
Estimating Kolmogorov Entropy from
Recurrence Plots

Philippe Faure and Annick Lesne

Abstract Kolmogorov entropy, actually an entropy rate h, has been introduced in
chaos theory to characterize quantitatively the overall temporal organization of a
dynamics. Several methods have been devised to turn the mathematical definition
into an operational quantity that can be estimated from experimental time series.
The method based on recurrence quantitative analysis (RQA) is one of the most
successful. Indeed, recurrence plots (RPs) offer a trajectory-centered viewpoint cir-
cumventing the need of a complete phase space reconstruction and estimation of the
invariant measure. RP-based entropy estimation methods have been developed for
either discrete-state or continuous-state systems. They rely on the statistical analysis
of the length of diagonal lines in the RP. For continuous-state systems, only a lower
bound K2 can be estimated. The dependence of the estimated quantity on the tunable
neighborhood radius ε involved in constructing the RP, termed the ε-entropy, gives
a qualitative information on the regular, chaotic or stochastic nature of the under-
lying dynamics. Although some caveats have to be raised about its interpretation,
Kolmogorov entropy estimated from RPs offers a simple, reliable and quantitative
index, all the more if it is supplemented with other characteristics of the dynamics.
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1 Introduction

1.1 Entropy

The quantity today termed “Kolmogorov entropy” has been introduced for determin-
istic dynamical systems by Kolmogorov [1] and one year later by Sinai [2] hence
it is sometimes called Kolmogorov-Sinai entropy or metric entropy. This quantity
is similar to the entropy rate introduced in a different context by Shannon [3, 4]
for symbolic sequences. They should not be confused with Kolmogorov complex-
ity, which is another name for algorithmic complexity [5], nor with thermodynamic
entropy, which is a different concept, only slightly and indirectly related through
statistical mechanics and Boltzmann entropy [6].

Kolmogorov entropy, henceforth denoted h, is a global quantity providing a quan-
titative measure of the overall temporal organization of the dynamics. The initial
motivation of Kolmogorov was to investigate whether some dynamical systems were
isomorphic or not. He demonstrated that entropy is an invariant of the dynamics, i.e.
it is preserved upon any isomorphism. To assess that two dynamical systems are
non isomorphic, it is then sufficient to show that their entropies differ. Kolmogorov
entropy is in fact an entropy rate. For a discrete-state source, Sec. 2, a direct and sim-
ple interpretation is provided by the asymptotic equipartition property. This property
states that n-words, i.e. sequences of length n produced by the source, asymptoti-
cally separate in two classes: typical and non-typical n-words. Typical n-words have
asymptotically the same probability e−nh (hence the name “equipartition property”)
and their number scales as enh, while all the other n-words have a vanishing prob-
ability and in this respect no chance to be observed. Entropy has a meaning for
both deterministic and stochastic dynamics. We will see, Sec. 4.1, that in the case
of continuous-state dynamical systems, the intermediary steps of the computation
at finite resolution ε in the phase space provide an auxiliary ε-entropy h(ε), whose
dependence with respect to ε reflects the deterministic or stochastic nature of the dy-
namics. To date, h has been used to characterize linguistic data [7], DNA sequences
[8, 9], behavioral sequences [10, 11], speech analysis [12, 13], or spike emission
in neurons [14, 15]. Estimating Kolmogorov entropy from experimental data is not
an easy task. We will see that using recurrence plots allows a simple and reliable
estimation of this value, or at least a lower bound.

1.2 Recurrence Plots

Several methods have been devised to turn the mathematical definition of Kol-
mogorov entropy into an operational quantity that can be estimated from experi-
mental time series. The method based on recurrence plots (RPs) has proven to be an
efficient one. RPs have been introduced as a graphical representation of a dynamical
system well-suited for data analysis [16]. They consist in square binary matrices, de-
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picting how the trajectory repeats itself: a black dot (i, j) is drawn in the plot when
a recurrence is observed in the trajectory for times i and j. Patterns of activity can
be identified in the organization of the recurrences along vertical or diagonal lines
[17]. RPs thus provide a useful framework for visualizing the time evolution of a
system and for discerning subtle transitions or drifts in the dynamics. Beyond being
a graphical tool, RPs offer a means for the quantitative analysis of the underlying
dynamics, what is summarized by the words “recurrence quantification analysis”
(RQA) [18, 19, 20]. In particular, the graphical power of RPs will not be the point in
computing Kolmogorov entropy, except if used for prior detection of non stationar-
ity in the data prompting to windowing the series. Recurrence quantification analysis
is particularly powerful because it relies on a trajectory-centered exploration of the
phase space. In contrast to methods involving a blind partition of the phase space,
containing many regions of negligible weight that considerably slow down the com-
putation for no significant gain in accuracy, the recurrence pattern naturally samples
important regions of the phase space, thus reducing computational complexity and
time. This is analogous in spirit to Monte-Carlo-Markov-Chain sampling of the inte-
gration domain for computing an integral, instead of using a Riemann discretization
of the integration domain.

As in a number of nonlinear analysis methods, it is necessary for building a RP
to first reconstruct a multidimensional signal from a single observed variable. The
reconstruction amounts to consider a series (xi)i≥0 of embedded vectors xi instead
of the original one-dimensional time series (ut)t≥0. Their definition involves an em-
bedding dimension m and a time delay τ , according to:

xi = (uiτ ,u(i+1)τ , ...,u(i+m−1)τ) (1)

The embedding of a one-dimensional signal in a multidimensional phase space and
the choice of the involved time delay are standard procedures presented in Chapter 1
(see also [21]). The choice of m and τ is critical for any subsequent analysis since
an inappropriate choice can either “insufficiently unfold” the high-dimensional dy-
namic or lead to false positive indications of chaos. An additional parameter in the
RP is the radius ε of the neighborhoods defining recurrence. We will see that the
dimension m is involved jointly with the length l of the diagonal lines, namely the
relevant quantity is m+ l, hence there is no need to consider m as an independent
parameter.

RPs portray the dynamics of the embedded signals in the form of dots inter-
spersed in a square matrix. Let xi be the i-th point on the reconstructed trajectory, of
length N, describing the system in an m-dimensional space. A recurrence plot is the
N×N matrix in which a dot is placed at (i, j) whenever x j is close to xi, i.e. when-
ever the distance d(xi,x j) is lower that a given cutoff value ε . Different metrics can
be used, for instance Euclidian distance or Maximum norm. The RP then contains
N2 black or white dots, see Fig. 1A(Left). The black dots represent the recurrence of
the dynamical process determined with a given resolution ε , and their organization
characterizes the recurrence properties of the dynamics. A vertical line of length l
starting from a dot (i, j) means that the trajectory starting from x j remains close
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to xi during l− 1 time steps. A diagonal black line of length l starting from a dot
(i, j) means that trajectories starting from xi and x j remain close during l− 1 time
steps, Fig. 1A(Right). Diagonal segments in the RP (excluding the main diagonal)
can be counted and plotted as an histogram according to their length. We will see
below that this histogram, and in particular the slope α fo the linear region in the
log-log plot (i.e. for l large enough) is the basis for estimating Kolmogorov entropy.
It should be noted that changing the embedding dimension m amounts to shift by a
few units the length of the diagonal lines, which does not affect the slope α . Hence
the estimated value for Kolmogorov entropy will be independent of the embedding
dimension, as shown in [22].

2 Discrete-State Signals

2.1 Messages, Symbolic Sequences and Discrete Sources

Information theory is concerned with the analysis of messages written with letters
from a given alphabet [3]. This symbolic setting relates to continuous-state dynam-
ical systems through encoding continuous states into discrete ones. Such encoding
is an acknowledged approach allowing to prune irrelevant information, to improve
statistics by reducing the dimension of the sequence and overall to simplify the sys-
tem description without altering its essential dynamical properties [23]. For discrete-
time dynamics in a continuous phase space, symbolic sequences can be obtained
from the discretization of continuous-valued trajectories using a partition of the
phase space in subsets Aw [24]. Each trajectory (zi)i≥0 is associated with a symbolic
sequence (wi)i≥0 describing the array of visited subsets according to zi ∈ Awi . The
partition is said to be generating when the knowledge of the semi-infinite symbolic
sequence(wi)i≥0 fully determines a unique initial condition z0 ∈ Aw0 in the con-
tinuous phase space. In this special case, the symbolic encoding is asymptotically
faithful, with no loss of information compared to the continuous-valued trajectory
(a loss of information nevertheless occurs when considering trajectories of finite
length). However, generating partitions are very rare, existing only for sufficiently
chaotic dynamical systems [25]. Even if generating partitions exist, a constructive
method to determine them may not be available [26]. Discretization has then to be
done using an a priori chosen partition of the phase space, with a main issue being
to make the proper choice [27, 28].

Often in practice the system phase space is not fully formalized, think for in-
stance of behavioral sequences recorded with a CCD camera. Encoding is then
achieved in an heuristic way. Typically, discrete states are defined by partitioning
the values of a few relevant observables. In the example of behavioral sequences,
when considering the velocity V of a moving individual to be the relevant observ-
able, time steps where V <Vc will be coded 0 and time steps where V ≥Vc will be
coded 1, transforming the video recording of the individual into a binary sequence.
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Another situation is the case where data are intrinsically discrete, e.g. language
or DNA sequences [29, 30]. In this case, and more generally in the information-
theoretic terminology, one speaks of a symbolic source generating messages, instead
of discrete-state dynamics generating trajectories.

2.2 Entropy Rate of Symbolic Sequences

In information theory, entropy rate has been basically introduced to characterize
languages modeled by Markov chains of increasing orders [3]. It measures the
time-average information per symbol needed to transmit messages. It has been later
demonstrated to coincide with Kolmogorov entropy (up to a factor relating ln and
log2) in the case where the symbolic sequences originate from the phase-space dis-
cretization of a dynamical system according to a generating partition [31, 32]. For-
mally, it is defined as the limit of normalized block-entropies or block-entropy dif-
ferences (theorem 5 in [3]). Block entropy Hn is defined as the Shannon entropy
of the n-word distribution pn(.), namely Hn =− ∑w̄n pn(w̄n) log2 pn(w̄n) where the
sum runs over the set of n-words w̄n. Hn increases with n, while the sequence of in-
crements hn = Hn+1−Hn is a decreasing positive sequence. The increments hn and
the normalized quantities h̃n =Hn/n have the same limit h= limn→∞ hn = limn→∞ h̃n
(if it exists), which defines the entropy rate h. The definition of entropy h as a rate is
thus far more than a mere normalization by a duration: it involves a time integration,
by considering words of increasing length. The above information-theoretic defini-
tion can be reformulated in terms of temporal correlations, which reduce the amount
of information required to retrieve a message. In other words, h reflects the temporal
organization of the dynamics, taking small values when the dynamics has a strongly
correlated structure. h thus provides an integrated measure of the overall temporal
correlations present in the dynamics, and 1/h can roughly be seen as a correlation
time. It is to note that hn corresponds to the entropy rate of the (n− 1)-th order
Markov approximation of the source, involving only n-point joint probabilities [3].
In the above definition, we used the binary logarithm log2 to match information-
theoretic usage and Shannon definition; h is then expressed in bits per time unit.
It is straightforward to replace log2 by the Neperian logarithm ln so as to exactly
recover Kolmorogov entropy.

Estimation of h is currently based on the above definition [10, 33, 34], with hn
appearing as a better estimator than h̃n (although both are unbiased). In practice,
due to the finite size N of the data sequence, the estimated value Ĥn plotted as a
function of the block size n saturates to log2 N. If h has a non trivial value, this
plot displays a linear region of slope h, and the crossover to the asymptotic plateau
occurs around n∗ = (log2 N)/h [34, 35]. Another method uses the identity for er-
godic sources between the entropy rate h and the Lempel-Ziv complexity, defined
for a single sequence and computed using compression algorithms [36, 37, 38]. The
latter method may perform better, in particular for short sequences [35]. Actually a
proper implementation requires a two-step estimation. The first step is to obtain a
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rough estimate of h, delineating the validity and the performance of these alternative
methods, giving in particular a lower bound on the sequence length required for the
block-entropy method to be reliable. Then a refined estimate of h is obtained using
the best of the two methods [35]. A third alternative is provided by RP representa-
tion of the symbolic sequences, as we will see below, Sec. 2.4.

2.3 Shannon-McMillan-Breiman Theorem

Both the interpretation of the above-defined quantity h and its estimation via RP,
Sec. 2.4, relies on the Shannon-McMillan-Breiman theorem [39]. This theorem,
established as theorem 3 in [3] and further improved by McMillan then Breiman
[40, 4, 41], states that the number of typical n-words (i.e. n-words that have the
same statistical properties corresponding to the almost sure behavior) scales like enh

as n→∞, where the exponent h is the entropy rate of the source. A corollary of this
theorem is the asymptotic equipartition property, stating that the probability pn(w̄n)
of every typical n-word w̄n takes asymptotically the same value e−nh. Although
containing the core idea of the asymptotic equipartition property, this finite-size
statement has been made more rigorous on mathematical grounds. Its formulation
requites to introduce random variables P̂n depending on the realization w̄ of the
whole symbolic sequence according to P̂n(w̄) = pn(w0, . . . ,wn−1). The asymptotic
equipartition property then writes

lim
n→∞

(−1/n) lnP̂n→ h in probability (2)

This means that for any δ > 0 and ε > 0 arbitrary small, there exists a word
threshold size n∗(δ ,ε) such that Prob({w̄, pn(w0, . . . ,wn−1) > en(−h+δ )}) < ε and
Prob({w̄, pn(w0, . . . ,wn−1)< en(−h−δ )})< ε for any n≥ n∗(δ ,ε), or equivalently in
terms of n-word subsets, pn({w̄n, pn(w̄n) > en(−h+δ )}) < ε and pn({w̄n, pn(w̄n) <
en(−h−δ )}) < ε . As a corollary of this result, the number of typical n-words w̄n for
which the asymptotic equipartition property pn(w̄n)∼ e−nh holds scales as enh for n
large enough, providing another interpretation of h.

Shannon-McMillan-Breiman theorem will be the basis of the entropy estima-
tion method from RPs. It justifies that all the observed n-words belong to the set
of typical words since non-typical ones are too rare to be ever observed. An impor-
tant caveat is the asymptotic nature of this theorem, making its application to finite
words and finite sequences a questionable extrapolation. However, numerical exper-
iments show that the asymptotic regime is reached rapidly and the theorem yields
the correct dominant behavior even for moderate values of n (lower than 10).
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2.4 RP-based Estimation of the Entropy (per Unit Time)

Our starting point will be the representation of the data as a m-RP describing
the recurrence of m-words: a black dot (i, j) means that w̄m(i) = w̄m( j) where
w̄m(i) = (wi, . . . ,wi+m−1) denotes the m-words starting at time i in the original se-
quence. The integer m thus appears as an embedding dimension. Observing a diago-
nal line of length l starting in (i, j) in the m-RP means that the two (m+ l−1)-words
starting at times i and j coincide: w̄m+l−1(i) = w̄m+l−1( j). Such a line corresponds
to a diagonal line of length l+1 in the (m−1)-RP and a single dot in the (m− l+1)-
RP. In fact, all the quantities that may be introduced regarding the statistics of diag-
onal lines are relative to a given realization of the m-RP and they depend not only on
m but also on the sequence length N and its realization w̄, which will be skipped for
simplicity. We will assume that the size of the m-RP, or equivalently the sequence
length N, is large enough to identify quantities computed in one realization of the
m-RP and their statistical average, based on the assumed ergodicity of the dynam-
ics. We will also assume (and numerically check) that the asymptotic probability
estimate given by Shannon-McMillan-Breiman theorem, that centrally involves the
entropy rate h of the source, is valid at the leading order for the considered words.

We consider a length l large enough, so that a (m+ l− 1)-word occurs at most
twice and Shannon-McMillan-Breiman theorem approximately holds. The probabil-
ity of double occurrence of a typical (m+ l− 1)-word, (N− l−m+ 1)e−h(m+l−1),
multiplied by the number eh(m+l−1) of these non-identical typical words yields the
number ν

(N)
m (l) of diagonal (and possibly overlapping) segments of length l in the

upper triangle of the m-RP, not counting the main diagonal line:

ν
(N)
m (l) =

(N− l−m+2)(N−m− l +1)
2

e−h(m+l−1) (3)

Note that this histogram of line lengths l is currently denoted HD(l) (see e.g. Chap-
ter 1)); we adopt the notation ν(l) to avoid any confusion with block entropies Hn.

Since m+ l�N we may identify N− l−m+2 and N− l−m+1 with N, getting:

ν
(N)
m (l)∼ (N2/2) e−h(m+l−1) (4)

A semi-log plot of ν
(N)
m (l) with respect to l will exhibit a slope −h in its linear re-

gion. While the theoretical derivation of the scaling behavior is done for ν
(N)
m (l),

numerical implementation is more easily done in practice using the number η
(N)
m (l)

of diagonal lines of length exactly equal to l in the m-RP, or the cumulative num-
ber φ

(N)
m (l) of diagonal lines of total length larger or equal than l (Fig. 1B). After

normalization by the total number of diagonal lines, φ
(N)
m (l) coincides with the cu-

mulative probability pc(l) introduced in Chapter 1. However, φ
(N)
m (l) and pc(l) sat-

isfy the same scaling laws, which allows to circumvent the normalization issue. We
will henceforth work with the raw number φ

(N)
m (l). A diagonal line of total length

l + r yields r+1 (partly overlapping) diagonal stretches of length l contributing to
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ν
(N)
m (l). It follows that ν

(N)
m (l) = ∑r≥0(r+1) η

(N)
m (l+ r) [39]. The scaling behavior

of φ
(N)
m (l) is then derived using ν

(N)
m (l)−ν

(N)
m (l +1)≈−dν

(N)
m (l)/dl = hν

(N)
m (l):

φ
(N)
m (l)≡ ∑

r≥0
η
(N)
m (l + r)≈− dν

(N)
m (l)
dl

∼ (hN2/2) e−h(m+l−1) (5)

A semi-log representation of the number φ
(N)
m (l) of diagonal lines of total length

larger than l as a function of the length l would also have a slope −h in its linear
region, which provides a direct way to estimate h from RP, as presented in Fig. 1.
Note finally that the average length of the diagonal lines in the m-RP expresses:

〈D〉= ∑l≥1 l η
(N)
m (l)

∑l≥1 η
(N)
m (l)

=
ν
(N)
m (1)

ν
(N)
m (1)−ν

(N)
m (2)

(6)

The second equality is obtained using the change of variable l = r+1 in ν
(N)
m (1) and

l = r+ 2 in ν
(N)
m (2) where the expressions for ν

(N)
m (1) and ν

(N)
m (2) have been ob-

tained by plugging l = 1 and l = 2 in the identity ν
(N)
m (l) = ∑r≥0(r+1) η

(N)
m (l+ r).

At the leading order, the scaling ∑r≥0 η
(N)
m (l + r) ∼ (hN2/2) e−h(m+l−1) yields

〈D〉 ∼ eh/(eh − 1) and even 〈D〉 ∼ 1/h if h� 1, which gives an intuitive inter-
pretation of 1/h as a characteristic time (correlation time) of the source. Note that
the sums include single dots (l = 1), which is not always the case in RP. As noted be-
fore, the relevant quantity in a m-RP is m+ l. A line of length 1 in a m-dimensional
space is a line of length 2 in a (m−1)-dimensional space, hence there is no obvious
reason to discriminate single dots in a m-RP.

3 Continuous-State Dynamics

3.1 Kolmogorov Entropy for a Continuous State System

For dissipative dynamical systems, attractors provide a global picture of the long
term behavior. A more quantitative representation of the latter is given by the in-
variant measure on the attractor, that is, the probability measure invariant upon the
action of the dynamics. It describes how frequently a given trajectory visits any par-
ticular region of the state space. The state space can be divided into a finite number
of intervals (one dimension) or boxes (two or more dimensions) which defines a
finite partition A = {Ai, i = 1, . . . ,m}. The frequency at which a trajectory visits
these specific boxes thus gives a partial insight into this invariant measure.

Let us first consider discrete-time dynamics, i.e. dynamics generated by maps.
As explained in Sec. 2.1, a trajectory (zi)i≥1 in the continuous phase space can be
encoded by a n-word w̄n = (w1, . . . ,wn), meaning that the trajectory successively
visits the regions Aw1 , . . . ,Awn , with zi ∈ Awi . Denoting Pn(w̄n) the probability of
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Fig. 1 Method for constructing length histograms of diagonal line segments. (A, Left) RP ob-
tained from a logistic map ga(z) = az(1− z) in [0,1] with a = 3.9422 and state-discretized using a
symbolic encoding based on the simple rule: if zi > 0.5 then wi = 1 else wi = 0. The embedding
dimension is m = 3, hence a dot (i, j) means that the 3-words (wi,wi+1,wi+2) and (w j,w j+1,w j+2)
are identical. (A, Right) Detail of the RP with diagonal line segments of various length l. (B) Num-
ber φ

(N)
m (l) of diagonal lines of total length longer or equal to l, counted in the RP obtained from

(wi)i=1,...,4000. (Inset) Semi-log representation of φ
(N)
m (l); the absolute value−α of the slope of the

fitting line yields an estimation of h. (C) Comparison of the RP-estimated value of h(a) (red line)
with Lyapunov exponent value λ (a) (black line). Trajectories used to estimate h(a) have a length
N = 2000 with 3.5≤ a≤ 3.7. A negative value of λ (a) corresponds to an entropy value h(a) = 0,
whereas Pesin equality ensures h(a) = λ (a) for positive values of λ (a).

a n-word w̄n, equal to the measure of the set of points whose n-step trajectory is
encoded by w̄n, the n-block entropy for this partition A is

Hn(A ) =−∑
w̄n

Pn(w̄n) lnPn(w̄n) (7)

where the sum runs over the set of all possible n-words. The relationship to Shannon
block-entropies is obvious. As for Shannon entropy rate, Kolmogorov entropy (also
termed Kolmogorov-Sinai entropy [1, 2] or metric entropy) is defined as the limit

h = sup
A

lim
n→∞

hn(A ) (8)
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The supremum is reached for special partitions, called “generating partitions”, when
they exist (Sec. 2.1). However, this powerful theorem is rarely applicable in practice
as we do not know how to construct generating partitions except for unimodal maps
and certain maps of the planes. In general, the supremum over the partitions A is
reached at infinitely refining the partitions. It is enough to consider a sequence of
partitions Aε whose boxes have a typical linear size ε . Denoting hn(ε) ≡ hn(Aε)
and h(ε) = limn→∞ hn(ε), it comes h = limε→0 h(ε).

In the case of continuous-time dynamics, an additional parameter is the time
delay τ involved in the reconstruction of the dynamics. As explained in the intro-
duction, the first step is the reconstruction of a m-dimensional trajectory (xi)i=1,...,N
of length N from the continuous-state experimental trajectory u(t), according to
xi = [u(iτ),u((i+1)τ), . . . ,u((i+m−1)τ)]. We denote Hn,τ(ε) the n-block entropy
corresponding to the sequence (xi)i=1,...,N . The difference Hn+1,τ(ε)−Hn,τ(ε) is
the average information needed to predict which box of the partition Aε will be vis-
ited at time (n+1)τ , given the n boxes visited up to nτ . Definition of Kolmogorov
entropy is then similar to the discrete-time case, except for an additional limit τ→ 0

h = lim
τ→0

1
τ

lim
ε→0

lim
n→∞

(
hn,τ(ε)

)
(9)

Generalized entropies h(q) can be defined according to [42, 43]

h(q) = − lim
τ→0

1
τ

lim
ε→0

lim
n→∞

1
q−1

ln∑
w̄n

[Pn(w̄n)]
q (10)

For q = 1, we have h = h(1), and it can be demonstrated that h(q) ≥ h(q
′) for every

q′ > q. The inequality is strict as soon as the attractor has a nontrivial multifractal
structure. In particular, h(2), currently denoted K2, is a lower bound for Kolmogorov
entropy. This property is centrally used in the estimation of h. Indeed, the mathe-
matical definition of Kolmogorov entropy for a continuous-state dynamics involves
several non-commuting limits, which prevent any direct implementation. Actually,
only K2 = h(2) can be extracted from experimental time series, either by a method
based on phase space reconstruction and the computation of a correlation integral
[42, 44], or by a method based on RQA [45], both presented below.

3.2 Grassberger and Procaccia Method for Computing K2

A first method for estimating K2 from experimental data has been developed by
Grassberger and Procaccia [42]. The estimation method is based on the computation
of the correlation integral of the reconstructed trajectory in embedding dimension m

Cm(ε) =
1
N

N

∑
i=1

Cm
i (ε) (11)
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where Cm
i (ε) is the number of time indices j (1 ≤ j ≤ N) for which d(xi,x j) ≤ ε .

Note that the quantity Cm(ε) can be viewed as the average probability that two tra-
jectories visit jointly a given sequence of m boxes of the partition Aε . This quantity
provides a direct access to the entropy bound K2 ≤ h according to:

τK2 = lim
ε→0

lim
m→∞

ln
Cm(ε)

Cm+1(ε)
(12)

Since Cm
i (ε) is the number of black dots in line i when the RP is defined at resolution

ε , Cm(ε)/N is also the recurrence density at resolution ε and embedded dimension
m. This establish a simple link between RPs and correlation integrals. However a
method based on an estimation of the density would ignore the spatial organization
of dots in the RP, which contain important information about the dynamics. It would
moreover require to explicitly construct RPs for any embedding dimension m.

3.3 RP-Based Method for Computing K2

RQA, here based on diagonal line statistics, offers an alternative method for com-
puting K2, with the advantage that it will be enough to consider the reconstructed
sequence (xi)i=1,...,N for a single embedding dimension m [45]. Indeed, as in the
discrete-state case, changing the embedding dimension only shifts the diagonal line
statistics, since a diagonal line of length l in dimension m corresponds to a diagonal
line of length l−1 in dimension m+1. Let us denote νε(l) the number of diagonal
segments of length l, possibly included in longer segments. A diagonal line thus
contributes by all l-segments that can be delineated in it. For instance, a diagonal
line of four points contributes to νε(l = 2) by 3 segments, to νε(l = 3) by 2 seg-
ments and to νε(l = 4) by a single segment (itself). As in the discrete case, it can be
shown that

νε(l) = const.e−lα(ε) (13)

hence the exponent α(ε) can be obtained by fitting the linear part of the log his-
togram of νε(l). The expected limiting behavior is:

lim
ε→0

α(ε) = τK2 (14)

Actually, as presented in Fig.1 in the discrete-state case, the cumulative number
φε(l) of diagonal lines of total length equal or larger than l displays the same scaling
behavior, and could be easier to extract from the RP. A noticeable point is that for
a discrete-state system, it follows from Shannon-McMillan-Breiman theorem and
the ensuing asymptotic estimate of n-word probability pn(.) that all h(q) coincide
with h, in particular K2 = h, so that the results of the present Sec. 3.3 are fully
consistent with those of Sec. 2.4. The main difference between this approach and
the Grassberger-Procaccia method is that the convergence of α(ε) is now studied in
terms of the ε → 0 limit, and not by increasing the embedding dimension m→ ∞.
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The resulting advantage is that the distribution of the distances between points need
to be calculated only once, for constructing a single RP, instead of for each new
embedding dimension.

4 Some Factors Influencing Computation of Entropy

4.1 The Notion of ε-Entropy for Analyzing Noisy Dynamics

The presence of the limits ε→ 0 (resolution ε in the phase space) and n→∞ (length
n of words, i.e. trajectory segments) in the entropy definition has the consequence
that the estimated entropy is, at best, an approximation. In particular, for small reso-
lutions ε , the number of neighboring points become too small to get reliable statis-
tics. This limitation becomes more critical as the word-length n increases or the
length N of the time series decreases. Overall, the major constraint imposed by the
limit ε → 0 is due to the noise inherent to experimental data. It prevents any anal-
ysis below a given resolution at which deterministic structures are destroyed. This
resolution threshold is directly related to the variance of the noise. The choice of
an optimal threshold ε a priori depends on the considered time series but Thiel et
al. [46] suggested that a value of ε = 5σ (where σ is the fluctuation level in the
signal) is appropriate for a wide class of processes. Letellier suggested the value
ε = σ

√
m/10 where m is the dimension of the embedding [47]. Effect of noise is il-

lustrated in Fig. 2. where the convergence of the slope α(ε) towards h is depicted for
a Hénon map system with additive Gaussian noise. For a noise value equal to 0 there
is a clear logarithmic convergence towards K2. As soon as noise increases, a thresh-
old of divergence εdiv(ζ ) appears, with a related upward swing of the curves. Such
a result is consistent with the fact that α(ε) converges towards K2 in a chaotic map,
while it diverges as ε→ 0 in a stochastic dynamics [32, 48, 5]. As a consequence, a
plot like that of Fig. 2A, provides complete information on the system, with a good
estimate of K2 in the range ε > εdiv(ζ ). In contrast, it only gives information on the
noise component if ε < εdiv(ζ ).

4.2 Non-stationarity

A key assumption in entropy estimation is the statistical stationarity of the source.
When dealing with experimental data, people are confronted to a trade-off between
the requirement of recording long time series and the non-stationarity of real sys-
tems. Non-stationarity can produce spurious identification of chaos [21], hence it
has triggered the development of statistical methods (such as surrogates) to test the
obtained results. Development of methods allowing to analyze non stationary time
series is thus important [49]. RPs allow to get a visual assessment of the assumption
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Fig. 2 Plot of the RP-estimated ε-entropy hest(ε) = α(ε) as a function of the resolution ε (neigh-
borhood radius) for different noise levels ζ . (A) Time series of N = 2000 points obtained from a
Hénon map (with a = 1.4, b = 0.3) for which the theoretical entropy rate is h = 0.42. Gaussian
white noise with standard deviation ζ was added, with ζ varying from 0 to 0.5. The RP-estimated
value hest(ε) = α(ε) is represented as a function of ε for the five times series. As soon as the noise
level increases, the convergence of hest(ε) to the theoretical value of K2 (horizontal dashed line)
as ε tends to 0, which indicates chaos, is interrupted by an upward swing at some value εdiv(ζ ),
reflecting the stochastic component of the dynamics. For a given level of noise, the convergence
can only be inferred from the inflexion point in the computed curve. (B) RP for different values of
the noise level ζ and resolution ε .

of stationarity. Homogeneity of the RP gives a support of sequence stationarity. Else,
non-stationary features like the presence of a drift in the evolution law (reflecting in
inhomogeneous lower right and upper left corners, compared to the RP core), the
occurrence of transitions (reflecting in disruptions within the RP) or periodicities
(reflecting in periodic patterns in the RP) can be easily detected. This is illustrated
in Fig. 3B where we plotted the recurrence pattern of a time series obtained by con-
catenating two time series from logistic maps with different values of the parameter
a. The RP shows a clearly heterogeneous organization in four quadrants illustrating
the modification of temporal properties when passing from the first sequence to the
second one. In such non-stationary situations, statistical analysis and in particular
entropy estimation should be restricted to time windows where the RP is statistically
homogeneous. As the shift points are usually not known in advance, a sliding win-
dow is used in practice. The optimal size of the sliding window has to be determined
in a preliminary step, either by visual inspection of the RP, or by more quantitative
image analysis techniques to determine the typical size of statistically homogeneous
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regions in the RP, or by invoking additional knowledge about the system. We have
numerically implemented the sliding window procedure on a binary discretized tra-
jectory, initially generated by a logistic map whose control parameter a slowly in-
creases by small steps in the course of evolution (Fig. 3A). This increase is slow
enough for a quasi-stationary approximation to make sense. It allows to consider an
entropy rate h(a) corresponding to the instantaneous value of a and characterizing
the non-stationary dynamics during the associated transient stage. Fig. 3C shows
that the evolution of the entropy rate h(a) as a varies, although very irregular, can
be faithfully captured by entropy RP-estimation in a sliding window.
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Fig. 3 Entropy estimation for non-stationary dynamics (A, Top Left) Variation of a from 3.6 to
3.8, according to a sigmoidal function. The value of a in the n-th part of the simulation is given
by an = 3.6+ 2

10∗(1+exp(−0.5∗n)) with n = 1, . . . ,100. (A, Bottom Left) Time series obtained from
concatenation of 100 time series zan (i)i=1,...,1000 for n= 1, . . . ,100 from logistic map ga(z)= az(1−
z), with a varying from 3.6 to 3.8, as can be read on the above curve. The last point of a time series
zan (i) is used as the initial point to calculate the following zan+1 (i) series. (A, Right) Two of these
time series for a = 3.615888 and a = 3.784828. (B) Recurrence plot obtained by concatenating
the two time series illustrated in (A, Right). (C) Variation of h along the non-stationary dynamics.
h(a) is estimated on successive overlapping windows of length N = 1000 with a shift of 100 time
steps. For each value of a, estimated value hest(a) of h(a) (black points) is superimposed with the
value of Lyapunov exponent λ (a) (red points).
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5 Discussion

For continuous-state dynamics, whose attractor has a non trivial multifractal struc-
ture, only a lower bound K2 of the Kolmogorov entropy h can be estimated from
experimental data. Discrete-state dynamics has a simpler structure, for which the
different entropies h(q) coincide, hence it is possible to estimate h = K2. However,
discretizing the continuous states does not solve the issue, since what will be esti-
mated is the Kolmogorov entropy of an approximation of the continuous-state dy-
namics, missing the multifractal structure of the attractor, and providing anyhow a
lower bound on the actual Kolmogorov entropy of the original dynamical system.
More generally, discretization is associated with a loss of information about the
states, and all the discretization procedures presented above are quite sensitive to the
contamination by an additive noise. However, quantitative analysis, and specifically
entropy estimation, is expected to be statistically more faithful when performed on
symbolic sequences.

Kolmogorov entropy rate h should not be confused with the Shannon entropy
of the length distribution of black diagonal lines [17] or white diagonal lines [47].
Black diagonal lines correspond to the recurrence of a segment of trajectory, that is,
two stretches of trajectory remaining close one to the other during l time steps if the
diagonal length is l. Intuitively, it is thus expected in case of a chaotic dynamics that
their average length scales as the inverse of the maximal Lyapunov exponent. Nu-
merical evidences, for some 1D maps, seem to suggest that these Shannon entropies
display the same behavior than the maximal Lyapunov exponent, coinciding for hy-
perbolic 1D maps with the Kolmogorov entropy rate h. However, to our knowledge,
an analytical and general link between Kolmogorov entropy rate and the Shannon
entropy of the length distribution of black or white diagonal lines is still lacking.

We have seen that h roughly measures the range of temporal correlations. In other
words, the time during which the behavior of the system can be predicted is propor-
tional to 1/h. More rigorously, h = λ when there is a single strictly positive Lya-
punov exponent λ . In the case where two or more Lyapunov exponents are strictly
positive, what is termed hyperchaos, Kolmogorov entropy determines only a lower
bound on the sum of positive Lyapunov exponents according to h≤∑λ≥0 λ . This in-
equality, known as the Pesin inequality, turns into an equality under the condition of
uniform hyperbolicity (typically Anosov and Axiom A systems). As a consequence,
if h approaches zero, the system becomes fully predictable (for example the case
of periodic dynamics). On the other hand, a finite positive h indicates the presence
of chaos while h diverges for a stochastic dynamics. Entropy is also closely related
to recurrence times [50, 39]. In the discrete case, Wyner-Ziv theorem states that the
minimal recurrence time at the level of m-words (i.e. the smallest time t such that
w̄m(0) = w̄m(t)) behaves asymptotically as emh [51]. This theorem can be exploited
either to give an interpretation of h in terms of recurrence times, or conversely to
estimate h from the recurrence times. Note that recurrence times involved in this
theorem are minimal recurrence times given by the vertical distance to the main di-
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agonal (first bisector), that is, the length of the white vertical line separating a point
(i, i) from its first recurrence, associated with some dot (i, j) [39, 52]

Overall the use of a RP-based, finite-size estimation of the Kolmogorov entropy
for characterizing an experimental dynamics is clearly limited. Two types of limiting
factors can be distinguished. The first type refers to the dynamics of the investigated
system and the very nature of Kolmogorov entropy. Although entropy is an absolute
dynamical invariant, it characterizes only stationary regimes, and the superimposi-
tion of slow and fast components in the dynamics [32] does not straightforwardly re-
flect in the entropy. Another set of limiting factors is related to the nature of the data
and estimation issues. Experimental data are generally associated with short time
series, high-dimensional underlying dynamics, noise and non-stationarity. These
factors (some of which have been discussed above) all limit the accuracy and re-
liability of the entropy estimation. Furthermore, except in the case of symbolic dy-
namics, only a lower bound K2 can be obtained. Estimating Kolmogorov entropy
is however appropriated for comparison purposes. In data analysis, entropy is of-
ten used for comparing the real system with null models, through a comparison of
their entropies. Moreover, entropy is a unifying concept insofar as it applies to both
deterministic and stochastic dynamics. Such a feature alleviates data analysis from
the need for assessing the deterministic nature of the dynamics and makes the same
estimation procedure valid in both cases. Finally, entropy provides an overall quan-
tification of the complexity of the dynamics but it cannot answer questions about
a specific moment, nor about a specific region of the phase space. This gap can be
filled with further analysis of the RPs, which possibly provides information about
what happens in a localized region of the phase space [50]. While RPs are suitable
for statistical analysis of sequences (extraction of average or integrated features like
the entropy or the average recurrence time) they also allow to keep track of the
temporal location of specific events, hence allowing to visually evidence and locate
dynamic transitions and more generally non-stationary features of the evolution.
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