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a  b  s  t  r  a  c  t

We  propose  a new  “hybrid”  model  for the  simulation  of  biofilm  growth  in a  plug  flow  bioreactor,  that
combines  information  from  three  scales:  a microscopic  one  for the  individual  bacteria,  a mesoscopic  or
“coarse-grained”  one  that  homogenises  at an intermediate  scale  the  quantities  relevant  to the  attach-
ment/detachment  process,  and a macroscopic  one  in  terms  of  substrate  concentration.  In contrast  to
existing  partial  differential  equations  models,  this  approach  is  based  on  a  description  of biological  mech-
anisms  at  the  individual  scale,  thus  bringing  in  a biological  justification  of  the  attachment/detachment
process responsible  of  the macroscopic  behaviour.  We  found  that  compared  to  purely  individual  based
or purely  macroscopic  models,

• the  approximate  coarse-grained  scale  simplifies  the  change  of  scales  from  micro  to macro,  and  speeds

up  the  computation,

• additional  information  about  the stochasticity  of  the  solution,  especially  at  small  populations,  is
revealed  compared  with  the  numerical  simulations  of  partial  differential  equations  models.

Furthermore,  the coarse-grained  model  can be much  more  easily  adapted  to various  attach-
ment/detachment  hypotheses,  that  are  at the  core  of the  biofilm  development.
. Introduction

Biofilms are made of complex communities of micro-organisms
ttached to a surface. They are ubiquitous structures in nature and
n industry, where they can have positive roles such as water treat-

ent or negative roles such as material contamination in industrial
rocesses. In the past years, several modelling approaches were
sed to represent and study biofilms (see Wang and Zhang, 2010
or a general review). One approach is a mathematical descrip-

ion, continuous in time and space, where biofilm development
s summed up by a few ordinary or partial differential equations
ODE or PDE, see Wanner et al., 2006; Klapper and Dockery, 2010

∗ Corresponding author at: UMR  INRA-SupAgro 0729 MISTEA (Mathematics,
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for reviews). Using this approach, one is interested in following
the whole biofilm at a macroscopic scale in terms of its average
concentration over a large surface, with the possibility of some
mathematical analyses. Analysis can become very difficult when
the models try to take into account hydrodynamics (fluid flow)
(e.g. Eberl et al., 2001; Duddu et al., 2009). The other approach
is the use of cellular automata (CA) and individual-based models
(IBM). In the former, space is discretised into microscopic-sized
boxes and the evolution of the contents of each box is described by
simple rules, typically involving the contents of neighbouring cells.
In the latter, each individual bacterium is studied and can have its
own set of rules to follow (with a combination of deterministic and
stochastic rules). Using the IBM approach, one is interested in look-
ing at interactions between the individuals at a microscopic scale
(see Hellweger and Bucci, 2009; Laspidou et al., 2010 for reviews).
Empirical knowledge of the system and its biology can directly be
used as the roots of the elementary mechanisms of IBM models.

Nevertheless, simulation complexity and runtime can increase very
quickly, for example with the number of parameters or that of com-
puter operations. It also means that these models are better suited
to study relatively small populations.

dx.doi.org/10.1016/j.ecolmodel.2012.10.020
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:alain.rapaport@montpellier.inra.fr
dx.doi.org/10.1016/j.ecolmodel.2012.10.020
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Fig. 2. Flow reactor with biofilm.

In this work, we propose a multiscale model (see Fig. 1) of a 1-
imensional plug-flow reactor, i.e. a long thin tube fed by a laminar
ow (Fig. 2), that combines three scales:

a microscopic description of the growth at the level of individual
bacteria, following the well-known Monod law,
a macroscopic representation of diffusion and advection of the
substrate as a continuous concentration (with a discretised gra-
dient and Laplace operator for its numerical simulation, as it is
commonly made (Picioreanu et al., 1998)),
a mescoscopic scale represented by a coarse-grained individual
model, in terms of discrete “boxes”, that describes the common
environment of individual bacteria in each box.

he originality of our approach relies on the introduction
f the coarse-grain level which allows to relate the attach-
ent/detachment process of planktonic bacteria with the local

ensity of attached biomass, according to a logistic law. Notice that
he size of the boxes has to be large enough for the law of large num-

ers to hold, but small enough for the homogeneity assumption
egarding substrate concentration to hold as well (Fig. 3).

Fig. 3. Definition of the different scales.
lling diagram.

2. Models

2.1. Common hypotheses

Regarding the physical system, we  study a plug flow reactor, i.e.
a long and thin tube flow reactor as illustrated on Fig. 2. A tube
with diameter D extends along the z-axis, from z = 0 to z = L. It is
fed at z = 0 with growth medium by a laminar flow of fluid in the
direction of increasing z and at velocity v which is constant. The
external feed contains all nutrients in non-limiting amounts except
one, which is supplied in a constant, growth-limiting concentration
s0. The flow carries medium, depleted nutrients, bacteria and their
by-products out of the reactor at z = L. Substrate s is considered
to diffuse with coefficient ds. We  assume negligible variation of
nutrient concentration transverse to the axial direction of the tube,
because D is assumed to be small compared to L.

Regarding the microbial cells, we  consider only one bacterial
strain. The bacteria can either be suspended in the fluid or attached
to the wall. We  consider that planktonic bacteria P have an unbiased
random motility superimposed on the advection mechanism. It is
similar to regular diffusion and characterised by a diffusion coeffi-
cient dP. Attached bacteria A are assumed to be immobile and there
is a finite carrying capacity of the wall for attachment. Planktonic
bacteria might attach themselves to the wall depending on surface
availability, while attached bacteria might detach themselves from
the wall. Also, when attached bacteria divide, their daughter-cells
might either attach themselves or become planktonic depending
on surface availability.

2.2. The partial differential equations

Our reference PDE model is a system of equations developed
by Ballyk and Smith (1999).  This model is an extension of previ-
ous ones describing wall growth in chemostat systems (see Ballyk
et al., 2008 for a review of these models) based on the work of Freter
et al. (1983) on the mammalian gut. The purpose of the extension
by Ballyk and Smith (1999) was  to account for spatial heterogene-
ity and material flow. The model accounts for the concentration of

substrate s(t, z), the concentration of planktonic bacteria cP(t, z) and
the concentration of attached bacteria cA(t, z). The latter concentra-
tion is measured as a weight per surface unit (not per volume unit
like the others) as it represents the surface occupied by the attached
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acteria. To convert cA(t, z) to the same dimension as cP(t, z), a coef-
cient called ı is used, which is the ratio of the tube surface to the
ube volume (ı = (�D/(�D2/4)) = 4/D).

The equations are the following:

∂s

∂t
= ds

∂
2
s

∂z2
− v

∂s

∂z
− cP fP (s)�−1 − ı cAfA(s)�−1

∂cP

∂t
= dP

∂
2
cP

∂z2
− v

∂cP

∂z
+ cP (fP (s) − kP ) + ıcAfA(s)(1 − G(CA)) . . .

−˛cP (1 − CA) + ıˇcA

∂cA

∂t
= cA(fA(s)G(CA) − kA − ˇ) + ˛cP (1 − CA)ı−1

(1)

he substrate uptake rates for planktonic and attached bacteria are
iven by Monod functions:

j(s) = �js

Kj + s
where j = A or P (2)

he fraction of daughter-cells of attached bacteria finding sites
n the wall, G(CA), depends on the amount of surface available
or attachment cA,∞ with CA = cA/cA,∞ being the fraction of surface
lready occupied. The main biological requirement on this function
s to decrease when CA increases and reach zero when CA is null. The
articular function used since the work of Freter et al. (1983) is the
ollowing one:

(CA) = 1 − CA

1 + � − CA
(3)

here � is typically small. We  also have the following Danckwerts
oundary conditions (Dochain and Vanrolleghem, 2001):

vs0 = −ds
∂s

∂z
(0,  t) + vs(0,  t),

∂s

∂z
(L, t) = 0

0 = −dP
∂cP

∂z
(0,  t) + vcP(0,  t),

∂cP

∂z
(L, t) = 0

nd the following initial conditions:

s(z, 0) = sinit(z), cP (z, 0) = cP,init(z), cA(z, 0) = cA,init(z), 0 ≤ z ≤ L

normalsize
These equations lead to two possible steady state regimes:

omplete washout of the bacteria from the reactor and success-
ul colonisation of the reactor by the bacteria. Details about these
teady states can be found in Ballyk and Smith (1999).  In order to
tudy the system more closely, a numerical approach was  used to
olve it. We  used a similar approach as that used by Ballyk and Smith
1999) with a centered second-order finite difference scheme for
iffusion, an upwind first-order finite difference scheme for advec-
ion and the semi-implicit Crank–Nicolson method for time.

.3. The microscopic rules

There are two individual-level mechanisms that involve bacte-
ial attachment: attachment of planktonic bacteria and attachment
f daughter-cells of attached bacteria. The space available for
ttachment is assumed to be limited. Any arriving bacterium
ttaches itself with probability ˛ if this bacterium is above or next
o an available position, else the bacterium becomes or remains
lanktonic. In order to simplify neighbourhood references, it is pos-
ible to homogenise such a mechanism at the mesoscopic scale. Let
s consider there are Xmax individual positions on the surface in a
iven neighbourhood, the elementary volume, and already X indi-
iduals occupying some of these positions. We  consider two kinds
f mechanisms:
The “homogenised threshold” mechanism (HT). Any arriving bac-
terium attaches itself with probability  ̨ if there are available
positions in the considered space (X < Xmax), else the bacterium
delling 250 (2013) 15– 24 17

becomes or remains planktonic. This is the most simple descrip-
tion at the mesoscopic level of an elementary volume, without
density-dependence effects.

• The “homogenised probability” mechanism (HP). Any arriving
bacterium attaches itself with probability ˛(1 − X/Xmax), which
means that the bacterium becomes or remains planktonic with
probability ˛X/Xmax.

Unless specified otherwise, the IBM is run by default with the HP
mechanism for the attachment of planktonic bacteria and the HT
mechanism for the attachment of daughter-cells of attached bacte-
ria.

Remark. It is interesting to notice that in their equations, Ballyk
and Smith (1999) use different mechanisms for the attachment
of planktonic bacteria and for the attachment of daughter-cells
of attached bacteria. The former is a macroscopic version of the
HP mechanism while the latter is of the HT mechanism. These
choices are not discussed much in this work (Ballyk and Smith,
1999) nor the references therein. Thus, we have explored these dif-
ferent mesoscopic mechanisms in our coarse-grained IBM and their
impact on model results.

2.4. The coarse-grained individual-based model

2.4.1. Overview
The entities in this model are bacteria. Their microscopic

attributes are their position, mass and attachment status. Our main
state variables are the number of bacteria in the tube, both attached
or detached, as well as the concentration of the substrate. The sub-
strate is not described at a molecular level but its concentration
is an attribute of each grid box. The time scale of our simulations
is about a few days in duration with a few seconds for the time
step. Simulation duration is limited to the time it takes to reach a
quasi-steady-state in the system. The time step is constrained by
the discretisation scheme used to model the substrate diffusion and
advection. The space scale is a few centimetres for the tube length
with about 50 �m for the space step.

• The substrate reaction–diffusion process. The substrate in each
grid box diffuses horizontally into the two neighbour boxes (the
model being pseudo-1D, we  assume homogeneity in the direc-
tions transverse to the tube axis) and is advected along the flow
into the following box (discretised Laplacian). Bacteria in the box
eat one after the other in a random order. The speed with which
bacteria eat depends on the local substrate concentration and is
given by the Monod law (Eq. (2))  as long as substrate is available
in the box. The amount eaten by the bacteria increases their mass
by that same amount multiplied by the yield factor � . Substrate
concentration in the boxes is updated only at the end of these
steps (see Fig. 4). Despite the artificiality of this sequence, dis-
crepancies should be small because the time step remains very
small.

• The bacteria division process. Bacteria that have a mass higher than
the division threshold mdiv divide into two  bacteria of total mass
that of the mother bacteria (see Fig. 5).

• The bacteria attachment/detachment process.  The detached bacte-
ria are advected by the flow and have a random horizontal
motility (see Fig. 6). The different attachment processes are
described in Section 2.3.

2.4.2. Description

The work is based on that of Mabrouk et al. (2010), Mabrouk

(2010), itself based on similar assumptions as that of Picioreanu
et al. (1998) or Kreft et al. (2001).  Main differences regard the pres-
ence of a flow and taking the border into account.
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Fig. 4. Diagram illustrating the rules of substrate change at each time step, in each
box along the tube.
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ig. 5. Diagram illustrating the rules of bacterial division at each time step, for each
acterium. Attachment status: A, attached; D, detached.
Given the small time scale of our simulations, the bacteria in
his model do not have adaptive traits and hence do not attempt to

eet objectives. They have no learning abilities and do not attempt
o predict their future environment.

ig. 6. Diagram illustrating the rules of bacterial attachment or movement at each time
rawn  each time from a uniform distribution between 0 and 1.  ̨ and  ̌ are respectively t
delling 250 (2013) 15– 24

2.4.2.1. Initialisation and inputs. Before the simulation starts, a
number of bacteria are placed in the boxes (location picked from
a random uniform distribution), a certain number of which are
attached (NA,init), the others detached (NP,init). Each bacterium has
an initial mass of minit. Substrate is present throughout the tube at
a given concentration sinit.

The input data, such as bacteria initial position, are chosen ran-
domly. Nevertheless, if one wanted to specifically reproduce a given
part of a larger tube, initial conditions of the model could be forced
to resemble any point of the PDE system representing the whole
tube.

2.4.2.2. Bacterial biology and movement.
2.4.2.2.1. Growth. Each bacterium consumes a given amount of

substrate which is determined by the Monod growth kinetics and
its own  mass m. We  assume that bacterial growth is directly equal
to this amount consumed, multiplied by the conversion yield factor
� . At time t and in box i, the increase in mass dm is the following:

dm = �m
�jst,i

Kj + st,i

where j is either A or P for attached or planktonic bacteria respec-
tively (see Table 1 for more details).

2.4.2.2.2. Division. Each bacterium that has a mass higher than
the division threshold mdiv divides into two  bacteria of total mass
that of the mother bacterium. Each of the two daughter-bacteria
receives half of the mother mass plus or minus a random amount
(taken from a uniform distribution between 0 and 25% of the
mother mass). One of the daughter bacteria retains the mother
location and attachment status, and the other bacterium has the
same location plus or minus a random amount (taken from a uni-
form distribution between 0 and mother diameter). That second
daughter bacterium has the same attachment status as its mother
by default. If that status is attached, depending on the mechanism
used for attachment (see Section 2.3), then the new bacterium
might become detached. A daughter bacterium which location is
outside the tube is considered as washed out.

2.4.2.2.3. Attachment and detachment. Each of the detached
bacteria has a probability involving  ̨ times dt and mA,∞ to attach
itself on the wall. The exact mechanism can be varied according to

the description in Section 2.3.  Each of the attached bacteria has a
probability  ̌ times dt to detach itself.

2.4.2.2.4. Movement. The detached bacteria are advected by
the flow and have a random horizontal motility modelled as a

 step, for each bacterium. Attachment status: A, attached; D, detached; r, number
he attachment and detachment rates.
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Table  1
Description of the symbols used in both models, with units shown in brackets.

Description PDE symbol IBM symbol Default value

Space Continuous position z [m]  Box number i, space step dz [m]  200 boxes
Time  [s] Continuous time t Discrete time t, time step dt –
Substrate concentration [kg m−3] s(t, z) st,i –
Amount of planktonic bacteria Concentration cP(t, z) [kg m−3] Number NP,t,i or mass mP,t,i [kg] –
Amount of attached bacteria Concentration cA(t, z) [kg m−2] Number NA,t,i or mass mA,t,i [kg] –
Initial  substrate concentration sinit sinit 1 × 10−3 kg m−3

Initial amount of j-type bacteriaa Concentration cj,init [kg m−2] Number Nj,init 1000 ind.
Length of tube L L 0.01 m
Diameter of tube D D 1 × 10−3 m
Flow  velocity v v 1 × 10−6 m s−1

Conversion yield � � 1
Ratio  of tube circumference to cross-sectional area ı – 4 × 103 m−1

Input substrate concentration s0 s0 1 × 10−3 kg m−3

Attachment rate  ̨ ˛b 1 × 10−8 s−1

Detachment rate  ̌ ˇb 1 × 10−5 s−1

Diffusion rate of substrate ds ds
b 1 × 10−14 m2 s−1

Diffusion rate of planktonic bacteria dP dP
b 1 × 10−13 m2 s−1

Maximum growth rate of j-type bacteriaa �j �j
b 1 × 10−4 s−1

Half-saturation constant for j-type bacteriab Kj Kj
b 1 × 10−3 kg m−3

Maximum amount of attached bacteria Concentration cA,∞ [kg m−2] Mass mA,∞ [kg] 1 × 10−10 kg
Wall  fraction occupied by attached bacteria CA = cA/cA,∞ MA = mA/mA,∞ –
Dimensionless coefficient of G(CA) � – 0.01
Fraction of daughters of attached bacteria finding sites on the wall G(CA) = 1−CA

1+�−CA
– –

Initial  individual mass – minit 1 × 10−15 kg
Mass  over which an individual divides – m 2 × 10−15 kg
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these bacteria being released by the thick biofilm of the leftmost
part of the tube.

There are nevertheless differences between the two models.
First of all, in the right-most part of the tube, there are few attached
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a j = P for planktonic bacteria or A for attached bacteria; here P and A parameters 

b Same coefficient in both models but may  be used slightly differently to account

rownian motion process with an apparent diffusion factor dP. The
istance crossed over one time step thus follows a Gaussian law of
ariance twice the diffusion-like factor dP multiplied by the time
tep (Mabrouk, 2010).

.5. Numerical experiments

We ran a large number of numerical experiments for both the
DE system and the IBM. Parameter values are those indicated in
able 1 unless mentioned otherwise. In the case of the PDE system,
ne run gives the deterministic output for a given set of parameters.
ut in the case of the IBM, twelve runs were made with different
andom seeds. This is in contrast with classical Monte Carlo tech-
iques that require a greater number of simulations to infer the
verage behaviour and the deviation from this average behaviour.
ur situation is indeed different as we consider jointly a PDE model
nd an IBM. This latter model tends to various types of PDE or
ntegro-differential equation models depending on how the differ-
nt discretization steps tend toward 0 and what type of rescaling is
dopted. In particular, the PDE considered here is one of the limit
odels of the IBM. Hence the IBM simulator is not intended here to

e used as a Monte Carlo technique to infer an average behaviour
rom a large number of simulations. It has rather the status of an
n silico experimentation tool, and in terms of experimentation,
welve is a large number. This number of simulations is sufficient
o determine how the PDE model deviates from the in silico exper-
mentations but more importantly to understand the qualitative
ature of this discrepancy. We  study the following result variables
nce the steady state is reached (large t):

the profiles along the tube for all three variables (in terms of mass,
for comparison between the two models);

the biofilm “length”, which is defined as argmax

i
(mA,t,i − mA,t,i−1),

i.e. the location i along the tube where the difference between two
following positions is maximum;
the sum over the whole tube of the attached biomass.
div

he same values.
scretisation.

3. Results

3.1. General description of steady state profiles

In both models, we find similar profiles at the steady state for the
default values (Fig. 7). These profiles indicate an important devel-
opment of the biofilm in the leftmost side of the tube where the
nutrient flow enters. Parallel to this biofilm development which
reaches the carrying capacity, there is an important decrease in
substrate concentration. Once a threshold substrate concentration
is crossed, there is not enough substrate to allow the growth of a
thick biofilm and the amount of attached bacteria reaches a value
close to one bacterium along the remainder of the tube. Meanwhile,
the amount of detached bacteria increases along the whole tube,
Fig. 7. General profile along the tube observed at the steady state for the PDE numer-
ical resolution (gray lines) and the average over 12 IBM runs (black lines) with default
values as shown in Table 1. The mass of attached bacteria mA is represented by solid
lines, the mass of planktonic bacteria mP by dash-dot lines and the mass of substrate
mS by long dashes. The horizontal axis is the length of tube divided by L.
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acteria and the two models represent this situation differently.
he IBM gives a presence–absence information: there is no point
n case no attached bacteria are present due to the log-scale of
ig. 7. Meanwhile, the PDE gives a continuous expression which
n the right-most part of the graph corresponds to about a tenth of
n individual bacterium. Nevertheless, both cases give similar val-
es. Second, the attached bacteria in the thick biofilm are slightly
ore developed in the IBM than in the PDE, which implies a slightly

horter biofilm length. The difference in biofilm length is exagger-
ted by the log-scale but it remains quite small (about 1 “box” of
ifference) and the difference in overall attached biomass is about
%. Third, the change from thick biofilm to little or no biofilm is
uite sharp in both cases but it is even sharper in the IBM. Finally,
here is also the effect of fluctuations in the IBM to be considered.
his variability does not reflect individual variance because there
as already been some homogenisation but it could be thought of
s a “quality” assessment of the coarse-grained IBM. Overall, the
ariance along the profile is relatively low, in particular for the sub-
trate concentration and the planktonic bacteria. Indeed, these two
lements are affected by diffusion processes which smooth their
istribution along the tube and there is less variability between
uns. For the attached biomass, it is quite low over the thick biofilm
ength but increases afterwards, in particular over the switch from
hick biofilm to almost no attached bacteria (data not shown).

.2. Parallel between discretisation to solve PDE and discretised
vents in IBM

In both cases, whether the model was conceived in a contin-
ous or a discrete manner, the resulting simulations relied on a
iscretised code. Thus, in both cases, we can compare the impact of
he number of spatial boxes making up the whole tube. By keeping
he tube length constant and increasing the number of boxes, the
ize and volume of each box is reduced. Using a large number of
oxes increases the similarity of the results with those that might
e obtained with a continuous representation. But it also increases
imulation run time and it reduces the number of individuals or
iomass present in each box which may  lead to observing quan-
ities smaller than one individual in the case of the PDE system.
n this work, we find that the numerical experiments are relatively
esilient to the number of boxes and thus to box size as well (Fig. 8).
y using a small number of boxes, there is a slight tendency to
verestimate the biofilm length in both models, but the difference
emains well under 1%. Also, this is more apparent for the PDE
ystem than for the IBM.

.3. Sensitivity analysis

Sensitivity analysis generally refers to any investigation intend-
ng to check the robustness of the model predictions with respect
o a change in the model features. Following the methodologi-
al review by Cariboni et al. (2007),  we distinguish the sensitivity
o model parameters, the uncertainty due to model stochasticity,
nd the structural stability (or instability) with respect to a qual-
tative change in the implementation or modelling choices. The
ncertainty due to inherent stochasticity has been appreciated by
unning the simulation with different random seeds (Section 2.5).
he influence of the size of the spatial boxes used in the homogeni-
ation has been treated in Section 3.2 (see in particular Fig. 8). The
nfluence of the attachment/detachment rules will be treated in
ection 3.4 (see in particular Fig. 12). We  have also checked the

nsensitivity to the division rules. In the present section, we  dis-
ect to the sensitivity of the simulation results by varying the main
arameters (s0, v, mA,∞, �j, Kj, ˛, ˇ) independently, one at a time.
his approach is tractable thanks to the minimal nature of our
delling 250 (2013) 15– 24

model, making possible to control and understand the impact of
each term.

Overall, the same effects are observed on PDE and IBM simu-
lations. Differences in the main results (length of biofilm, mass of
attached bacteria) between the two  models remained well under
5%. The parameters tested here are those which have a major impact
on the results.

An increase in the concentration substrate s0 leads to an increase
in the length of biofilm formed (first line of Fig. 9). An increase in the
flow velocity v leads to a similar effect. Indeed, increasing v leads
to an increased amount of substrate available for the bacteria. An
increase in the maximum amount of attached bacteria mA,∞ leads
to a decrease in the length of biofilm which is formed (second line
of Fig. 9). Indeed, since the biofilm is thicker, the substrate is com-
pletely eaten earlier along the tube and prevents further biofilm
development.

As regards the parameters of the growth curves, an increase
in both �j or both Kj leads first to an increase in the length of
biofilm formed and after reaching a peak value it leads to a decrease
(Fig. 10). Indeed, for low values of �j, bacteria are washed out while
for high values of �j, the bacteria are very efficient in eating the
substrate and only a short length of biofilm can develop before the
tube is emptied of substrate. Thus, it is for intermediate values of
�j that a maximum length of biofilm is observed. Similar results
are observed for Kj but with high values of Kj leading to a wash-out
and low values of Kj leading to a short and efficient biofilm.

An increase in the attachment rate  ̨ has very little effect on
the development of the main biofilm in the leftmost part of the
tube. Nevertheless, it leads to an increase in the development of the
biofilm in the rest of the tube (Fig. 11). Bacteria in this part of the
biofilm do not grow because there is very little substrate left but
the biofilm is built via attachment of planktonic bacteria flowing
by. An increase in the detachment rate  ̌ leads to a decrease in the
length of biofilm formed (Fig. 11). Indeed, for large values of ˇ, the
amount of substrate needed for biofilm development (including
compensation for biofilm detachment) is higher than for smaller
values of ˇ. For a large enough value of ˇ, there is wash-out.

3.4. Impact of microscopic attachment mechanisms

Different attachment mechanisms were considered (Fig. 12).
The PDE mechanism of the G function and the “homogenised
threshold” (HT) mechanism lead to similar macroscopic
behaviours, with an abrupt limit to attachment possibilities
for bacteria and thus an abrupt distinction between a part of
the tube with a thick biofilm and the other part with almost
no attached bacteria. Whichever mechanism is followed for the
attachment of planktonic bacteria, the results are similar because
this attachment is mostly important in the part of the tube with
little attached bacteria and thus for values where all mechanisms
behave similarly. On the other hand, whether the attachment
of daughter bacteria follows the HT or the HP mechanism has a
much more important impact on the overall profile along the tube.
Indeed, the “homogenised probability” (HP) mechanism leads to
a much smoother transition between the part of the tube with a
thick biofilm and the other part with almost no attached bacteria.
It remains to be seen which may  be the more realistic approach.

4. Discussion

4.1. Modelling choices
Multiscale approaches in physics mainly aim at extracting
macroscopic dynamics from a more microscopic description
(Givon et al., 2004). Mathematical methods are available when the
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nly, we suggest to adapt homogenisation methods. However, con-
idering only a macroscopic description is not sufficient because

ocal spatial structures and local behaviours matter.

We thus consider a mesoscopic (or “coarse-grained”) scale that
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rocess of the biofilm, while keeping track of the discrete nature of
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bacterial cells and their individual location, growth and division. In
this respect our model can also be termed “hybrid”: it is at the same
time discrete (spatial location, growth and division of each bacte-
rial cell, to account accurately to their participation to the biofilm
spatial structure), and continuous (same rules in a spatial cell, as
if we  were considering a population of cells, described by a single
set of continuous quantities). Homogenisation is here achieved by
endowing each bacterial cell with the average behaviour (average
in a spatial cell) as regards the attachment and detachment pro-

cesses. Our mesoscopic account of these processes involves bacteria
densities and effective rates, which makes possible a direct deriva-
tion of the corresponding term in a PDE description (provided that
statistical averages and macroscopic densities are identified). In
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his way, our simulation model combines information from three
cales: spatial distribution and growth of individual bacterial cells,
omogenised view of the attachment and detachment processes,
nd a comparison with PDE solutions at macroscopic scale. The
atter moreover provides a way to appreciate the validity of the

acroscopic description at small numbers of cells.

.2. Perspectives

Using an IBM approach to describe this plug-flow system has
everal advantages. First of all, it allows us to use “biological” rules,
.e. rules that can intuitively be suggested (and tested) by biologists
ased on their in-depth knowledge of the real system. This makes
he system more amenable to interactions with experiments and
lso to changes in the choice of mechanisms. This IBM may  thus
ead to improvement over the original model proposed by Freter
t al. (1983) and its variations (Ballyk and Smith, 1999) by allowing
s to test mechanisms that could not be easily formulated or even
olved analytically. One possibility would be to explore the biofilm
ynamics when considering different bacterial strains competing

nside the tube for space and/or substrate resources. Also, we could
onsider taking into account the (transversally) inhomogeneous
elocity profile through a shear rate, generating a shear force on
ttached bacteria which would promote their detachment (with
n effect on the ˇ parameter) and limit the thickness of biofilm
effect on the cA,∞ carrying capacity parameter).

Regarding the density issue (thick biofilm in one part of the tube,
ew attached bacteria in the other part), we could consider an asso-
iation of the different models, in the spirit of the heterogeneous
ultiscale method of E and collaborators (Weinan and Engquist,

003; Weinan et al., 2009). Indeed, currently we have compared the
DE and IBM models but a prospect could be to use them sequen-
ially with the PDE at the start of the tube where the population is
arger and a transition to the IBM for the rest of the tube where the

opulation is smaller.

Our homogenised IBM could be extended in two  directions to
ully model the ecological dynamics of the biofilm: first by tak-
ng into account complex interactions between individuals, second
delling 250 (2013) 15– 24 23

by capturing in its dynamic rules the influence of the emergent
properties of the biofilm on the individual features and behaviour
(e.g. geometrical or mechanical constraints). It provides the frame-
work to investigate the multiscale organisation of the biofilm,
encompassing both emergent collective features (bottom-up inte-
gration) and top-down influences (modification of the individual or
homogenised dynamics of bacterial cells embedded in the biofilm)
(Lesne, in press).

4.3. Conclusion

We have proposed a new multiscale model of biofilm growth in
a plug flow reactor, with reasonable runtimes for the simulations
while remaining close to microscopic processes and knowledge.
In particular, our approach focuses on the hypotheses regarding
the attachment/detachment process that is at the core of biofilm
growth. The comparison with the PDE model has led to similar
steady-state concentration profiles at the macroscopic level.

From the biologist or microbial ecologist viewpoint, this mod-
elling approach present several advantages compared to more
traditional approaches based on macroscopic population models:

- It describe the biological mechanisms at the individual scale,
closer to what is known or observed experimentally by biologists,
and uses meaningful biological parameters.

- It allows to justify biologically (or not) some terms that are cho-
sen in the PDE model without direct macroscopic justification,
especially the terms related to attachment/detachment process
in biofilms.

-  It provides additional information on second-order terms or vari-
ance around the average profile that have been compared with
the PDE model. This brings insight about the variability of biofilm
features and dynamics depending on the values of the parameters
and the size of the populations.

From a methodological viewpoint, the curse of dimension-
ality inherent to individual-based models has been reduced by
the consideration of a mesoscopic or “coarse-grained” scale. This
framework is thus generic and efficient. It is suitable for investi-
gating from the level of microscopic details to that of macroscopic
predictions multispecies biofilms in more complicated two  or three
dimensional geometries. It has the potential to model ecological
processes such as complex interactions between individuals or the
influence of the emergent properties of the biofilm on the individual
features and behaviour.
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