understand the interplay of the time scales involved.

1.2. Minimal model of interlinked feedback loops

Figure 1 shows the detailed architecture of the system from [Brandman et al., 2005], including production
and degradation terms for the internal species A, B, and the output X. Following [Brandman et al., 2005],
the model is organized in such a way that the time scales of degradation of A and B coincide with the
parameters τA and τB, respectively, and that feedback of the output on both A and B are non-linear Hill-
type functions. In the parameter regime discussed in [Brandman et al., 2005] the system displays bistability
as a function of the stimulus strength, serving as bifurcation parameter. A stimulus S acts multiplicatively
on the activation terms of the internal species. For our investigation, S serves as a control parameter of
the nonlinearity. The stimulus S acts on both A and B and is relayed by their respective dynamics

dX

dt
= τ−1

X

[
kX,on(1−X)

(
A+B

2

)
− kX,offX + kX,min
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Xn
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)
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= τ−1
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S(1−B)
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Xn
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)
−B + kmin

]
(3)

with different time scales, e.g., τB � τA in the fast-slow case (in any case, when the time scales of A and
B are not equal, we choose B to be the slower variable among A and B). Note that we have self-inhibitory
terms ensuring that all three variables A, B and the output X remain bounded.

It should be noted that there are, indeed, four time scales in the system (τA and τB, the time scale of
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the signal, τS , and the time scale of the output variable, τX). In [Brandman et al., 2005] the time scale of
the output X is implicitly set to τX=1. We shall see below that what matters for the dynamical phenomena
mentioned above is τX � τA ≤ τB.

At equilibrium, at fixed S, A(S) = B(S), and X(S) is a monotonously increasing function of A(S) +
B(S). For suitable values of the parameters, we have three solutions X−(S), Xu(S) and X+(S) in some
range Smin < S < Smax, denoting the lower stable, unstable and upper stable fixed point, respectively.
Then necessarily (because at equilibrium, A and B are uniquely determined knowing S and X) we also
observe three distinct values A−(S), Au(S) and A+(S) (and the same for B). The equilibrium curve is
thus S-shaped in any projection plane and contained in the surface A = B. The bifurcation diagram, as
well as the nullclines, are the same whatever the values of τA, τB and τX .

In the following, we plot the theoretical, asymptotic bifurcation diagram, that is the value of the
single or two stable fixed points X±(S0) and the unstable fixed point Xu(S0) as a function of a constant
stimulus S0 as a reference, to set the actual simulated trajectories against it. Then we investigate the
interplay between the relaxation towards the equilibrium branches of the bifurcation diagrams and the
time dependence of the stimulus S. Specifically we investigate, how the output is controlled by the three
time scales τX � τA ≤ τB of the system’s evolution laws and by the additional time scale τS that comes
into play when the stimulus is varying.

Parameter values we are using throughout this paper are (in agreement with [Brandman et al., 2005]):
kX,on = 2, kX,off = 0.3, kX,min = 0.001, kmin = 0.01, n = 3, ec50 = 0.35, as well as τA = 2 for a fast
loop and τB = 125 for a slow loop. The only difference to the model from [Brandman et al., 2005] is the
normalized value of A + B (divided by 2) in the right-hand side of dX/dt so that a single and double
loop system would have the same bifurcation diagram. The time scale τS has been taken to be 30 for the
stochastic variation (and, for visual clarity, 60 for the deterministic periodic variation discussed below).

Our noise S − S0 is a random sequence of steps. The time intervals between steps are drawn from
a uniform distribution with an average of 30 and a width of ±10. The height is drawn from a uniform
distribution between 0 and the constant signal strength S0. Apart from wanting to stay as close to the
system introduced in [Brandman et al., 2005], the motivation for the step-like noise on top of the signal is
also that it contains only a single dominant time scale.

2. Results

2.1. Reproduction of the previous result

A reproduction of the key finding from [Brandman et al., 2005] is shown in Figure 2. For three time-
scale constellations (first row: slow-slow, that is, τA = τB = 125 � τS ; second row: fast-fast, that is,
τA = τB = 2 � τS ; and third row: fast-slow or dual, that is, τA = 2 � τS � τB = 125) the time course
(left-hand side) of the output X under the effect of the noisy stimulus and the trajectory in the bifurcation
plot (right-hand side) is given. Note that noise is not white noise but a random alternation of positive and
negative steps with finite characteristic amplitude η (bounded variance) and an average duration τS .

By construction, the slow-slow system (top row) fails to respond rapidly enough to the onset of the
stimulus and almost fully buffers fluctuations. When both feedback loops are fast, as given in the second
row of Figure 2, the system frequently falls back into the previous fixed point (the one for S=0) under the
action of the stimulus noise, following its variation.

The dual case (third row in Figure 2) is substantially less affected by the noise and, at the same time, is
capable of responding to the onset of the stimulus almost as rapidly as the fast-fast system. This is the key
feature described in [Brandman et al., 2005]. One question we are addressing here about the mechanism
behind the robust functioning of this regulatory device is, how the attribution of the two time scales (fast
= onset, slow = noise response) is achieved.

Plotting the probability distribution function P (A,B,X) (or its marginal distributions, e.g., P (X),
which is approximated by the histograms in Figure 2) visually evidences the change in the phase space
exploration when the slowest characteristic scale of the evolution, τB, increases far beyond the characteristic
time τS of the stimulus (middle column frames E,F,G in Figure 4.2). What deserves the name of stochastic
potential is minus the logarithm of this distribution function [Lemarchand et al., 1988], and it has no
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direct relation to Kramers rate theory, contrary to what is misleadingly presented in [Zhang et al., 2007].
This representation of the trajectories underline nonequilibrium effects that stabilize other regions than
equilibrium branches. This stabilization might give dominant weight to the corresponding regions.

The trajectories in the bifurcation plane essentially characterize the noise buffering observed in [Brand-
man et al., 2005] as an incomplete relaxation towards the fixed points. This is particularly strong for the
lower fixed point. It should be noted that incomplete relaxation is a universal phenomenon, which is, how-
ever, frequently ignored. The level of the relaxation is then perceived as the noise buffering capacity of the
system. The concept of incomplete relaxation will be explained in more detail in the next section.

2.2. Slow-fast decomposition

We explore the quantitative properties of the incomplete relaxation and the buffering capacity by means
of a slow-fast decomposition.

Slow-fast decomposition refers to a decomposition of (X,A,B, S) into (y, Z) where y is fast and Z
slow, i.e. y relaxes fast to a steady state y∗(Z). It amounts to the determination of a so-called slow manifold
W, defined by the equation y = y∗(Z), i.e. formed by the points [y∗(Z), Z]. Then the dynamics can be
reduced to the slow dynamics on the manifold, i.e. the slow evolution of Z(t), to which the evolution of
the fast variable(s) y is enslaved. There are possibly more than two levels, namely several nested slower
and slower manifolds (the slowest has the smallest dimension and is embedded in other ones).

The vision of a one-dimensional slow manifold parameterized by S (i.e. Z = S), and fast variables
y = (A,B,X) yields the S-shaped bifurcation diagram. Taking this as a reference picture provides valid
insights into the dynamics of the system only if τS is far larger than all the time scales of the dynamics,
which corresponds here to the fast-fast case. In other situations, as soon as τS � τB, the slow manifold is
different and cannot be reached by a nonequilibrium perturbation analysis of the bifurcation diagram nor
any linear stability analysis.

Here a central feature is rather the value τX � (τA, τB), from which follows that at fixed stimulus S,
the output X is enslaved to the evolution of the reacting species A and B. As soon as1 τX � τA ≤ τB, the
quasi-stationary approximation forX (whatever the stimulus is) yields an enslaving ofX to the combination
A+B, namely

X = φ(A+B) with φ(z) =
kX,min + kX,on(z/2)

kX,eff + kX,on(z/2)
. (4)

The very first stage of the evolution is a fast convergence of the initial conditions (A0, B0, X0) spread
out in a volume to the surface X = φ(A + B) (slow manifold, see Figure 4). At fixed S, either τA ∼ τB
and the trajectories will converge on this surface towards the nearest fixed point; or τA � τB and the
trajectories will first converge to a surface A = A(B,S) enslaved to B at fixed S and embedded in the
above-mentioned hyper-surface, eq. (4), and then this surface itself shrinks towards the stable branches of
fixed points (parameterized by S), as B slowly evolved towards its equilibrium value.

For a varying stimulus, in the dual case A is enslaved to a combination of S and B. In the slow-fast or
slow-slow cases, the variable B evolves far slower than S. It would nevertheless be misleading to consider
that B is only sensitive to the time average of S over τB: As detailed below for the case of a periodic
stimulus, this would ignore the difference between the evolutions of B corresponding to different values of
S (due to the fact that in our model the stimulus involved is non-additive).

2.3. Detailed discussion of time scale regimes and extension to a periodic
driver

It is clear from Figure 2 that the behavior of the output is determined from the time scale of the stochastic
stimulus variation, rather than by the stochasticity itself. In Figure 3 we therefore substitute the stochastic

1The behavior for τX ≥ τB ≥ τA would be trivial (stabilization to the lower equilbrium point). We are not discussing the case
τA ≤ τX ≤ τB .
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stimulus by a periodic driver, in order to systematically vary the time scale of the stimulus relative to the
time scale present in the ODE system. For clarity, we argue in what follows with a periodic sequence of
discrete stimulus jumps between S = 0 and S = S0 > 0; our numerical results in Figure 3 show that the
arguments remain valid in the case of a continuous periodic driver.

• In the fast-fast case (meaning τA = τB � τS) X, A and B have enough time to experience complete
transitions and relax to their equilibrium values in between each jump of the stimulus; in particular, they
all can be considered as simply enslaved to the stimulus’ oscillations.
By contrast, as soon as τS is smaller than τB or both, τA and τB, the transitions will be incomplete
(incomplete bifurcations) and the evolution of the corresponding variables, either B or both A and B, will
be truncated. B experiences a slow oscillatory drift towards its upper value B+(S0), which nevertheless is
not reached. The level B∗ reached by B in the slow-fast or slow-slow cases corresponds to a perfect balance
between the upward and downward steps (see Section 2.6 below).
• In the slow-slow case, A and B will barely evolve between two jumps of the stimulus. The main point is

the asymmetry of the evolution for S = 0 and S = S0, the latter being a bit less slower than the former,
due to the additional S0-dependent term in the right-hand-side of the evolution laws for A and B. Hence
A and B will evolve a bit more towards their values A+(S0) and B+(S0) in the phase when S = S0 than
they will relax (exponentially fast, with respective characteristic times τA and τB) towards their values
A−(0) = kmin and B−(0) = kmin in the phase when S = 0. We henceforth observe for A and B a slow drift
towards their values A+(S0) and B+(S0) (which are not reached) superimposed to oscillations of period τS
and small amplitude. In order to distinguish the fixed-point values A+(S0) etc. from the numerical values
reached during the oscillatory drift, we denote the latter by Amax (for the upper value of the variation in
A observed during the variation of the stimulus) and Amin (for the corresponding lower value). The time
average in this regime is denoted by A∗ = (Amax−Amin)/2. Relatedly, Bmax, Bmin, and B∗ can be defined.
The oscillatory drift persists until values A∗ and B∗, for which steps upwards and downwards equilibrate,
are reached. X remains at each moment enslaved to A+B.
• In the slow-fast case, namely τX � τA � τS � τB, one first observes a saw-like transient for A, X, and

above all B, the more visible the longer the time scale τB. In this transient, steps upwards are larger
than the steps downwards. Since τB � τS , B follows the oscillations with a delay reflected in a phase shift,
increasing as τB increases. The same argument as in the slow-slow case remains valid and B will experience
a slow drift towards the “balance” value B∗ superimposed to oscillations of period τS and small amplitude.
Since τA � τS , A is enslaved to the stimulus and follows almost in phase the oscillation of the stimulus;
since A is enslaved not only to S but also to B (via the X-dependence of the righthand side of dA/dt), and
B experiences delayed and incomplete relaxation, A is not exactly in phase with S and typically does not
reach the equilibrium values A±(S), but values Amax < A+(S) and Amin > A−(S). The output variable
X remains enslaved to A+B and accordingly, X exhibits oscillations of period τS .

2.4. Asymmetry of the on-off transition

Due to the details of the system equations (namely the fact that the absolute value of the r.h.s. of dA/dt
and dB/dt are lower for S = 0 than for S0), the incomplete relaxation is more pronounced towards the
lower fixed point. From Figure 3, as well as from its stochastic counterpart, Figure 2, this asymmetry in
the dual system is related to an asymmetry between the transition towards the upper fixed point and the
transition towards the lower fixed point, i.e. an asymmetry between the on-transition and the off-transition.

At t = 0, S jumps from S = 0 (for t < 0) to S0 � Smax. The variable X is slaved to A + B and will
vary as soon as A or B varies. Plugging in X = φ(A + B) in the evolution equations for A and B shows
that the evolutions of A and B are indirectly coupled as soon as S > 0. X will reach its equilibrium value
only when A and B have reached their equilbrium values.

When S turns off, S = 0, the evolution equations of A and B are

dA

dt
= τ−1

A (kmin −A) ,
dB

dt
= τ−1

B (kmin −B)

The evolution of A and B are now totally decoupled. The evolution of X is ruled by the slowest of the two
variables, here B.
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This asymmetry contributes to the functional features of the perceived noise buffering.

2.5. Numerical analysis for a system with a multiplicative reaction term

It is instructive to explore, how the logical coupling between the three dynamical variables, in particular the
action of A and B on X, affects the buffering capacity. The original system from [Brandman et al., 2005] is
based on a logical OR: Ẋ = f(A OR B), suggesting that the on-transition (S switching to a nonzero value
S0) is determined by the fast time scale, while the off-transition (S switching to 0) requires both intrinsic
variables A and B to go down and therefore is determined by the slow time scale, leading effectively to
the incomplete transition towards the lower fixed point and to the observed buffering capacity. In order to
investigate, whether this qualitative argument really accounts for the buffering capacity observed here, we
exchange the logical OR from the previous model by a logical AND, where Ẋ = f(AAND B). The coupling
term in this case is given by

√
AB, instead of (A + B)/2. The square-root ensures that the single loop

system and the two-loops system have the same bifurcation diagram/equilibrium curve, with moreover
A = B at equilibrium. Figure 5 shows the dual system for both logical couplings. It is seen that the
buffering capacity is indeed lower for the second model. It is however still clearly visible. Thus, also the
model using a logical AND shows an incomplete relaxation towards a lower fixed point.

Assuming τX � τA ≤ τB, we now obtain that X is enslaved to the product of A and B, namely
X = φ(2

√
AB). There is also an indirect coupling of the dynamics of reactive species (i.e. of the two loops)

due to the common feedback of the enslaved outcome X = φ(2
√
AB).

2.6. Quantification of noise buffering capacity

As a first step of quantitatively understanding noise buffering in this system of interlinked feedback loops,
we investigate, how well the result of the slow-fast decomposition, eq. (4) allows predicting the extremum
levels of oscillation of the output X under a periodic driver.

• In the fast-fast case, the minima of X lie at the position φ(A−(0)) = φ(kmin), while its maxima lie at the
position φ(A+(S0)).
• By contrast, in the slow-fast case, the slow variable B does not reach its upper equilibrium value B+(S0)

nor its lower equilibrium value B−(0) = kmin, but values Bmax(S0) and Bmin(S0) very close to B∗(S0).
Henceforth, neither A nor X will reach their upper and lower equilibrium values, despite the fact that their
characteristic times, τA and τX , respectively, are small compared to the stimulus period τS . The minimua
of A during oscillations of the stimulus between S = 0 and S = S0 can be related to the maxima Amax(S0)
by integrating the evolution law for A when S = 0; it yields a minimum value

Amin(S0) = kmin + (Amax(S0)− kmin)e−τS/τA ,

which is very close to kmin as soon as τA � τS . Note that we here recover the asymmetry between the
on-off and off-on transitions discussed in Section 2.4: Whereas Amax depends on S0, Amin takes a value
in practice independent of S0. As for X, it oscillates between the value φ(kmin + B∗(S0)) and the value
φ(Amax(S0) +B∗(S0)).
• In the slow-slow case, a similar reasoning as in the dual case, but now for both A and B, accounts for

oscillations of A, B and X having the period τS of the stimulus and weak amplitudes around respectively
A∗(S0), B

∗(S0) = A∗(S0) and X∗(S0) = φ(A∗(S0)), as seen in Figure 3. The whole discussion remains
valid for the AND logical coupling rule, provided we replace X = φ(A+B) by X = φ(2

√
AB).

The system is thus stuck at or in between S0-dependent positions. Summarizing, it is thus clearly seen
from the numerical simulations that the behaviour of the system, and in particular that of the slow-fast
case, is not stochastically determined but rather incorporated in the system’s architecture.

Figure 6 shows this prediction of the noise buffering capacity (given by the amplitude reduction of the
output variable) inserted in some of the previous response patterns.

We can go one step further in the prediction of the noise buffering by looking at the value of B∗ reached
by B in the slow-fast or slow-slow cases, when the oscillatory upwards drift has stabilized. Explicitly, it
is obtained by writing that the steps upward and downward made at each half-period of the stimulus
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equilibrate. The Hill function h(x) = xn/(xn + ecn50) with n = 3 is a steep sigmoidal with an inflexion
point at X0 = ec50. Accordingly, we shall approximate h(x) ≈ 0 if x < ec50 and h(x) ≈ 1 if x > ec50.
We shall assume that the output oscillates between sufficiently large values to replace h(X) by 1. Also,
we shall use a linear approximation of the dynamics around the searched value B∗, namely consider that
the step upwards (for the variable B) has roughly an amplitude of (τS/2τB)[dB/dt(S0)] and that the step
downwards has roughly an amplitude of (τS/2τB)[dB/dt(S = 0)]. It thus comes S0(1−B∗) ≈ 2[B∗−kmin],
yielding

B∗ ≈ S0 + kmin
S0 + 2

(5)

It is easy to check that B∗ < B+(S0) (note that B∗ also depends on S0 and should be denoted B∗(S0)).

Rigorously, around B∗(S0), we should have
∫ τS/2
0 dB/dt(S0)dt = −

∫ τS/2
0 dB/dt(0)dt. Note that eq. (5) is

valid whether we consider OR and AND logical rules for describing the influence of A and B on X. This
balance value, at least its approximate value does not depend on the time scale τB provided τB � τS .

3. Discussion

The dominant functional feature of this regulatory device, namely the combination of a rapid response to
the onset of the stimulus and a buffering of noise, is not a consequence of the stochasticity of the external
stimulus. It is rather linked to the time scale separation among the dynamical variables and with respect
to the stimulus variation (independently of whether this variation is stochastic or periodic).

Time scales here really determine the functional features of the system. In particular, the “equilibrium
view” associated with the bifurcation diagram is misleading, as soon as the stimulus time scale is smaller
than the larger time scale of the system. Whether the varying stimulus is deterministic or stochastic does
not matter for these features. This, moreover, endows the system with out-of-equilibrium features, since
it might now spend noticeable time in the neighborhood, e.g., of the metastable branch, whereas it would
never visit the upper and the lower fixed points (equilibria).

A similar behavior like in the dual system discussed here is also observed in a coherent feedforward
loop. The coherent feedforward loop is a frequent network motif of, e.g. gene regulatory networks, where a
general transcription factor X regulates an effector operon Z directly and via a specific transcription factor
Y [Alon, 2007; Milo et al., 2004; Shen-Orr et al., 2002]. The two signals are, e.g., combined with a logical
AND to yield the output state of Z. Coherence here means that both routes from X to Z have the same
sign (either activating or inhibitory). For a suitable choice of activation thresholds, this device is capable
of filtering out transient activation signals and responding only to persistent signals, while allowing a rapid
system shutdown when the input stimulus stops [Alon, 2007]. This asymmetry is opposite to the one we
observe in our case: The off-on transition is rapid whereas the on-off transition is slow.

In fact, the feedforward loop can be viewed as a stylized representation of such time scale separations.
The threshold for Y with respect to X induces a time window for the blocking of the external signal.
Fluctuations on a smaller time scale are buffered by the system.

Lastly, it should be noted that it can be very interesting to explore this device also under the influence
of a real stochastic driver, using the whole toolbox of stochastic processes. In particular, when the noise is
tuned to induce jumps across the unstable branch, one could in principle observe the exact opposite effect
for the dual system: an amplification of the noise in the system output via on-off intermittency [Aumâıtre
et al., 2005].
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4. Figures

Fig. 1. Schematic representation of the interlinked feedback loop system from [Brandman et al., 2005].
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Fig. 2. Reproduction of the simulation results from [Brandman et al., 2005] for the slow-slow case (A, E, and H) fast-fast case
(B, F, and I), and the dual slow-fast case (C, G, and J). The noisy stimulus is presented in D. The time-course evolution of
the output quantity X (designated with blue), along with the quantities A and B (designated with green and red respectively
(Note: for the slow-slow and the fast-fast cases those two quantities coincide)) is shown in panels A, B, and C. Panels E, F, and
G give a histogram of values of the output X for a time window from t=2500 to t=4000. These histograms give an indication
of the dwelling times of the system at the different output values X. In panels H, I, and J, the trajectory of the output X
under the effect of the noisy stimulus can be seen in the bifurcation plot for each example (superimposed to the bifurcation
diagram shown in red). Dashed lines: window from which the trajectories in H, I, and J have been taken.
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Fig. 3. Same as Figure 2, but with a periodic deterministic stimulus.



January 12, 2011 11:59 PSYtyanovaEtAl11

12 Yordanov et al.

Fig. 4. Relaxation to the slow manifold (obtained from eq. (4)) of a trajectory in phase space for the dual (slow-fast) system,
for a constellation of different initial conditions (shown in blue) spanning the right-hand side of the cube.

Fig. 5. The response of the feedback loop system with a multiplicative reaction term (logical AND) (upper row) is compared
with the case of an additive reaction term (logical OR) (bottom row). Parameter settings are those for the dual (slow-fast)
system. For clarity, the time course of the stimulus has been omitted. The bottom row coincides with the corresponding curves
from Figure 3.
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Fig. 6. For several of the previous response patterns, the prediction (dashed red line) from eq. (4) (or its corresponding
version X = φ(2

√
AB) for a multiplicative reaction term) has been inserted. Row 1: multiplicative reaction term for the

slow-fast system (same as Figure 5 top row); row 2: additive reaction term for the slow-fast system (same as Figure 5 bottom
row); row 3: multiplicative reaction term for the fast-fast system. Again, for clarity, the time course of the stimulus has been
omitted.
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