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Role of long cycles in excitable dynamics on graphs
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Topological cycles in excitable networks can play an important role in maintaining the network activity. When
properly activated, cycles act as dynamic pacemakers, sustaining the activity of the whole network. Most previous
research has focused on the contributions of short cycles to network dynamics. Here, we identify the specific cycles
that are used during different runs of activation in sparse random graphs, as a basis of characterizing the contribu-
tion of cycles of any length. Both simulation and a refined mean-field approach evidence a decrease in the cycle
usage when the cycle length increases, reflecting a trade-off between long time for recovery after excitation and low
vulnerability to out-of-phase external excitations. In spite of this statistical observation, we find that the successful
usage of long cycles, though rare, has important functional consequences for sustaining network activity: The
average cycle length is the main feature of the cycle length distribution that affects the average lifetime of activity in
the network. Particularly, use of long, rather than short, cycles correlates with higher lifetime, and cutting shortcuts
in long cycles tends to increase the average lifetime of the activity. Our findings, thus, emphasize the essential,
previously underrated role of long cycles in sustaining network activity. On a more general level, the findings
underline the importance of network topology, particularly cycle structure, for self-sustained network dynamics.
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I. INTRODUCTION

Several mechanisms have been proposed for generating
self-sustained brain dynamics and brain rhythms [1]. Some
of these mechanisms are associated with intrinsic dynamic
features of the individual neurons and others with network
properties, generated by topological features of the graph
in which the activity propagates. A mechanism to produce
persistent oscillatory activity in a network of excitable ele-
ments has been proposed in [2], where the characteristics of
the oscillations are determined purely by the structure of the
graph. This type of self-sustained activity is produced by the
re-entrance of activity in a cycle, and can drive the whole
network at a period set by the length of the cycle. We here
explore this type of activity, focusing on cycles and their impact
on self-sustained network activity.

Several studies have analyzed the impact of cycles on the
dynamics of networks of excitable elements. For example, it
was shown in [3] for integrate-and-fire neurons that a very low
density of shortcuts in a ring (yielding a small-world network)
is sufficient for generating persistent activity from a local
stimulus through the re-injection of activity into previously
excited domains. In [4,5], based on continuous dynamics, a
method for identifying the drivers of activity was proposed,
by selecting the so-called dominant phase-advanced driving
(DPAD) links, in order to unmask the self-organized structures
supporting self-sustained activity. Others [6,7] also identified
pacemaker loops and analyzed features of the oscillating states
and their associated driving loops.
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Most evidence on cycle usage so far, however, is indirect,
as it is challenging to disentangle different topological con-
tributions to the network dynamics. Here we use a highly
generic discrete-state model of excitable dynamics which
allows us to clearly define the usage of a cycle. The use of
discrete dynamical models to explore relationships between
network architecture and dynamics has previously provided
key insights into the functions of complex networks, for
example, Boolean models for gene regulatory networks [8]
and “susceptible-infected-recovered” (SIR) and “susceptible-
infected-susceptible” (SIS) models for epidemic diseases in
social networks [9]. More generally, cellular automata (CA)
models have been used in a vast number of investigations
to explore the emergence of complex patterns from simple
dynamic rules. Originally defined on regular lattices [10], they
have also been studied on more complex topologies [11–13]
and in noisy environments [14,15]. The principal goal of inves-
tigating CA on graphs is to explore the relationship between
network architecture and dynamics from the perspective of
pattern formation. Also for CA on graphs, the Wolfram classes
[10,16] are a helpful and established means of characterizing
observed dynamic behaviors (see, e.g., [12]).

The main purpose of this paper is to analyze the contribution
of topological cycles to self-sustained activity in a network
of excitable elements. To achieve this goal, we developed
an algorithm to detect successfully used cycles in sparse
Erdős-Rényi (ER) random graphs [17]. We worked with a
basic model of excitable dynamics, a three-state CA, that
allowed us to disentangle contributions from topology and
the intrinsic dynamics of the node elements to self-sustained
network activity.

Qualitatively speaking, the embedding of a cycle in the
network perturbs the systematic “pacemaker” function that
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GARCIA, LESNE, HILGETAG, AND HÜTT PHYSICAL REVIEW E 90, 052805 (2014)

this cycle would have in isolation. Such perturbations have
a stronger effect with increasing cycle length, due to the
associated increase of the number of external links through
which out-of-phase excitations may enter the cycle. At the
same time, however, the usage of cycles may also increase
with cycle length, due to a longer cycling time available
for refractory nodes after a first round of excitation. Due
to the interplay of these conflicting influences, it is not a
priori clear that short cycles dominate in their contribution to
self-sustained network activity. Here we show that long cycles,
indeed, are of relevance for maintaining excitable dynamics on
graphs.

We first demonstrate that the excitable model allows us, due
to its discrete nature, to understand the statistical properties
of different regimes of cycle usage, and on this basis show
how the average cycle length of a graph is a key feature for
predicting the sustainability of a network. Finally, we reveal
the role of shortcuts in long cycles with respect to the lifetime
of sustained activity.

II. MATERIAL AND METHODS

A. Dynamic model

The dynamic model employed in this study consists of a
three-state CA on the network. Each node can be in three
discrete states: susceptible S, excited E, and refractory R. The
node states are updated synchronously in discrete time steps
according to a set of rules: (1) a susceptible node S becomes
an excited node E when a directly linked neighbor is in the
excited state; (2) an excited node E enters the refractory state
R; (3) a node regenerates with recovery probability p. The
parameter p determines the average refractory time (1/p) of a
node. For p close to one, the system is almost deterministic, as
nearly all nodes recover after one time step. For low values of
p, the nodes recover from the refractory state after longer
times. We previously observed for the deterministic node
dynamics (p = 1) that the network dynamics can settle into a
regular oscillatory collective behavior after a transient period
[18]. For initialization, we consider a distribution of E,S,R

randomly generated, with probability 0.1 to set a node into the
excited state E, while the remaining nodes were partitioned
into susceptible S and refractory R states. This particular type
of initialization containing refractory nodes allows us to break
the inherent symmetry present in undirected cycles. Whereas
both forward and backward propagation are possible when
introducing an excitation in a cycle of susceptible nodes,
triplets of neighbors with the initial setting SER induce
directionality in the excitation propagation in the cycle. More
generally, the refractory state following excitation prevents
backward propagation.

B. Network model

As a graph model we consider the classical Erdős-Rényi
(ER) random graph [17]. Because the computation of all
cycles in dense graphs was not practically feasible, we
focused on sparse graphs, with 50 nodes and 60 undirected
connections, which corresponds to an average number of
neighbors 〈k〉 = 2.4. The networks were generated with the
NETWORKX [19] software package, and we kept only fully

FIG. 1. (Color online) Examples of ER random graphs used in
the study, after pruning their dangling ends. These examples are
ordered according to the average cycle length, from values close to
11 up to 20, from left to right and top to bottom. Note that short cycles
can be embedded in longer cycles.

connected realizations. The list of cycles (that is, closed
paths) was obtained with an algorithm developed in [20],
which is also implemented in NETWORKX. With the above
parameters, the networks are not far from the percolation
threshold (see, e.g., [21]). The typical cycle length distribution,
averaged over several network realizations, has a Gaussian
shape with an average of about 16 (and values ranging from
8 to 20) and standard deviation of about 2. While in many
cases the cycle length distributions had a broad unimodal
shape, considerable variation was encountered in individual
graph realizations, including cases with no discernible peak or
even approximately bimodal shapes. In order to more clearly
observe the cycle structure of these graphs and its influence
on the excitable dynamics, we iteratively pruned the networks,
eliminating all nodes with degree 1 and their links, until all
nodes in the networks had a degree equal or greater than 2.
These networks have the same number of cycles as the original
ones. In Fig. 1 we illustrate nine of these networks ordered by
the average cycle length.

C. Measuring cycling excitation

At the core of our investigation is an algorithm for
detecting successfully used cycles in an excitation pattern
(i.e., in the time series of excitations at each node of the
graph). A cycle of length L (L-cycle) consisting of nodes
j1,j2, . . . ,jL, where each ji is a node number, is considered to
be “successfully used,” when the excitation pattern shows the
sequence j1,j2, . . . ,jL,j1 as subsequent excitations. We also
allow for two simultaneous excitation “waves” on a cycle, but
disregard “phase slips,” that is, events where one or more nodes
are skipped in the sequence due to phase-advanced external
excitations entering the cycle [18]. Particularly, we focus on
probing the successful usage of cycles with length smaller
than 20 nodes, because cycles of longer length are rarely used
during complete turns. Details of the algorithm are given in
Appendix A.

We define the average number of turns performed by a
L-cycle, 〈Nruns(L)〉, as the average over runs, then over L-
cycles, then over the N network realizations, of the number of
complete turns of excitation achieved by a L-cycle i during a
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run:

1

N

N∑
j=1

∑
L-cycle i

〈Nrun(j,i)〉runs

nj (L)
, (1)

where Nrun(j,i) is the number of complete excitation turns
achieved by the L-cycle i, in the network realization j , during
the considered simulation run, and nj (L) is the total number
of L-cycles in the network realization j .

We also introduce the fraction of time, which L-cycles
spend on average in sustaining cycling excitation,

L
1

N

N∑
j=1

∑
L-cycle i

〈
Nrun(j,i)

Trun

〉
runs

. (2)

The ratio Nrun(j,i)/Trun is the number of complete turns
achieved by the L-cycle i (in the network realization j ) divided
by the run duration Trun. We first average over the runs,
then sum over the L-cycles, then average over the network
realizations.

D. Mean-field approach of cycling activity

The core of our mean-field approach is to consider a
topological cycle within the excitable network (“embedded
device”). In standard mean-field excitable dynamics, see
Appendix C, the topology of the network is taken into
account only through the average degree 〈k〉. By contrast, our
prediction of the activity of a given L-cycle explicitly considers
its topology, and follows the cycling excitation along the cycle
while considering that the remaining part of the network is
in a stationary state of excitation, described by the mean-field
excitation density c∗(E), Eq. (C3). The probability γ (L,p) of
an additional step, once the first turn has been completed in
a L-cycle (with dynamics described by a recovery probability
p), that is, the probability of a re-excitation of a given node,
reads

γ (L,p) =
L−2∑
j=1

p(1 − p)j−1(1 − c∗(E))(〈k〉−2)(L−2−j ). (3)

The c∗(E)-dependent factors describe the contribution of the
network context, into which the L-cycle is embedded, and
ensure that no excitation reaches the site between its recovery
(after a variable number j of steps) and the arrival of the
cycling excitation wave. The computation yields

γ (L,p) = p(1 − c∗(E))(L−3)(〈k〉−2)

1 − 1−p

(1−c∗(E))(〈k〉−2)

×
[

1 −
(

1 − p

(1 − c∗(E))(〈k〉−2)

)L−2]
. (4)

Note that γ (L = 3,p = 1) = 1, as expected. Mean-field com-
putation thus gives the probability that at a given time a
L-cycle is active,

γ (L,p)L, (5)

to be compared to Eq. (2).

FIG. 2. (Color online) Cycle usage varies qualitatively with the
recovery probability. (a) and (c) Cycle usage as a function of time
steps, for an ER random network with 50 nodes and 60 links, and
two different recovery probabilities. Cycles are sorted by increasing
length (cycle index on the left vertical axis) and their length is encoded
in color (see the color bar). The initial conditions are the same for
both simulations (see text) and the first 10 steps are discarded. The
recovery probability is p = 0.9 in (a) and (b), and p = 0.4 in (c) and
(d). (b) and (d) Average activity (total number of nodes in the active
state at a given time divided the total number of nodes) as a function
of time steps for the same network and initial conditions as in (a) and
(c). To present a clear image we only draw the shortest 200 cycles (the
other, longer, cycles were not used in complete turns in this case).

III. RESULTS

A. Cycle usage

In order to investigate the dynamic usage of cycles in
networks, we ran the excitable dynamic model described
above in sparse ER random graphs, and counted the cycles
that were used during different runs. Figure 2 shows typical
runs of the dynamics for two different values of the recovery
probability. At high p [Fig. 2(a)], few short cycles are used to
sustain the activity of all nodes in the network until the end of
the simulation (500 steps). This picture changes significantly
with variations of the recovery probability p. Figure 2(c)
shows, for the same network and initialization, the cycles
that were used for p = 0.4: More cycles of longer length
are used, but for short periods of time, until the excitation
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FIG. 3. (Color online) Trade-off between cycle recoverability
and vulnerability to external excitations. The figure displays the
average number of complete excitation turns achieved by L-cycles,
Eq. (1) as a function of their length L. The average is performed over
simulation runs (200 different initial conditions), then over L-cycles,
then over 100 network realizations.

dies out before the end of the simulation. Consistently, for
p close to one, very few short cycles are persistently used
and enslave all the other nodes in the graph. By contrast,
for small values of p, a vast number of cycles of different
lengths are used for relatively short periods of time, and in
this way sustained activity is achieved. It is known that the
parameter p varies both the average (1/p) and the standard
deviation (σ = √

1 − p /p) of the refractory time distribution.
It is noteworthy that this variation translates into a more
diverse cycle usage, as observed in Fig. 2(c). First, refractory
time obviously constrains the minimal time interval between
successive excitations of a given node, hence the length of
cycles is relevant. For instance, for a constant refractory period
of one, the smallest cycles that can be used are cycles of length
3 [18]; for a constant refractory time of two, the smallest
device that can produce sustained activity are cycles of length
4, and so on. In the case of a probabilistic recovery, the fact
that longer cycles are used when the average refractory time
is increased can be seen in the average number of turns of
cycles of length L (Fig. 3). Furthermore, when the recovery
probability is close to one, shorter cycles are more often used
and this usage is for longer periods of time (more turns per
cycle), while a decrease in the recovery probability results
in longer cycles being used, for short periods of time. Each
simulation corresponds to a different initial condition, that
runs for a maximum number of 500 steps. The increase in the
dispersion of the refractory times contributes to disrupting the
usage of cycles, so that the activity can be maintained only if
other cycles are involved. For example, if a node that belongs
to a pacemaker cycle of length 3 cannot be recovered after
one time step, the activity of the cycle will be abolished in
the following steps, and, if other cycles cannot be recruited
to ensure propagation of the excitation, network activity will
die out. Consequently, the average number of cycles used
per run increases when the recovery probability decreases

FIG. 4. Trade-off between average lifetime decrease (at low p)
and disruption of short cycles (at high p). The figure displays
the average number of L-cycles used per simulation run as a
function of the length L, for various recovery probabilities p. The
average is performed over simulation runs (200 different initial
conditions), then over L-cycles, then over 100 network realizations.
Error bars correspond to the dispersion observed across network
realizations.

up to a recovery probability of 0.6, where the number of
used cycles reaches a maximum value, indicating a trade-off
effect. This effect is summarized in Fig. 4. By increasing
the dispersion further, fewer cycles can be used per run,
decreasing the average lifetime of the network. We confirmed
this hypothesis with a modified model that keeps the dispersion
constant, while the average refractory time is increased
(view Appendix B).

B. Comparison between the simulation
and the mean-field predictions

At this stage, both simulation results and mean-field
predictions evidence a low usage of long cycles (see Figs. 5

FIG. 5. (Color online) Cycle usage observed in the simulation.
The figure displays Eq. (2), as a function of the cycle length, for
various recovery probabilities p.
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FIG. 6. (Color online) Cycle usage predicted by the mean-field
approach. The figure displays the mean-field prediction for γ (L,p)L,
Eq. (5), as a function of the cycle length, for various recovery
probabilities p.

and 6). Nonetheless, we continued to investigate the functional
role of long cycles in excitable dynamics, and showed that
long cycles make a significant contribution to the lifetime of
self-sustained network activity.

By comparing Figs. 5 and 6, taking into account the
mechanisms incorporated in the mean-field model, we can
thus qualitatively understand the peaklike behavior of the
cycle usage as a function of the cycle length. The mean-field
model incorporates the two competing effects discussed above:
Starting from p = 1 (where cycles of length 3 contribute
the strongest to cycle usage), at decreasing p ever longer
cycles dominate the cycle usage. However, the vulnerability
to random excitations also increases with cycle length, thus
reducing the amplitude of the peaks.

In addition to the qualitative agreement between the
numerical results (Fig. 5) and the mean-field result (Fig. 6),
we can also discern a dramatic difference: The mean-field
model considers cycles in isolation; the effect of the rest of
the network is emulated by random (external) excitations. In
the numerical simulations, however, we observe that a long
successful usage of one cycle tends to suppress the usage of
other cycles. In [18] we have investigated in detail, how (in the
deterministic limit of the model) a period-3 cycle can enslave
the rest of the network into a periodic response. For the more
general case (stochastic model, longer cycles) explored here,
Fig. 2 shows some numerical evidence for this enslavement: At
high p [Figs. 2(a) and 2(b)] only a single cycle is used across
a large time window; but even at lower p [Figs. 2(c) and 2(d)],
in spite of the very large number of cycles being used in total,
in most small time windows only one or two cycles are used
simultaneously.

In the following, we will provide ample numerical evidence,
that long cycles, in spite of their rare usage, are functionally
important for maintaining activity in the network. We start by
showing that a higher average cycle length in the network
means a longer average lifetime of excitation. It is clear,
however, that an aggregated topological quantity like the
average cycle length does not directly hint at the mechanisms

FIG. 7. (Color online) Lifetime of the excitable dynamics varies
with the average length of a topological cycle. The figure displays
the average lifetime of the network activity for different values of the
recovery probability p, as a function of the average cycle length in
the graph. The average lifetime was computed running 200 different
initial conditions for each network, and we here present for each value
of p a scatter plot for 200 network realizations.

underlying its impact on the dynamics. We continue by
systematically studying the usage of long cycles and show
that (1) the longer the cycles being used, the larger is the
lifetime of excitations, and (2) strengthening long cycles (by
cutting shortcuts through such cycles) enhances lifetime.

C. The impact of cycles on self-sustained network activity

We now turn from the scale of individual cycles in the
network to self-sustained activity in the network as a whole. In
particular, we want to understand the impact of the cycle length
distribution in a graph on the sustainability of the network
activity. We thus investigated the average lifetime of network
activity (average over a fixed number of initial conditions) as a
function of the average cycle length of each network (Fig. 7).
We found that networks with larger average cycle length live
longer on average, independent of the recovery probability.
(The average cycle length shows the clearest correlation with
the average lifetime, but weak correlations are also observed
for two other characteristics of the cycle length distribution; see
Appendix D). The distribution of cycle lengths in the network
has the strongest impact on the dynamics of the global network
activity for values of p in the range p ∈ [0.5,0.7]. More cycles
are needed per run to maintain the activity of the network in
this dynamical regime (Fig. 4); therefore the average cycle
length in the network plays a key role. When p is close to one
or close to zero, fewer cycles are used per run, therefore the
cycle composition of the graph does not have a strong effect
on the average lifetime. In this relationship between average
lifetime and average cycle length, the extreme cases in p are
easy to understand: For very high p, the activity of a few used
short cycles cannot be disrupted while the rest of the network is
enslaved by these pacemakers (see Fig. 7; see also [18]). Thus,
the average lifetime is high irrespective of the average cycle
length; consequently, only a weak dependence (low slope in
Fig. 7) is observed. At very low p, the average lifetime of
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FIG. 8. Long excitation lifetime correlates with usage of long
cycles. The figure displays the average maximum length used for each
network realization and the corresponding average lifetime (average
over runs for both the maximum length and lifetime, scatter plot over
100 network realizations). The recovery probability is p = 0.6.

activity is short, and again independent of the cycle content
of the graph. Therefore, also in this case a low dependency
of activity on cycle length is seen in Fig. 7. At intermediate
values of p, by contrast, the cycle content of the graph has a
very strong influence on the average lifetime (high slope) and
we observe a strong interdependence of the two quantities.
In the subsequent investigation, we focus on this intermediate
regime and particularly consider p = 0.6.

In the following, we show that the increase in the average
lifetime of activity is caused by longer cycles being used
for longer time in networks with large average cycle length.
Longer cycles are more robust against recovery failure of the
nodes in a cycle (i.e., nodes still being refractory when the cy-
cling excitation reaches them and thus preventing subsequent
successful cycle use), due to the simple fact that each node has
more time to recover. To this end, we compute for each network
realization two quantities: the average maximum cycle length
used in a run (average over runs, Fig. 8) and the sum of the
average number of complete turns (average over runs) of all
cycles of length smaller than 7 (S1) and equal or greater than
7 (S2) multiplied by the length of the cycle (Fig. 9),

S1 =
∑

cycles i of length Li<7

〈Nrun(i)〉runs × Li, (6)

and

S2 =
∑

cycles i of length Li�7

〈Nrun(i)〉runs × Li, (7)

where Nrun(i) denotes the number of complete turns of
excitation achieved by the cycle i during the considered
simulation run. These complete turns are not necessarily
consecutive. These quantities S1 and S2 provide the average
number of steps spent under the form of cycling excitation
(complete turns, average over runs) in each length class,
respectively, L < 7 and L � 7. They can, thus, be interpreted
as the contributions to the average lifetime of cycling
excitation in either short or long cycles. Both the maximum

FIG. 9. Usage of long cycles is functionally essential. The figure
displays the sum of the average time L〈N (L)〉runs spent in cycling
excitation over cycles of length L smaller than 7 (S1, light gray dots)
and equal or greater than 7 (S2, black squares), and the corresponding
average lifetime (average over runs, scatter plot for 100 network
realizations). The recovery probability is p = 0.6.

length (Fig. 8) and the time spent in long cycles (S2 in
Fig. 9), increase with average lifetime, whereas the time spent
in short cycles (S1 in Fig. 9) is relatively constant.

D. The role of shortcuts in cycles

As a next step, we wanted to understand what specific
topological properties of long cycles are relevant for the
observed impact on the average lifetime of excitable dy-
namics. The most conspicuous property we identified was
a substructure in terms of shorter cycles. We, therefore,
focused on the role of shortcuts, that is, single edges between
two nodes of a long cycle producing two embedded shorter
cycles. A shortcut in a cycle can spread the excitation in
both directions, annihilating excitations moving along one
direction, and disrupting the sequential activation of the cycle.
Thus, one may hypothesize that cycles without shortcuts
are used more frequently. This hypothesis is confirmed by
Fig. 10. An additional confirmation of the hypothesis comes
from analyzing how the elimination of shortcuts in cycles can
modify the average lifetime of a network. A common view
on such shortcuts is that they tend to facilitate self-sustained
activity (see, e.g., [3]). Also, eliminating shortcuts will reduce
the number of short cycles, thus depriving the network of
potential pacemakers. In contrast to this view, we found that
cutting shortcuts of long cycles increases the average lifetime
of network activity (see Fig. 11). This result agrees with our
hypothesis that longer cycles are more robust against failures
coming from the nonrecovery nodes. Statistical evidence
points to a marginal role of long cycles in excitable dynamics
(cf. Figs. 3 and 5). However, use of long cycles, although rare,
appears to be functionally essential for sustaining activity. As
a final step, we closely studied individual cases, in order to
arrive at a more mechanistic understanding of the role of long
cycles. We investigate the edges of cycles that were used most
frequently (within complete turns) for a recovery probability
p = 0.6 [see Fig. 12(a)]. Then, we cut one of these edges
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FIG. 10. Shortcuts hinder or reduce long cycle usage. Average
number of complete excitation turns (over runs) achieved by a cycle
as a function of the number of shortcuts present in the cycle (scatter
plot for 100 network realizations and all their cycles). The recovery
probability is p = 0.6.

and reran the simulations with the modified network, and
finally computed as before the average lifetime of the modified
networks. In Fig. 11, we display a histogram of the number
of cut edges that increase the average lifetime divided by the
total number of edges cut (for edges that are shortcuts and
nonshortcuts).

In conclusion, we have developed an algorithm to identify
the different cycles that are used in networks of excitable
discrete dynamics. We are able to detect the dynamical
pacemaker loops at different times in a run. Moreover, we
have studied the main features of the cycle length distribution
that affect the average lifetime of a network. We observed that
graphs with larger average cycle length live longer on average,
due to the presence and use of long cycles. This observation

FIG. 11. Removal of shortcuts increases the lifetime. Histogram
(over 100 network realizations and over 2000 initial conditions) of
the percentage of edges among shortcuts (light gray) or nonshortcuts
(black), whose removal increases the average lifetime.

FIG. 12. (Color online) Dynamical features of excitable net-
works and their topological determinants. Representation of (a) edge
usage, with edge darkness increasing with its usage, (b) shortcuts
of cycles (green edges), and (c) edges whose removal produce an
increase of the average lifetime when rerunning the simulation (in
red).

is also linked to the role of shortcuts in cycles, as eliminating
shortcuts of long cycles in a graph can increase the transient
length of excitation patterns and, thus, positively contributes
to self-sustained network activity.

IV. DISCUSSION

In previous work, the role of cycles in excitation propaga-
tion could only be assessed indirectly, for instance, by pruning
the network based on dynamic information in order to identify
the most relevant cycles. Here, we use a minimal three-state
model of excitable node dynamics, which allowed a direct
and unambiguous algorithmic definition of a successfully used
cycle, and provided a basis for studying the contributions of
cycles of any length in a network. To our knowledge, this is
the first time that the impact of long cycles on network activity
has been analyzed.

The analyses provided several new insights. It has been
pointed out before that short cycles can have an amplifying
role for excitable dynamics [18]. The surprising new finding
is the systematic impact long cycles [28] have on sustained
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activity. We provide a detailed topological characterization
of long cycles, which extend the average lifetime of network
activity by implementing a storing capacity for excitations.
This effect was also demonstrated by removing the shortcuts
in long cycles, which resulted in an extended lifetime. Focusing
on individual links in the network, three properties were often
observed together: (1) A link was frequently used, that is, it
was situated in one or several frequently used cycles; (2) a
link was a shortcut in a longer cycle; (3) removing the link
increased the average lifetime of network excitation.

Putting all these results together, we come up with a
very clear general picture, how the cycle content of a graph
influences self-sustained activity:

(1) The length of the largest cycle successfully used is a
good predictor of the transient length (Fig. 8); usage of long
cycles is thus associated with the sustainment of activity.

(2) Usage of cycles longer than (approximately) 1/p

correlates with the lifetime of excitations, while no such
correlation is observed for shorter cycles (Fig. 9).

(3) When cutting shortcuts in long cycles, the average
lifetime increases significantly (Fig. 11).

Typically, links that are shortcuts within long cycles unite
two interesting dynamical properties: They are particularly
often used in successful turns and cutting them increases the
mean lifetime (Fig. 12). A clear hierarchy of links is thus
established in the network with respect to their importance for
sustained activity. Long cycles are instrumental in establishing
this hierarchy.

Our findings draw attention to the cycle content of a
graph, as an important topological property underlying pattern
generation [22], re-entry [23], and iterative signal processing
[24]. While the impact of short cycles has been explored from
diverse angles in previous studies, we here emphasize that
the successful usage of long cycles can be instrumental in
maintaining activity in a network of excitable units. Even
though it is still computationally challenging to enumerate
cycles in larger networks, it will be fascinating to see whether
some selective pressure may act on real neural networks
enhancing their inventory of long cycles.

The fact that long cycles were of such prominent importance
for the average lifetime of excitations and, therefore, constitute
a topological feature enhancing self-sustained activity, can be
expected to be a universal phenomenon of excitable dynamics
on graphs. However, it is currently unknown how our findings
and the global picture derived from them extend to larger
and denser graphs, such as excitable brain networks [25–27].
Moreover, it is clear that the cycle composition is one of several
topological features of graphs relevant for their dynamic
function. We can expect, for example, that the hierarchical
organization of a network (i.e., a module-within-module
structure) is, qualitatively speaking, responsible for splitting
tasks into subtasks, while within each (sub-)module the cycle
content may then be of relevance for aspects such as sustaining
local dynamics.
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FIG. 13. (Color online) Counting cycling excitation. Schematic
representation of one (a) and two (b) excitations traveling through a
cycle. Excited nodes (E) are plotted in red, susceptible nodes (S) in
yellow, and refractory nodes (R) in green. The arrows indicate the
direction of excitation propagation.

APPENDIX A: BRIEF DESCRIPTION OF ALGORITHM
TO COMPUTE THE SUCCESSFULLY USED CYCLES

This section describes briefly the implemented algorithm
for detecting cycle usage in a graph. The procedure begins by
computing the list of all cycles in a graph, using the “simple
cycles” routine in NETWORKX [19]. The excitation pattern of
each cycle is analyzed for 200 different initial conditions.
A L-cycle, composed of nodes j1,j2, . . . ,jL and showing
the excitation pattern sequence j1,j2, . . . ,jL,j1 is considered
to be used once. We also allow for two excitation “waves”
concurrently traveling on a cycle, as shown in Fig. 13(b). In
this case we considered the cycle to be used twice. For each
cycle in the network, we analyzed the excitation pattern of
its nodes and we created four lists of lists in Python, two
containing the sequential activation of the nodes and the other
two the respective times of activation. We check the length
of the sublists and the time differences within them. We only
kept the sublist with length longer than the length of the cycle
and with all time differences of one (if the time difference is
greater than one, we cut both lists there). Now the sublist of
nodes contain sequences of nodes of the same length or longer
than the length of the cycle. We finally compared the length of
these lists with “multiples” nL + 1 of the cycle length L, where
n is a natural number. The length of the lists can be equal or
greater than these multiples, if they are equal, this means that an
excitation has traveled an integer number of times through the
cycle; and if the length of the list is between two multiples, the
excitation has traveled a noninteger number of times through
the cycle. In this case we consider the minimum integer as the
number of times the cycle was used in a sequential manner.
Indeed, a partial turn (excitations in a row) of a short cycle
embedded in a longer one could be confused with a partial
turn of the long cycle; this is why we consider only complete
turns.

APPENDIX B: MODIFIED MODEL

In order to better understand the interplay of the cycle
length distribution with the refractory time distribution, we
also employed a family of models Mn, where a refractory
element resides in this state for minimally n time steps,
before the recovery probability is evoked. In this notation,
M1 is the original model. We analyzed which cycles were
used for this family of models. We considered n = 2,3,4
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FIG. 14. (Color online) Enhanced refractory period displays the
same recoverability/vulnerability trade-off. Average number of turns
of L-cycles for the original model M1 and the modified models M2,
M3, and M4, for a recovery probability p = 0.9. The number of turns
for each network was computed using 200 initial conditions, and the
final average was computed over 100 different network realizations
[see Eq. (1)].

with recovery probability of 0.9. With the model M2, the
nodes can have a minimum refractory time of two time
steps; therefore, the pacemaker cycles can only have length
greater or equal to 4. With the model M3 the minimum
refractory time is 3, so the minimum pacemaker cycles could
have length greater or equal to 5, etc. The interest of such
models is to monitor independently the average refractory time
(n − 1 + 1/p) and its standard deviation (σ = √

1 − p /p),
hence to disentangle their influence onto cycle usage. In
Fig. 14, we plot the average number of turns of L-cycles
as a function of L for different dynamical parameters and
different model realizations. The peak of the curve moves
toward long cycles as the minimum refractory period n

and the average refractory time increase (at fixed standard
deviation).

In the original model M1, the increase of the average
refractory time 1/p is accompanied by an increase of the
dispersion of the refractory times, which translates into a
broad distribution of refractory times of cycles (i.e., the
time it takes after a cycle usage, until all nodes have
recovered) and, as a consequence, might result in a wider
range of cycles being used. In contrast, increasing the
average refractory time in the modified model is done by
increasing n, at fixed p = 0.9 hence at fixed standard deviation
(σ = 0.35).

The modified model allowed us to separately study the
effect of the mean refractory time and its standard deviation.
In Fig. 15, we compared the average number of cycles used
per run (average over runs then over network realizations) as
a function of the average refractory time for the original and
modified models. We observed that the peak at intermediate
refractory times in the number of cycles used was indeed a
consequence of the large standard deviation in the minimal
model.

FIG. 15. (Color online) Refractory time dispersion correlates
with the number of used cycles. Average number of cycles used per
run versus the average refractory time, for the original model (black
dots) at increasing average refractory time 1/p, hence increasing
standard deviation σ = √

1 − p /p, and the modified model (red
squares) for n = 2,3,4 with p = 0.9, hence increasing average
refractory time n − 0.1 and fixed standard deviation (σ = 0.35). The
average was computed over runs and network realizations. Horizontal
error bars display the standard deviation σ of the refractory time,
while vertical error bars are computed from the simulation (dispersion
over runs and network realizations).

APPENDIX C: MEAN-FIELD APPROACH
FOR NETWORK EXCITABLE DYNAMICS

In a mean-field approach, the network dynamics is de-
scribed in terms of the densities c(E,t), c(S,t), and c(R,t)
of states E, S, and R, respectively. The mean-field equations
of evolution read

c(E,t + 1) = c(S,t)[1 − (1 − c(E,t))〈k〉]
c(S,t + 1) = 1 − c(E,t + 1) − c(R,t)
c(R,t + 1) = c(E,t) + (1 − p)c(R,t).

(C1)

The mean-field approximation lies here in the expression
1 − (1 − c∗(E))〈k〉 for the probability that a node has at least
one excited neighbor: It considers that each node has an
average number 〈k〉 of neighbors each having a probability
c∗(E) to be excited (hence a probability 1 − c∗(E) to be in
a nonexcited state). Also, correlations between neighbors are
ignored. The topology of the network is taken into account
only through the average node degree 〈k〉. The stationary state
(c∗(E),c∗(S),c∗(R)) satisfies

c∗(S) + c∗(E) + c∗(R) = 1
c∗(R) = c∗(E)/p
c∗(E) = c∗(S)[1 − (1 − c∗(E))〈k〉].

(C2)

We may determine this stationary solution using the approxi-
mation 1 − (1 − c∗(E))〈k〉 ≈ 〈k〉c∗(E), which yields

c∗(S) = 1

〈k〉 , c∗(E) = 1 − 1/〈k〉
1 + 1/p

, c∗(R) = 1 − 1/〈k〉
p + 1

.

(C3)
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FIG. 16. (Color online) Validation of the approximate solution
Eq. (C3). Comparison of the numerical solution of the stationary
mean-field equations, Eq. (C2) (continuous line), for the excitation
density, and the approximation c∗(E) = (1 − 1/〈k〉) / (1 + 1/p),
Eq. (C3) (dotted line), as a function of p, for 〈k〉 = 2.4. Note the
scale on the vertical axis.

Interestingly, this approximation of the mean-field excitation
density gives very good results for sparse graphs compared
to the full solution of the mean-field equations, Eq. (C1), as
shown on Fig. 16. We perform a “second-order mean-field
computation,” plugging the stationary mean-field densities
(c∗(S),c∗(R),c∗(E)) in an analysis of the excitation of topolog-
ical cycles and associated combinatorics. More specifically, we
consider a L-cycle, embedded in a network in the mean-field
stationary state (c∗(S),c∗(R),c∗(E)). We adopt a moving view,
computing the probability that each successive node is in the
proper state when excitation arrives, which yields Eq. (3).

FIG. 17. (Color online) Among the features of the cycle length
distribution, lifetime correlates best with the average cycle length.
Correlation coefficient of the average lifetime with the average cycle
length (full black line), with the total number of cycles (dash-dotted
blue line), and with the standard deviation of the cycle length
distribution (dashed gray line) for different recovery probabilities.

FIG. 18. (Color online) Dependence of the average lifetime on
the average cycle length for the modified model. Average lifetime of
the network activity for different model realizations (200 different
initial conditions for each network, and 200 different network
realizations) as a function of the average number of cycles in the
graph, for the four models Mn, n = 1,2,3,4.

In this formula, all the nodes of the cycle are considered to
have a degree equal to the average value 〈k〉. If necessary,
formula Eq. (3) easily extends to account for a given sequence
of degrees for the cycle nodes.

APPENDIX D: AVERAGE LIFETIME

While the average cycle length shows the strongest cor-
relation to the average lifetime (Fig. 17, full black line),
similar correlations are also observed for the total number

FIG. 19. (Color online) Trade-off between cycle recoverability
and vulnerability to external excitations. The figure displays the
average number of complete excitation turns achieved by L-cycles,
Eq. (1) as a function of their length L. The average is performed over
simulation runs (200 different initial conditions), then over L-cycles,
then over network realizations. The networks were grouped in three
classes according to their average cycle length 〈L〉: small, 8 � 〈L〉 <

16, 40 networks; intermediate, 16 � 〈L〉 < 18, 35 networks; large,
18 � 〈L〉 < 21, 25 networks.
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of cycles in the graph (Fig. 17, dash-dotted blue line) and
for the standard deviation of the cycle length distribution
(Fig. 17, dashed gray line). Additionally, we compared in
Fig. 18 the dependence of the average lifetime as a function
of the average cycle length for the modified model. Since all
the models use on average a similar amount of cycles per run,
we expected to observe a similar slope for all the models,
in contrast to Fig. 7, which is actually the case. In order to
arrive at an even clearer mechanistic picture according to
which the correlation between the average cycle length and
the average lifetime (Fig. 7) is, indeed, due to an increased

usage of long cycles, we performed the following additional
investigation: We grouped networks in three classes, according
to their average cycle length 〈L〉 (small, 8 � 〈L〉 < 16, 40
networks; intermediate, 16 � 〈L〉 < 18, 35 networks; large,
18 � 〈L〉 < 21, 25 networks) and computed the corresponding
curve (see Fig. 19, average number of turns as a function of
cycle length; p = 0.6) from Fig. 3 for these groups separately.
It is clearly seen that usage of longer cycles is enhanced in
networks with a larger average cycle length 〈L〉. Figure 19
interlinks our two key observations: the cycle usage curves and
the impact of the average cycle length on excitation lifetime.
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