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Abstract. - The influence of noise on the accumulation of the period-doubling cascade has been 
analysed mostly for independent Gaussian noise. Universality extends to much more general 
situations including the case of periodic noises although some differences occur in the value of 
the critical exponents. We propose an explanation for these apparent discrepancies based on 
numerical and theoretical results. We report on simulations of discrete systems which show a 
cross-over in the behaviour of the Lyapunov exponent as a function of the amplitude of the 
periodic noise. Within a renormalization group approach, we discuss this phenomenon in terms 
of the competition between the usual deterministic fixed point and a noise-dependent fixed 
point. 

We first recall the notion of iteration in the presence of noise. We shall consider mappings 
of the interval statisfying the standard hypothesis of regularity and unimodality (see for 
examplerl]). A good example to keep in mind is the family of maps of the interval 

where the parameter is between 0 and 2, and x > 1. This family presents the well-known 
phenomenon of accumulation of period-doubling bifurcations (see references in [21) for a 
critical value ,uc of the parameter ,U. Letfdenote such a map. In the classical iterations, one 
generates a sequence of number {x,},~~ by the formula 

($) Permanent address: Laboratoire de Physique ThBorique, Universitk de Nice, Parc Valrose, 
06034 Nice Cedex, France. 
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For random iterations, one considers a sequence {En} of random variables and defines the 
sequence {xn),,r.J by 

where g is a given function of two variables. Note that the sequence of random variables 
{tn} may be strongly correlated (see Example 2 below). We now give two examples of the 
above situation: 

Example 1: { E n } n e N  is a sequence of real independent identically distributed random 
variables, and the iteration is given by[3] 

(i.e. g(x, y) = cy). 

Example 2: the sequence { E , }  is generated by a rotation of the circle [4]. One chooses a 
rotation number D and defines 

and 

x,+~ = 1 -pIx,I* + E sin5;2 (6) 

(i.e. g(x, y) = E sin y). In general 0 / 2 x  is chosen irrational although this is not necessary. This 
is not what is usually called .noise>> in the physical literature. However, it is covered by our 
previous definition and we shall adopt this convention throughout this paper. 

In both examples, the parameter E measures the amplitude of the noise, and in particular, 
if we set E = O  we recover the standard iteration scheme. A natural question is: how to 
measure the influence of the noise on the accumulation of period-doublings? There are 
essentially two ways of doing this. The first method consists in measuring the Lyapunov 
exponent L which describes the instability of the trajectories [3]. More precisely one sets ,U 

equal t o  the critical value pc and computes L defined by 
’v 

L = lim 1/N In l f ’ (xn)[  
n = O  X - + r  

For E = 0,it is known that L = 0. If E is small one gets a scaling law for the envelope L(E) of 
the Lyapunov exponent 

where x is a universal exponent which does not depend on the aspecific shape off, but only 
on the order x of its local maximum. 

Another method (which is not very well suited for accurate numerical computations) is to 
consider the bifurcation diagram of the mapping. This diagram is obtained by plotting the 
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attractor (the asymptotic attracting set for almost any trajectory) as a function of the 
parameter p. If E = O  one observes the well-known infinite sequence of windows 
corresponding to period-doublings which accumulate at  the critical value pc [ll. In the 
presence of noise the smallest windows are of course washed out. However, if we let E tend 
to zero, we should recover the original picture. A natural question is: by which quantity 
should one divide the amplitude of the noise ( E )  to  see another level of windows? For the case 
of a noise generated by Gaussian-independent random variables (4), this number turns out 
to be equal to a universal constant x. This constant is related to the universal exponent x by 
the equation 

x = 21'x. (9) 

This relation can be deduced from a renormalization group analysis independently of the 
nature of noise [5-73. In fig. 1 we have computed the x-dependence of the rescaling factor x; in 
the generic quadratic case x(z  = 2) = 6.61903.. . . However, for periodic noises the situation 
seems to be more involved [4,8,9], and we will now describe this case in more details. 

Fig. 1. - The renormalization group prediction for the universal constant x(x )  (see formula (9)) as a 
function of the order z of the local maximum of f(x). 

In[10] a more general renormalization method is proposed to  study the scaling limit 
( E  + 0, ,U + pC). The universal numbers appear as Lyapunov exponents of a skew product 
renormalization. This method allows to draw some conclusions about the noise dependence 
of the universal numbers. For example, if one considers a perturbation which is a 
trigonometric polynomial evolving under a rotation of angle 0, then one finds the same 
universal number for a set of values of D of full measure. As explained below, numerical 
results indicate that this number is about equal to  the universal number x(x )  for independent 
noise. This fact is illustrated in fig. 2 using (5) and (6) in the generic quadratic case x = 2 with 
Q = 3 .  Following the second method of analysis discussed above, we plot apf2"(x)  
(x E [- 1/2ap, 1/2#]) as a function of AP(pc -,U), where a = - 2.5029 ... and A = 4.6692. .. are 
well-known scaling factors[1,2]. For each p one observes the same trends in the 
bifurcations diagram, namely the same number of period-doubling bifurcation when 
rescaling E by a factor x P  with x = 6.61903 ... . Computing the Lyapunov exponent as defined 
in (7) with (5) and (6) for x different from 2, we show in fig. 3 that this result extends to the 
whole set of universality classes. From the measure of the exponent x entering the scaling 
laws (8) and (9), one recovers the theoretical predictions x ( x )  for random noise as described in 
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lP( ,uC -,u) 

Fig. 2 .  - Bifurcation diagrams computed with the mapping (6) with z = 2 and Q = 3. When plotting 
aPfP(x>  vs. hp(p, - p), one observes the same number of period-doubling bifurcations if one rescales E 

by a factor 2 in good agreement with the renormalization group predictions: U = -,2.5029, h = 4.6692, 
x = 6.6190 (5 E [- 1/2ap, ll2apl). 

fig. 1 independently of the value of the winding number Q (Q/2z irrational). Note, however, 
that the Lyapunov exponent might well be slightly different than the noise exponent; 
actually one can prove that it is in between a' and x[lO]. 

This kind of <<supermniversality, of the critical exponent is not true for every value of 9. If 
one takes for example D = 0, the universal number x is the usual one A, i . e .  x = 4.6692 ... for 
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Fig. 3. - A log-log plot of L vs. E .  L is calculated with N = lo5 iterations of (6) for ,u = ,uc(z), Q = 3. The 
error bars indicate the dispersion in the computed Lyapunov exponent for the last 2 . lo4 iterations. 
The continuous lines correspond to the predictions (8) given by the renormalization group analysis (9) 
(fig. 1): a)  ~=l.l, x=12.597; z = 1 . 3 ,  x=7.951; b)  ~ = 2 ,  x=6.619; ~ = 3 ,  x = 7 . 3 0 7 .  

x = 2. The critical number depends now on 8 1 2 ~ .  An example is shown in fig. 4. Moreover, as 
proved in [lo], if one denotes by h the mapping of the interval [O, 11 

x -+ h(x) = 2x mod 1 (10) 

two rational values of 8 / 2 x  which are preimages under h of the same periodic orbit (of h) will 
give rise to the same universal number. We illustrate this result in fig. 4. 

This renormalization analysis is, however, valid only in the scaling limit regime i . e .  the 
universal number K ( X )  measures the rate of escape from the usual fixed point due to the 
presence of the new degrees of freedom associated to the noise. Somewhat different results 
were observed [4,81 if one computes the Lyapunov exponent in different regimes. For a 
given (small) E ,  the number of iterations one can use t o  compute L (see formula (7)) in the 
scaling regime is limited by the fact that one has to stay (from the renormalization point of 
view) near the classical deterministic fixed point. If N is taken too large, one will drift away 
and eventually reach a new region in the space of mappings where the dependence upon the 
noise is nontrivial. We expect this cross-over to take place for a number of iterations N 
satisfying 

 EN"^ = O(1) , (11) 

where x is defined in (9). This comes roughly as follows: p steps of renormalization expand E 

by a factor 2'; on the other hand, since each renormalization corresponds to a doubling of the 
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Fig. 4. - A log-log plot of L us. E .  L is calculated with N = lo5 iterations of (6) for p = pc  and rational 
forcings. The continuous lines correspond to the predictions given by the renormalization group 
analysis: a) D = x ,  x = A = 4.669; b)  D = 2x113, x = 7.678; c) D = 2x16, x = 7.678. 

unit of time, p steps of renormalization need N = 2p iterations. The numerical results 
presented in fig. 5 show this phenomenon very clearly for the particular choice z = 312 in (6). 
We have used a fixed number of iterations N=105 of (6) to  compute a numerical 
approximation of L in (7). If E is not too small the slope of the curve logL vs. log& appears to 
be very sensitive to 8, whereas for smaller values of E one gets a different result in good 
agreement with the previous universal exponent x = 0.3564 ... as given by (9) with 
x(z  = 312) = 6.9935 ... (see fig. 1). Notice that in this new regime ( E  bigger than the value 
given by (ll)), the envelope of the Lyapunov exponent still has a power law behaviour as a 
function of E ,  although the exponent depends strongly on the rotation number 8. This of 
course suggests that this .nontrivial noisy regime. is associated to another renormalization 
depending on the noise. 

In a previous work [4,8], O-dependent critical exponents have been obtained (in the 
generic case x = 2) when linearizing the renormalization operator in the neighbourhood of an 
invariant cycle of the general form 

where a complex notation has been used in order to account for the actual bidimensionality 
of the problem. If we approximate (12) by the invariant circle p(x) exp [io], where p(x) is the 
usual fixed point, the modulus of an appropriate perturbation was shown to expand by a 
factor xra when averaging over successive iterations of the renormalization operation. In fig. 
6 we have computed the O-dependence of this average dilation factor x g  using the universal 
constant x (see fig. 1) as unit scale for different values of the order z of the local maximum of 
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Fig. 5. - A log-log plot of L vs. E .  L is calculated with N = lo5 iterations of (6) for i.( = pc, z = 1.5. The 
continuous lines correspond to the prediction (8) given by the renormalization group analysis (9) near 
the usual fixed point: x = In2/lnx (see fig. 1); the dashed lines correspond to the predictions given by 
the renormalization group analysis near the invariant cycle (12): xn = ln2/lnxa (see fig. 6). a) O = 0.2, 

~ n = 0 . 3 0 9 ,  - x = 0.356. 
x = 6.9935, xo  = 3.7756; --- XQ = 0.522, - ~ = 0 . 3 5 6 .  b) O = 3 ,  ~ = 6 . 9 9 3 5 ,  ~ 0 = 9 . 4 2 5 3 ;  --- 
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Fig. 6. - The 0-dependence of the universal constant x n  predicted by the renormalization group 
analysis near the invariant cycle (12) as compared to x ( z )  derived from the renormalization group 
analysis near the usual fixed point (see fig. 1). Here 9 takes only irrational values. 
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f(x). xQ is a symmetric function of D with respect to x ;  this is a consequence of the global 
invariance of the problem under the change D + - 0. Note that there exists a range of 0- 
values around x such that xQ > x. The graph of xQ becomes flatter when one increases x .  The 
result obtained for the universality class x = 10 strongly suggests that in the asymptotic 
limit x +  + w ,  the ratio xQ/x converges to 1. In order to test the relevance of (12) one thus 
needs to investigate universality classes associated with small values of x .  In fig. 5 we have 
represented in dashed lines the theoretical predictions xa  = In 2/1nxn obtained from fig. 6 for 
the universality class x = 312. For both the considered values of 0, these predictions are in 
good agreement with the scaling behaviour observed in the <<nontrivial noisy regime.. Let 
us note that our particular choices for D are quite representative of the cross-over 
phenomenon we are discussing; for D = 0.2, xQ < x implies an increase of the slope of logE us. 
log E as seen in fig. 5u); whereas for D = 3, xQ > x implies a decrease of this slope as seen in 

5b). Such an agreement between simulation and theory is not specific to a particular 
universality class; we have performed numerical experiments for different values of x which 
all confort our theoretical argumentation. I t  is thus very likely that the cross-over 
phenomenon observed when measuring the critical exponent associated to a periodic forcing 
of the period-doubling cascade is the consequence of a competition between the 
deterministic fixed point and a noise-dependent fixed point ( i . e .  the invariant cycle (12)). 

In conclusion, let us emphasize that if one extends such an approach to type-I 
intermittency in the presence of a periodic noise, both the skew product renormalization in 
the scaling regime and the noise-dependent renormalization in the .nontrivial noisy. regime 
lead to critical exponent [9,11] 

fig. 

x = In 2/ln x = x - 1 (13) 

as  deduced from the universal constant x=2%-14 Notice that this critical exponent is 
different from the exponent obtained in the presence of a random noise 

In fig. 7 we illustrate the result of a numerical investigation of the two-dimensional 
x = (2 + 1)12(~ - 1) [12-151. 

mapping 

= p + x, + u/x,lz + E sin 5, mod 1 , 

E,+1 = E ,  + D mod2x . 1 
For E = O ,  this mapping reduces to the simplest model exhibiting type-I inter- 
mittency [16, 171, i .e.  the family of iterations 

where ,U accounts for a displacement from the tangent bifurcation value (,uC = 0) and 
- 1 s x s 1 ensures the reinjection process. 

For small &-values, the envelope of the Lyapunov exponent has still a power law 
behaviour in good agreement with the theoretical prediction (13). Contrary to the period- 
doubling scenario there is no cross-over effect when plotting L vs. E on a full logarithmic 
scale (fig. 7). However, one should mention that the scaling regime is rather poorly 
investigated in this numerical experiment, since according to our statistics (N = lo5 
iterations), the convergence of the Lyapunov exponent becomes questionable for E-values 
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Fig. 7. - Log-log plot of L vs. E for type-I intermittency in the presence of a periodic noise. L is 
calculated with N = lo5 iterations of (14) for p = p c  = 0 ,  a = 1, D = 0.4, z = 2. The continuous line 
corresponds to the prediction (13) (- x = 1). 

below Moreover, it is not certain that on increasing the number of iterations one would 
be able to decide whether or not such a cross-over phenomenon exists, since from (11) it is 
expected to shift to  smaller values of E .  
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