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In [Brandman et al., 2005] it was proposed that interlinked fast and slow positive feedback loops
are a frequent motif in biological signaling, because such a device can allow for a rapid response
to an external stimulus (sensitivity) along with a certain noise-buffering capacity (robustness),
as soon as the two loops operate on different time scales. Here we explore the properties of
the nonlinear system responsible for this behavior. We argue that (a) the noise buffering is
not linked to the stochastic nature of the stimulus, but only to the time scale of the stimulus
variation compared to the intrinsic time scales of the system, and (b) this buffering of stimulus
variations follows from the stabilization of a region of the state space away from the equilibrium
branches of the system. Our analysis is based on a slow-fast decomposition of the dynamics. We
analyze the strength of this buffering as a function of the time scales involved and the Boolean
logic of the coupling between dynamic variables, as well as of the amplitude of the stimulus
variations. We underline that such a nonequilibrium regime is universal as soon as the stimulus
time scale is smaller than the larger time scale of the system, preventing the prediction of the
behavior from the features of the bifurcation diagram or using a linear analysis.
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1. Introduction

1.1. Background

Motivated by graph theory and nonlinear dynamics,
an influential trend of research in systems biology
currently attributes properties of biological function
to specific regulatory motifs [Brandman & Meyer,
2008; Novak & Tyson, 2008]. Examples include cir-
cuits of negative feedback loops [Pigolotti et al.,
2007], interlinked feedback loops acting on differ-
ent time scales [Brandman et al., 2005], regulatory
devices capable of adaptation [Ma et al., 2009], the
composition of a system out of regulatory units
[Milo et al., 2004] and their relation to robustness
[Klemm & Bornholdt, 2005; Kaluza et al., 2007;
Kaluza & Mikhailov, 2007; Kaluza et al., 2008;
Lesne, 2008], and the number of positive and nega-
tive feedback loops in regulatory circuits [Kwon &
Cho, 2008].

One of the intrinsic challenges such regulatory
devices often face is to respond rapidly to some
external signal and, at the same time, filter out
spurious stimuli and fluctuations arising from the
environment.

In the context of gene regulation based on the
action of transcription factors, Alon and co-workers
[Shen-Orr et al., 2002; Alon, 2007] have argued that
feedforward loops, with activation thresholds suit-
ably tuned during biological evolution, can serve as
a delay element, where only persistent stimuli lead
to an activation of the bottom-level element in the
feedforward loop, while spurious, noise-like stimuli
get filtered out by the consistency check between
the other two elements.

Based on a broad range of examples from
cell biology, Brandman and co-workers [Brandman
et al., 2005] proposed that a frequent motif in
signaling, two interlinked positive feedback loops,
which act on different time scales, may serve the
dual purpose to unite sensitivity and robustness to
noise. They supported their hypothesis by a qual-
itative analysis of numerical simulations obtained
with a minimal model of such interlinked feed-
back loops (see next section for more details on
this model). However, they did not provide an
analysis of the underlying dynamical mechanism
at work. We here reanalyze the observations from
[Brandman et al., 2005] using the general framework
of slow-fast decomposition.

Given the dynamics producing a bistable
switch, as is typically obtained from a positive feed-
back loop [Thomas & Kaufman, 2001], we want to

understand the influence of the different time scales
in the dynamics. The observable we analyze is the
system response to a step-wise, oscillatory or noisy
stimulus. We conduct an analytical and numerical
study to better understand the interplay of the time
scales involved.

1.2. Minimal model of interlinked
feedback loops

Figure 1 shows the detailed architecture of the sys-
tem from [Brandman et al., 2005], including produc-
tion and degradation terms for the internal species
A, B, and the output X. Following [Brandman
et al., 2005], the model is organized in such a way
that the time scales of degradation of A and B coin-
cide with the parameters τA and τB, respectively,
and that feedback of the output on both A and B
are nonlinear Hill-type functions. In the parame-
ter regime discussed in [Brandman et al., 2005] the
system displays bistability as a function of the stim-
ulus strength, serving as bifurcation parameter. A
stimulus S acts multiplicatively on the activation
terms of the internal species. For our investigation,
S serves as a control parameter of the nonlinearity.
The stimulus S acts on both A and B and is relayed
by their respective dynamics

dX

dt
= τ−1

X

[
kX,on(1 − X)

(
A + B

2

)

− kX,offX + kX,min
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A
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Xn + ecn
50

)
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dB
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= τ−1

B
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S(1 − B)
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Xn
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50

)
− B + kmin

]

(3)

with different time scales, e.g. τB � τA in the fast–
slow case (in any case, when the time scales of A
and B are not equal, we choose B to be the slower
variable among A and B). Note that we have self-
inhibitory terms ensuring that all three variables A,
B and the output X remain bounded.

It should be noted that there are, indeed, four
time scales in the system (τA and τB, the time scale
of the signal, τS, and the time scale τX of the evolu-
tion of the output variable driven by A and B). In
[Brandman et al., 2005] the time scale of the output
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Fig. 1. Schematic representation of the interlinked feedback
loop system from [Brandman et al., 2005].

X is implicitly set to τX = 1. We shall see below
that what matters for the dynamical phenomena
mentioned above is τX � τA ≤ τB .

At equilibrium, at fixed S, A(S)= B(S), and
X(S) is a monotonously increasing function of
A(S)+B(S). For suitable values of the parameters,
we have three solutions X−(S), Xu(S) and X+(S)
in some range Smin < S < Smax, denoting the
lower stable, unstable and upper stable fixed points,
respectively. Then necessarily (because at equilib-
rium, A and B are uniquely determined knowing S
and X) we also observe three distinct values A−(S),
Au(S) and A+(S) (and the same for B). The equi-
librium curve is thus S-shaped in any projection
plane and contained in the surface A = B. The
bifurcation diagram, as well as the nullclines, are
the same whatever the values of τA, τB and τX .

In the following, we plot the theoretical, asymp-
totic bifurcation diagram, that is the value of the
single or two stable fixed points X±(S0) and the
unstable fixed point Xu(S0) as a function of a con-
stant stimulus S0 as a reference, to set the actual
simulated trajectories against it. Then we investi-
gate the interplay between the relaxation towards
the equilibrium branches of the bifurcation dia-
grams and the time dependence of the stimulus S.
Specifically we investigate, how the output is con-
trolled by the three time scales τX � τA ≤ τB of the
system’s evolution laws and by the additional time
scale τS that comes into play when the stimulus is
varying.

Parameter values we are using throughout this
paper are (in agreement with [Brandman et al.,
2005]): kX,on = 2, kX,off = 0.3, kX,min = 0.001,
kmin = 0.01, n = 3, ec50 = 0.35, as well as τA = 2
for a fast loop and τB = 125 for a slow loop.

The only difference to the model from [Brandman
et al., 2005] is the normalized value of A + B
(divided by 2) on the right-hand side of dX/dt so
that a single and double loop system would have
the same bifurcation diagram. The time scale τS

has been taken to be 30 for the stochastic varia-
tion (and, for visual clarity, 60 for the deterministic
periodic variation discussed below).

Our noise S(t) is a random sequence of steps.
The time intervals between steps are drawn from
a uniform distribution with an average of 30 and
a width of ±10. The height is drawn from a uni-
form distribution between 0 and the constant signal
strength S0. Apart from wanting to stay as close to
the system introduced in [Brandman et al., 2005] on
biological grounds, the motivation for the step-like
noise on top of the signal is also that it contains
only a single dominant time scale.

2. Results

2.1. Reproduction of the previous
result

A reproduction of the key finding from [Brandman
et al., 2005] is shown in Fig. 2. For three time-
scale constellations (first row: slow–slow, that is,
τA = τB = 125 � τS ; second row: fast–fast, that
is, τA = τB = 2 � τS; and third row: fast–slow or
dual, that is, τA = 2 � τS � τB = 125) the time
course (left-hand side) of the output X under the
effect of the noisy stimulus and the trajectory in the
bifurcation plot (right-hand side) is given. Note that
noise is not white noise but a random alternation of
positive and negative steps with finite characteris-
tic amplitude η (bounded variance) and an average
duration τS.

By construction, the slow–slow system (top
row) fails to respond rapidly enough to the onset
of the stimulus and almost fully buffers fluctua-
tions. When both feedback loops are fast, as given
in the second row of Fig. 2, the system frequently
falls back into the previous fixed point (the one for
S = 0) under the action of the stimulus noise, fol-
lowing its variation.

The dual case (third row in Fig. 2) is substan-
tially less affected by the noise and, at the same
time, is capable of responding to the onset of the
stimulus almost as rapidly as the fast–fast system.
This is the key feature described in [Brandman
et al., 2005]. One question we are addressing here
about the mechanism behind the robust function-
ing of this regulatory device is, how the attribution
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Fig. 2. Reproduction of the simulation results from [Brandman et al., 2005] for the slow–slow case [(a), (e) and (h)] fast–fast
case [(b), (f) and (i)], and the dual slow–fast case [(c), (g) and (j)]. The noisy stimulus is presented in (d). The time-course
evolution of the output quantity X (designated with blue), along with the quantities A and B (designated with green and
red respectively (Note: for the slow–slow and the fast–fast cases those two quantities coincide)) is shown in panels (a), (b)
and (c). Panels (e), (f) and (g) give a histogram of values of the output X for a time window from t = 2500 to t = 4000. These
histograms give an indication of the dwelling times of the system at the different output values X. In panels (h), (i) and (j),
the trajectory of the output X under the effect of the noisy stimulus can be seen in the bifurcation plot for each example
(superimposed to the bifurcation diagram shown in red). Dashed lines: window from which the trajectories in (h), (i) and (j)
have been taken.

of the two time scales (fast = onset, slow = noise
response) is achieved.

Plotting the probability distribution function
P (A,B,X) (or its marginal distributions, e.g.
P (X), which is approximated by the histograms
in Fig. 2) visually captures the evidence of the
change in the phase space exploration when the
slowest characteristic scale of the evolution, τB ,
increases far beyond the characteristic time τS of
the stimulus (middle column frames e, f, g in Fig. 2).

What deserves the name of stochastic potential is
minus the logarithm of this distribution function
[Lemarchand et al., 1988], and it has no direct
relation to Kramers rate theory, contrary to what
is misleadingly presented in [Zhang et al., 2007].
This representation of the trajectories underline
nonequilibrium effects that stabilize other regions
than equilibrium branches. This stabilization
might give dominant weight to the corresponding
regions.
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The trajectories in the bifurcation plane essen-
tially characterize the noise buffering observed in
[Brandman et al., 2005] as an incomplete relaxation
towards the fixed points. This is particularly strong
for the lower fixed point. It should be noted that
incomplete relaxation is a universal phenomenon,
which is, however, frequently ignored. The level of
the relaxation is then perceived as the noise buffer-
ing capacity of the system. The concept of incom-
plete relaxation will be explained in more detail in
the next section.

2.2. Slow–fast decomposition

We explore the quantitative properties of the incom-
plete relaxation and the buffering capacity by
means of a slow–fast decomposition.

Slow–fast decomposition refers to a decomposi-
tion of (X,A,B, S) into (y, Z) where y is fast and
Z slow, i.e. y relaxes fast to a steady state y∗(Z).
It amounts to the determination of a so-called slow
manifold W, defined by the equation y = y∗(Z), i.e.
formed by the points [y∗(Z), Z]. Then the dynamics
can be reduced to the slow dynamics on the man-
ifold, i.e. the slow evolution of Z(t), to which the
evolution of the fast variable(s) y is enslaved. There
are possibly more than two levels, namely several
nested slower and slower manifolds (the slowest has
the smallest dimension and is embedded in other
ones).

The vision of a one-dimensional slow mani-
fold parameterized by S (i.e. Z = S), and fast vari-
ables y = (A,B,X) yields the S-shaped bifurcation
diagram. Taking this as a reference picture pro-
vides valid insights into the dynamics of the system
only if τS is far larger than all the time scales of
the dynamics, which correspond here to the fast–
fast case. In other situations, as soon as τS �
τB, the slow manifold is different and cannot be
reached by a nonequilibrium perturbation analysis
of the bifurcation diagram nor any linear stability
analysis.

Here a central feature is rather the value τX �
(τA, τB), from which follows that at fixed stim-
ulus S, the output X is enslaved to the evolu-
tion of the reacting species A and B. As soon as1

τX � τA ≤ τB, the quasi-stationary approximation
for X (whatever the stimulus is) yields an enslaving
of X to the combination A + B, namely

X = φ(A + B) with

φ(z) =
kX,min + kX,on

(
z

2

)

kX,eff + kX,on

(
z

2

) . (4)

The very first stage of the evolution is a fast conver-
gence of the initial conditions (A0, B0,X0) spread
out in a volume to the surface X = φ(A + B)
(slow manifold, see Fig. 4). At fixed S, either τA ∼
τB and the trajectories will converge on this sur-
face towards the nearest fixed point; or τA � τB

and the trajectories will first converge to a surface
A = A(B,S) enslaved to B at fixed S and embed-
ded in the above-mentioned hyper-surface, Eq. (4),
then this surface itself shrinks towards the stable
branches of fixed points (parameterized by S), as B
slowly evolves towards its equilibrium value.

For a varying stimulus, in the dual case A is
enslaved to a combination of S and B. In the slow–
fast or slow–slow cases, the variable B evolves far
slower than S. It would nevertheless be misleading
to consider that B is only sensitive to the time aver-
age of S over τB: As detailed below for the case of
a periodic stimulus, this would ignore the difference
between the evolutions of B corresponding to dif-
ferent values of S (due to the fact that in our model
the stimulus involved is nonadditive).

2.3. Detailed discussion of time
scale regimes and extension
to a periodic driver

It is clear from Fig. 2 that the behavior of the out-
put is determined from the time scale of the
stochastic stimulus variation, rather than by the
stochasticity itself. In Fig. 3, we therefore substi-
tute the stochastic stimulus by a periodic driver, in
order to systematically vary the time scale of the
stimulus relative to the time scale present in the
ODE system. For clarity, we argue in what follows
with a periodic sequence of discrete stimulus jumps
between S = 0 and S = S0 > 0; our numerical results
in Fig. 3 show that the arguments remain valid in
the case of a continuous periodic driver.

• In the fast–fast case (meaning τA = τB � τS) X,
A and B have enough time to experience com-
plete transitions and relax to their equilibrium

1The behavior for τX ≥ τB ≥ τA would be trivial (stabilization to the lower equilbrium point). We are not discussing the case
τA ≤ τX ≤ τB.
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Fig. 3. Same as Fig. 2, but with a periodic deterministic stimulus.

values in between each jump of the stimulus; in
particular, they all can be considered as simply
enslaved to the stimulus’ oscillations.

By contrast, as soon as τS is smaller than τB

or both, τA and τB , the transitions will be incom-
plete (incomplete bifurcations) and the evolution
of the corresponding variables, either B or both
A and B, will be truncated. B experiences a slow
oscillatory drift towards its upper value B+(S0),
which nevertheless is not reached. The level B∗
reached by B in the slow–fast or slow–slow cases
corresponds to a perfect balance between the
upward and downward steps (see Sec. 2.6 below).

• In the slow–slow case, A and B will barely evolve
between two jumps of the stimulus. The main

point is the asymmetry of the evolution for S = 0
and S = S0, the latter being a bit less slower than
the former, due to the additional S0-dependent
term on the right-hand side of the evolution laws
for A and B. Hence A and B will evolve a bit more
towards their values A+(S0) and B+(S0) in the
phase when S = S0 then they will relax (expo-
nentially fast, with respective characteristic times
τA and τB) towards their values A−(0) = kmin

and B−(0) = kmin in the phase when S = 0.
We henceforth observe for A and B a slow drift
towards their values A+(S0) and B+(S0) (which
are not reached) superimposed to oscillations of
period τS and small amplitude. In order to dis-
tinguish the fixed-point values A+(S0) etc. from
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Fig. 4. Relaxation to the slow manifold [obtained from Eq. (4)] of a trajectory in phase space for the dual (slow–fast) system,
for a constellation of different initial conditions (shown in blue) spanning the right-hand side of the cube.

the numerical values reached during the oscilla-
tory drift, we denote the latter by Amax (for the
upper value of the variation in A observed during
the variation of the stimulus) and Amin (for the
corresponding lower value). The time average in
this regime is denoted by A∗ = (Amax −Amin)/2.
Relatedly, Bmax, Bmin, and B∗ can be defined.
The oscillatory drift persists until values A∗ and
B∗, for which steps upwards and downwards equi-
librate, are reached. X remains at each moment
enslaved to A + B.

• In the slow–fast case, namely τX � τA � τS �
τB, one first observes a saw-like transient for A,
X and above all B, the more visible the longer the
time scale τB . In this transient, steps upwards are
larger than the steps downwards. Since τB � τS ,
B follows the oscillations with a delay reflected
in a phase shift, increasing as τB increases. The
same argument as in the slow–slow case remains
valid and B will experience a slow drift towards
the “balance” value B∗ superimposed to oscil-
lations of period τS and small amplitude. Since
τA � τS, A is enslaved to the stimulus and fol-
lows almost in phase the oscillation of the stimu-
lus; since A is enslaved not only to S but also to
B (via the X-dependence of the right-hand side
of dA/dt), and B experiences delayed and incom-
plete relaxation, A is not exactly in phase with

S and typically does not reach the equilibrium
values A±(S), but values Amax < A+(S) and
Amin > A−(S). The output variable X remains
enslaved to A + B and accordingly, X exhibits
oscillations of period τS .

2.4. Asymmetry of the on–off
transition

Due to the details of the system equations (namely
the fact that the absolute value of the right-hand
side of dA/dt and dB/dt are lower for S = 0 than for
S0), the incomplete relaxation is more pronounced
towards the lower fixed point. From Fig. 3, as well as
from its stochastic counterpart, Fig. 2, this asym-
metry in the dual system is related to an asym-
metry between the transitions towards the upper
fixed point and towards the lower fixed point, i.e.
an asymmetry between the on-transition and the
off-transition.

At t = 0, S jumps from S = 0 (for t < 0)
to S0 � Smax. The variable X is slaved to A + B
and will vary as soon as A or B varies. Plugging in
X = φ(A+B) in the evolution equations for A and
B shows that the evolutions of A and B are indi-
rectly coupled as soon as S > 0. X will reach its
equilibrium value only when A and B have reached
their equilbrium values.
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When S turns off, S = 0, the evolution equa-
tions of A and B are

dA

dt
= τ−1

A (kmin − A),
dB

dt
= τ−1

B (kmin − B).

The evolution of A and B are now totally decou-
pled. The evolution of X is ruled by the slowest of
the two variables, here B.

This asymmetry contributes to the functional
features of the perceived noise buffering.

2.5. Numerical analysis for a
system with a multiplicative
reaction term

It is instructive to explore, how the logical cou-
pling between the three dynamical variables, in
particular the action of A and B on X, affects
the buffering capacity. The original system from
[Brandman et al., 2005] is based on a logical OR:
Ẋ = f(A OR B), suggesting that the on-transition
(S switching to a nonzero value S0) is determined
by the fast time scale, while the off-transition
(S switching to 0) requires both intrinsic variables
A and B to go down and therefore is determined by
the slow time scale, leading effectively to the incom-
plete transition towards the lower fixed point and to
the observed buffering capacity. In order to inves-
tigate, whether this qualitative argument really
accounts for the buffering capacity observed here,
we exchange the logical OR from the previous model

by a logical AND, where Ẋ = f(A AND B). The
coupling term in this case is given by

√
AB , instead

of (A+ B)/2. The square-root ensures that the sin-
gle loop system and the two-loops system have the
same bifurcation diagram/equilibrium curve, with
moreover A = B at equilibrium. Figure 5 shows
the dual system for both logical couplings. It is
seen that the buffering capacity is indeed lower for
the second model. It is however still clearly vis-
ible. Thus, also the model using a logical AND
shows an incomplete relaxation towards a lower
fixed point.

Assuming τX � τA ≤ τB , we now obtain that
X is enslaved to the product of A and B, namely
X = φ(2

√
AB). There is also an indirect coupling

of the dynamics of reactive species (i.e. of the two
loops) due to the common feedback of the enslaved
outcome X = φ(2

√
AB).

2.6. Quantification of noise
buffering capacity

As a first step of quantitatively understanding
noise buffering in this system of interlinked feed-
back loops, we investigate, how well the result of
the slow–fast decomposition, Eq. (4) predicts the
extreme levels of oscillation of the output X under
a periodic driver.

• In the fast–fast case, the minima of X lie at the
position φ(A−(0)) = φ(kmin), while its maxima
lie at the position φ(A+(S0)).

Fig. 5. The response of the feedback loop system with a multiplicative reaction term (logical AND) (upper row) is compared
with the case of an additive reaction term (logical OR) (bottom row). Parameter settings are those for the dual (slow–fast)
system. For clarity, the time course of the stimulus has been omitted. The bottom row coincides with the corresponding curves
from Fig. 3.
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• By contrast, in the slow–fast case, the slow vari-
able B does not reach its upper equilibrium value
B+(S0) nor its lower equilibrium value B−(0) =
kmin, but values Bmax(S0) and Bmin(S0) very
close to B∗(S0). Henceforth, neither A nor X will
reach their upper and lower equilibrium values,
despite the fact that their characteristic times, τA

and τX , respectively, are small compared to the
stimulus period τS. The minima of A during oscil-
lations of the stimulus between S = 0 and S = S0

can be related to the maxima Amax(S0) by inte-
grating the evolution law for A when S = 0; it
yields a minimum value

Amin(S0) = kmin + (Amax(S0) − kmin)e−τS/τA ,

which is very close to kmin as soon as τA �
τS. Note that we here recover the asymmetry
between the on–off and off–on transitions dis-
cussed in Sec. 2.4: whereas Amax depends on S0,
Amin takes a value in practice independent of S0.

As for X, it oscillates between the value φ(kmin +
B∗(S0)) and the value φ(Amax(S0) + B∗(S0)).

• In the slow–slow case, a similar reasoning as
in the dual case, but now for both A and B,
accounts for oscillations of A, B and X having the
period τS of the stimulus and weak amplitudes
around respectively A∗(S0), B∗(S0) = A∗(S0)
and X∗(S0) = φ(A∗(S0)), as seen in Fig. 3.
The whole discussion remains valid for the AND
logical coupling rule, provided we replace X =
φ(A + B) by X = φ(2

√
AB).

The system is thus stuck at or in between
S0-dependent positions. Summarizing, it is thus
clearly seen from the numerical simulations that the
behavior of the system, and in particular that of the
slow–fast case, is not stochastically determined but
rather incorporated in the system’s architecture.

Figure 6 shows this prediction of the noise
buffering capacity (given by the amplitude

Fig. 6. For several of the previous response patterns, the prediction (dashed red line) from Eq. (4) (or its corresponding
version X = φ(2

√
AB) for a multiplicative reaction term) has been inserted. Row 1: multiplicative reaction term for the

slow–fast system (same as Fig. 5, top row); row 2: additive reaction term for the slow–fast system (same as Fig. 5, bottom
row); row 3: multiplicative reaction term for the fast–fast system. Again, for clarity, the time course of the stimulus has
been omitted.
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reduction of the output variable) inserted in some
of the previous response patterns.

We can go one step further in the prediction of
the noise buffering by looking at the value of B∗
reached by B in the slow–fast or slow–slow cases,
when the oscillatory upwards drift has stabilized.
Explicitly, it is obtained by writing that the steps
upward and downward made at each half-period of
the stimulus equilibrate. The Hill function h(x) =
xn/(xn + ecn

50) with n = 3 is a steep sigmoidal
with an inflexion point at X0 = ec50. Accordingly,
we shall approximate h(x) ≈ 0 if x < ec50 and
h(x) ≈ 1 if x > ec50. We shall assume that the
output oscillates between sufficiently large values
to replace h(X) by 1. Also, we shall use a linear
approximation of the dynamics around the searched
value B∗, namely consider that the step upwards
(for the variable B) has roughly an amplitude of
(τS/2τB)[dB/dt(S0)] and that the step downwards
has roughly an amplitude of (τS/2τB)[dB/dt(S =
0)]. It thus becomes S0(1 − B∗) ≈ 2[B∗ − kmin],
yielding

B∗ ≈ S0 + kmin

S0 + 2
. (5)

It is easy to check that B∗ < B+(S0) (note that
B∗ also depends on S0 and should be denoted
B∗(S0)). Rigorously, around B∗(S0), we should
have

∫ τS/2
0 dB/dt(S0)dt =−∫ τS/2

0 dB/dt(0)dt . Note
that Eq. (5) is valid whether we consider OR and
AND logical rules for describing the influence of A
and B on X. This balance value, at least its approx-
imate value does not depend on the time scale τB

provided τB � τS.

3. Discussion

The dominant functional feature of this regulatory
device, namely the combination of a rapid response
to the onset of the stimulus and a buffering of
noise, is not a consequence of the stochasticity of
the external stimulus. It is rather linked to the time
scale separation among the dynamical variables and
with respect to the stimulus variation (indepen-
dently of whether this variation is stochastic or
periodic).

Time scales here really determine the func-
tional features of the system. In particular, the
“equilibrium view” associated with the bifurca-
tion diagram is misleading, as soon as the stim-
ulus time scale is smaller than the larger time
scale of the system. Whether the varying stimulus

is deterministic or stochastic does not matter for
these features. This, moreover, endows the system
with out-of-equilibrium features, since it might now
spend noticeable time in the neighborhood, e.g. of
the metastable branch, whereas it would never visit
the upper and the lower fixed points (equilibria).

A similar behavior like in the dual system
discussed here is also observed in a coherent feed-
forward loop. The coherent feedforward loop is a
frequent network motif of, e.g. gene regulatory net-
works, where a general transcription factor X regu-
lates an effector operon Z directly and via a specific
transcription factor Y [Alon, 2007; Milo et al., 2004;
Shen-Orr et al., 2002]. The two signals are, e.g.
combined with a logical AND to yield the output
state of Z. Coherence here means that both routes
from X to Z have the same sign (either activat-
ing or inhibitory). For a suitable choice of activa-
tion thresholds, this device is capable of filtering
out transient activation signals and responding only
to persistent signals, while ensuring a rapid sys-
tem shutdown when the input stimulus stops [Alon,
2007]. This asymmetry is opposite to the one we
observe in our case: The off–on transition is rapid
whereas the on–off transition is slow.

In fact, the feedforward loop can be viewed as
a stylized representation of such time scale sepa-
rations. The threshold for Y with respect to X
induces a time window for the blocking of the exter-
nal signal. Fluctuations on a smaller time scale are
buffered by the system.

Lastly, it should be noted that it can be very
interesting to explore this device also under the
influence of a real stochastic driver, using the whole
toolbox of stochastic processes. In particular, when
the noise is tuned to induce jumps across the unsta-
ble branch, one could in principle observe the exact
opposite effect for the dual system: an amplifica-
tion of the noise in the system output via on–off
intermittency [Aumâıtre et al., 2005].
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