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Abstract It is argued that multiscale approaches are necessary for an explanatory

modeling of biological systems. A first step, besides common to the multiscale

modeling of physical and living systems, is a bottom-up integration based on the

notions of effective parameters and minimal models. Top-down effects can be

accounted for in terms of effective constraints and inputs. Biological systems are

essentially characterized by an entanglement of bottom-up and top-down influences

following from their evolutionary history. A self-consistent multiscale scheme is

proposed to capture the ensuing circular causality. Its differences with standard

mean-field self-consistent equations and slow-fast decompositions are discussed. As

such, this scheme offers a way to unravel the multilevel architecture of living

systems and their regulation. Two examples, genome functions and biofilms, are

detailed.

Keywords Multiscale approaches � Effective models � Regulation �
Circular causality � Self-consistent equations � Integrative biology � Systems biology

1 Introduction

Biological functions involve processes at various scales. This statement is obviously

true for organismic processes like development, or for a bacterial colony. It is

already relevant for intracellular functions like gene expression and signaling

pathways. Understanding biological functions requires to integrate knowledge or
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data of various natures, available at various levels, and described within various
frameworks, from quantum mechanics (for elementary processes like light

transduction) to stochastic kinetics to deterministic rate equations and continuous

medium theory (e.g. elasticity theory). Beyond the epistemic issue of capturing a

real process in descriptions and measurements prescribed by our own abilities and

scale limitations, biological systems present a greater challenge: they are

intrinsically and irreducibly multiscale processes. Regulation of a biological

function has to bridge the state of the cells and some surrounding features with basic

mechanisms at the atomic or molecular scale, in an adaptive way. A cell itself has to

perform a multiscale integration. For instance, transcription in eukaryotes relies at

the same time on information about DNA sequence and bound proteins, histone

chemical status (e.g. acetylated or not), chromatin conformation (e.g. condensed and

topologically constrained or not), nuclear localization (e.g. near a nuclear pore), cell

state and its surroundings; it involves influences from each of these various levels,

either directly controlling the polymerase binding and activity, or being mediated by

signaling pathways or mechanical constraints. Our analysis and modeling should

follow the same line (Lesne et al. 2012; Lesne and Victor 2006). A similar

challenge is met in Karsenti et al. (2006) in the context of microtubules assemblies

and in Muskhelishvili et al. (2010) in the context of bacterial transcriptional

regulation. I will argue that the multiscale organization of biological systems has

been established by natural selection and ensuing coadaptation of their various parts

and levels. Specific multiscale approaches are thus to be devised for their integrated

understanding. A possible one, based on a self-consistent procedure, is proposed in

this paper, Sect. 9.

2 The Example of Genome Functions

In biological systems, one aims at understanding functions, whose fulfillment in

general involve specific and adapted features at several scales. Let us consider the

example of a genomic process, e.g. replication, transcription or repair. Its initiation

and regulation typically involve specific DNA sequences (e.g. TATA box or some

other specific binding site), nucleotide relative positioning (e.g. in DNA restriction

by a ribozyme), specific nucleosome conformations with spatial alignment of

histone residues [e.g. nucleosome gaping (Mozziconacci and Victor 2003) or

reversome conformation (Bécavin et al. 2010)], nucleosome positioning, post-

translational modifications of histone tails (Jenuwein and Allis 2001), proper

conformation of the chromatin fiber and even fiber positioning within the nucleus

(Spector 2003). A relevant explanatory model has to somehow keep track at the

same time of the chromatin loop location and conformation, nucleosome shape,

histone tails chemical status and certain atomic details. This requires to articulate

investigations at several scales (Lesne et al. 2012; Lesne and Victor 2006) for

instance:

1. all-atoms simulation to determine base-pair or residue precise positioning,
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2. molecular mechanics, Brownian dynamics or inverse kinematics to determine

the position of linkers or histone tails and account for the presence of the linker

histone H1 and histone-tails post-translational modifications,

3. mechanical modeling of the 30-nm fiber and topological features of the

chromatin loop (i.e. topologically closed stretch of chromatin fiber delineated

by boundaries or insulators) at the scale of about 100 kbps.

The challenge is here to take into account the reciprocal influences between the

levels, e.g. to describe residue positioning within the chromatin fiber.

3 The Example of Biofilms

Biofilms are complex structures formed by a (often multispecies) bacterial colony

and the matrix it secretes. One of their major functional features is their organization

at several scales, from that of a single cell up to macroscopic scales. To understand

the growth of a biofilm, its structural properties (density, porosity, thickness), its

mechanical properties (attachment/detachment under the action of a flow), or its

activity in consuming substrate (e.g. in applications to waste treatments), we have to

describe jointly the individual and the global level. Microscopic simulation can be

developed to give an explicit basis to effective macroscopic models of biofilms and

provide a framework to integrate experimental data (Deygout et al. 2013). Two

main types of microscopic simulation are usually considered: cellular automata,

describing the evolution of the particle contents of microscopic spatial cells

according to simple rules involving only the states of the neighboring cells, and

individual-based models, also called agent-based models, prescribing the behavioral

rules of each individual particle. Both can be used to integrate microscopic

knowledge and e.g. determine the explicit expression of local rate constants, to be

plugged in macroscopic models in terms of ordinary or partial differential equations.

Such a bottom-up approach is well-suited to take into account refined microscopic

mechanisms or complicated geometry at the bacteria level.

The challenge is here to simultaneously take into account top-down influences,

for instance to describe the physiological behavior of a bacterial cell within the
biofilm, with e.g. possible functional changes according to its local surroundings and

spatial location.

4 Bottom-up Approaches Using Effective Parameters

A first way for implementing a multiscale analysis is to travel across the scales in

the bottom-up direction. This way is the standard one in physics and it has produced

both technical contributions [for instance the whole domain of statistical physics,

see (Castiglione et al. 2008)] and epistemological insights [see for instance

(Anderson 1972; Simon 1962)]. A basic notion is that of effective parameter,

encapsulating the net result of several (complicated or not fully known) mechanisms

into a single quantity parameterizing a structural feature, an interaction, or a
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contribution to an evolution law at a higher description level. Bottom-up approaches

aim at determining the collective behavior of an assembly of elements. Effective

parameters play an essential role in this integration, in reducing a wealth of

complicated and possibly not fully known microscopic ingredients to a single

effective one, having the same impact at higher scales. Henceforth, a tractable

bottom-up integration will typically be hierarchical, with the first steps devoted to

the design of a minimal model for the elements, and the next steps to the

determination of the emergent features of the assembly. Let us cite a few examples

of effective parameters and associated dimensional reduction.

• Rate constants involved in chemical kinetics are derived under simplifying

assumptions from the stochastic (possibly quantum) analysis of the reaction

process. Within Kramers theory, they are expressed as a function of the

temperature and the limiting-step free-energy barrier (Hänggi et al. 1990). The

concept of reaction rates depending on the temperature has been introduced on

empirical grounds by Arrhenius in 1889, about 50 years earlier than Kramers.

• Embedding microscopic fluctuations into a macroscopic dynamic model can be

done by adding an effective noise term to deterministic ordinary or partial

differential equations describing the dynamics at large scale. These stochastic

differential equations are called Langevin equations, by extension of the

equation introduced by Langevin (1908) to account for Brownian motion. This

noise term appears as the net result of microscopic degrees of freedom that we

do not intend to take into account (Lemarchand et al. 1995). This amounts to

cutting off high frequencies and short wavelengths and replacing the detailed

description of the most microscopic modes by an effective noise term.

Stochastic calculus has been developed to handle such equations (Gardiner

1983), however its efficiency is limited to special kinds of noise terms (white or

colored noises). Another way is provided by stochastic processes, whose

evolution rules are essentially random, for instance a Markov chain whose

dynamics is fully prescribed by the probabilities of transition between the

instantaneous state and the following one. These probabilities appear as the

effective parameters of the model. In contrast to Langevin equations, Markov

processes can cope with discontinuous forms of noise (Van Kampen 1981).

• An effective diffusion coefficient Deff can account in an average way of

microscopic heterogeneities that are present within a porous substrate provided

they have a finite characteristic size a. At mesoscopic scales dx� a, diffusion is

described using a a plain diffusion equation, with a spatially constant diffusion

coefficient Deff and simple boundary conditions at the border of the sample

(Lesne 2006; Nicholson 2001). Computing an effective diffusion coefficient is

an instance of a general method called homogenization (Hornung 1997;

Torquato 2002), intensively developed in the context of composite materials

(Mathias et al. 2006). The intuitive justification has been supplemented with a

mathematical analysis to determine what is the appropriate ‘‘representative

elementary volume’’, that is, the size dx of the regions considered as the

elementary volumes of the homogenized system (Ben Arous and Owhadi 2003)

and in which all the microscopic structures and processes will be averaged:
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dx has to be large compared to the characteristic lengths of these structures and

processes.

• The relative dielectric constant �r � 80 accounts for the electrostatic influence

of water by replacing �0 by �0�r in electrostatic interactions and Maxwell

equations. This effective description, termed ‘‘implicit solvent’’ is a good

approximation at supra-molecular scales. It fails when only a few hydration

shells are involved, as in the computation of RNA tertiary structure or protein-

protein interactions. An explicit description of water molecules is then required.

• In some instances a nucleosome can be described as a solid body (Ben Haı̈m

et al. 2001). Two parameters are sufficient to reproduce the main structural and

elastic features of the 30-nm chromatin fiber: the angle a between the DNA left-

handed helical path onto the histone core and the core axis, and the angle U
between the incoming and outgoing linkers. This angle U is a typical example of

an effective parameter: it is considered as a tunable quantity in the study of the

fiber structural and elastic properties (Ben Haı̈m et al. 2001; Woodcock et al.

1993) without entering the details of the molecular determinants responsible of

its value and variations. It would be another issue to relate the precise

description of a nucleosome and its surroundings (ionic strength, presence of

histone H1, presence of polyamines, post-translational modifications of histones,

non-histone binding proteins) with the value of U.

• In more refined functional studies (Bancaud et al. 2007; Mozziconacci et al.

2006; Sivolob et al. 2003; Wong et al. 2007), nucleosome conformational

transitions have to be taken into account. It is often enough to consider possible

switches between a finite number of conformations, i.e. discrete states (Bécavin

et al. 2010) and describing the nucleosome as an effective shape characterized

by a few effective parameters remain valid.

• DNA entropic elasticity can be described using an effective continuous model,

the worm-like-chain model (Kratky and Porod 1949). DNA molecule, although

composed of discrete atoms, is identified above nanometer scale with an

homogeneous one-dimensional semi-flexible filament and entirely described by

its local curvature q(x) where x is the arc length. This model involves a single

effective parameter, the persistence length Lp; defined by the expression of the

energy density EðxÞ ¼ kTLpqðxÞ2=2 at the temperature T. This description does

not intend to take into account sequence effects, that require a description at a

finer scale or an effective description in terms of disorder.

As shown by the above examples, an effective parameter can relate a digital (i.e.

discrete) description with an analog (i.e. continuous) one, for instance encapsulate

the entropic elasticity of a discrete sequence of DNA base pairs in the persistence

length of a continuous elastic filament, or conversely describe the wells of a

continuous energy landscape as discrete states (Lesne 2007). Most often an effective

parameter should have a specific use: it makes sense only in the dimensionally-

reduced description in which it is involved, and with regards to the integrative study

in which it is involved. Considering e.g. a solid shape for the nucleosome is relevant

on geometric and topological grounds but not necessarily for dynamic studies. An

effective parameter does not necessarily share all the interpretations and properties
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satisfied by the corresponding bare parameter, if any, despite sharing the same

name: An effective diffusion coefficient does not necessarily satisfy the Einstein

relation linking diffusion and viscosity. An experimental force-extension curve of a

chromatin fiber can be fitted within a worm-like-chain model, considering the fiber

as a continuous filament with a single elastic degree of freedom, bending. The fit

yields an effective persistence length Lp;eff (Bystricky et al. 2004). But this length

Lp;eff should not be confused with the actual bending persistence length Lp of the

fiber when it is described within an elastic-worm-like-rod model (Ben Haı̈m et al.

2001), that is, as an elastic rod with three elastic degrees of freedom (bending,

twisting, stretching). Effective parameters will play a central role in the self-

consistent integrative approach proposed in this paper (Sect. 9), as the loci where

some top-down control can be specified.

5 Top-down Approaches Using Effective Constraints and Inputs

Another way of analyzing a multiscale system is to investigate top-down
relationships, namely how macroscopic inputs, structures and constraints might

affect the features of the constitutive elements and the elementary processes. Such

influences are often termed top-down causation (Ellis 2005). Again effective

quantities are useful to encapsulate in a low-dimensional expression (e.g. a field, a

force, a geometrical constraint, an energy landscape, a source term or a boundary

condition) involving only a few parameters, a wealth of top-down influences. When

external constraints apply via boundary conditions, it may be useful to process these

conditions into local prescriptions at work inside the system. For instance, an external

concentration (e.g. of oxygen) may be replaced after suitable computations involving

assumptions on the diffusivity and decoupling between diffusion and consumption,

by an effective distribution inside the system. Effective noise terms can be introduced

to account for a variety of ill-identified external influences, for instance an high-

dimensional input that we do not want to describe in detail. What matters is only the

resulting influence on the system at the chosen level of description.

A benefit of effective descriptions, either reducing the description of the elements

(effective parameters) or the description of the surroundings (effective inputs and

constraints), is their parsimony. Because neither the microscopic details nor the

macroscopic surroundings are fully known, often not even all identified nor fixed,

the models should involve only a coarse description, so as to avoid over-

interpretation or spurious sensitivity of the results to the precise knowledge of what

is taken for granted in devising the model. This requirement of parsimony does not

intend to mean that the biological reality is bound to be that simple, but that our

description has to be unbiased and robust with respect to an additional detail. This is

all the more demanded since the intrinsic variability observed between identical

biological systems, e.g. cells within a clonal population, is superimposed to the

variability of our observations and fuzziness of our knowledge. Another option

would be to explicitly take into account this intrinsic variability in the modeling,

which would require a (more complicated) probabilistic setting.
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6 A Basic Classification: Plain, Critical and Complex Systems

At this point, an essential distinction in the multiscale logic of physical and

biological systems has to be underlined.

• In plain (mostly physical) systems, microscopic fluctuations average out.

Macroscopic observables can be identified with average quantities and described

by deterministic continuous fields, that obey ordinary, partial or integro-

differential equations with no mention of an underlying microscopic level.

Standard examples are classical mechanics, hydrodynamics (Navier-Stokes

equations) or chemical kinetics (mass action law).

• In striking but less frequently encountered critical phenomena, fluctuations are

enhanced by long-range correlations and persist at all scales up to macroscopic

ones. Microscopic fluctuations are thus able to qualitatively modify macroscopic

behaviors, typically leading to anomalous laws.

• In biological systems, situation is yet different. Microscopic fluctuations are

either buffered by regulatory circuits, either exploited and possibly amplified as

a source of variability feeding selection-driven adaptation mechanisms. In the

latter case, microscopic fluctuations potentially have repercussions at all scales.

In the former case, they are controlled from above by means of feedback circuits

that monitor the microscopic ingredients so as to get the proper macroscopic

regime and ensure its maintenance.

This tripartite categorization has a parallel formulation in terms of the relevant

number of degrees of freedom. In plain physical systems, a few collective variables,

defined as averages over the microscopic degrees of freedom, are sufficient to

describe the macroscopic behavior. Both critical systems and biological systems

depart from this case by exhibiting very many coupled degrees of freedom.

Averaging is no longer efficient to bring out the essential behavior. In case of

critical systems, the efficient strategy is a recursive integration and associated

renormalization-group methods (Castiglione et al. 2008; Lesne 1998). In biological

systems, I claim that dimensional reduction should be achieved jointly at all scales

in a self-consistent way, replacing at each level several degrees of freedom by a few

effective terms reciprocally coupled (Sect. 9).

Biological systems are a specially wide and important instance of complex
systems, which can be generally defined as assemblies of interacting elements where

emergent features directly or indirectly modify the elements. Such a logical scheme

is often termed circular causality (Muskhelishvili et al. 2010). This term underlines

the coupling of bottom-up and top-down relationships, leading to self-organized and

possibly adaptive behaviors. Typically, elements collectively modify their sur-

roundings, in a way sufficient to influence back the elementary interactions, which

in turn may change the collective behavior of the assembly. Only a few purely

physical systems display such features, for instance sand dunes (Hersen et al. 2004)

or coast reliefs (Werner 1999). In the case of sand dunes, the complexity originates

in a change in the interaction between the wind and the sand heap when the heap has

passed some critical size; the heap then behaves as a whole, a ‘‘dune’’, able to

modify the wind in its vicinity. It is then qualitatively different from a small heap of
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grains which only experience the influence of the wind without exerting any

feedback on it.

7 Mean-Field Self-Consistent Approaches

My proposal is that a good strategy to solve the chick-and-egg problem raised by the

circular causality of living systems is to bridge in a self-consistent way the bottom-

up and top-down effects. This does not sounds new: in statistical physics, self-

consistent equations are encountered for a long time in mean-field approaches, in

which the influence onto a given microscopic elements of all the other ones is

expressed as a function of some average quantity. However, the circular causality

apparent in their formulation is far different from the stronger instance observed in

living systems. Let us substantiate this claim by discussing the historical example of

the mean-field study of ferromagnetism.

A ferromagnetic system is described as an assembly of N spins located at the

nodes i of a spatial lattice, each experiencing pairwise alignment interaction with its

nearest neighbors and possibly the influence of an external magnetic field h0. Our

macroscopic perception of this system of interacting spins reduces to the overall

magnetization M. In the standard mean-field approximation, correlations between

the spatial heterogeneities of the spin orientations are ignored. Accordingly,

macroscopic observables describing the collective behavior can be identified with

statistical averages of the microscopic features according to the law of large

numbers, that is, M � Nhsi. The trick is to replace the resultant influence on a given

spin si of all its neighbors by that of a mean field heff(M) = aM where a is some

multiplicative factor depending on the interaction strength. Henceforth spins can be

formally considered as independent entities, whose average magnetization M is

given by a well-known formula of the form M = B(h), see e.g. the textbook (Laguës

and Lesne 2011). Plugging in the field expression h = h0 ? heff(M) yields a self-

consistent equation M = B(h0 ? aM). In considering that the same uniform and

deterministic field heff(M) applies identically onto each element, local fluctuations

and correlations between the elements are neglected. Accordingly, the validity of

mean-field approaches fails in case of long-range correlations generating fluctua-

tions at all scales. Such critical situations require renormalization-group approaches

(Castiglione et al. 2008; Lesne 1998).

This example introduced a general method to determine the macroscopic

behavior of an assembly of interacting elements, termed a mean-field approach.

Formally, the behavior of the system can be properly formulated via self-consistent
equations, expressing the identity of the macroscopically observed quantity M, and

the collective quantity MN ½s1ðMÞ; . . .; sNðMÞ� resulting from the interaction of N
elements with state si. The dependence si(M) of the individual states si on M is an

approximation of the resultant influence on a given element i of all the other ones.

I underline that only interactions between the elements are at work in such systems.

The expression si(M) provides a closure relation yielding a self-consistent equation

involving only the macroscopic variable M : M ¼MN ½s1ðMÞ; . . .; sNðMÞ�. It has

the mathematical expression of a fixed-point equation: M ¼ UðMÞ. In practice,
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when a direct analytical resolution is too tricky, the solution can be obtained

recursively, given an initial value M0 and computing Mnþ1 ¼ UðMnÞ, provided the

recursive scheme converges; the limit is the desired value M.

8 Slow-fast Decomposition

The term ‘‘multiscale analysis’’ is sometimes restricted to a more specific method

encountered for long in dynamical systems theory. This method is devised to solve a

special kind of coupled evolution equations where a small parameter �� 1 enforces

a time-scale separation between slow and fast components in the dynamics. The

common physical wisdom identifies slow variables to macroscopic observables and

fast variables to microscopic degrees of freedom, however this intuitive interpre-

tation is not necessarily true for living systems.

The typical instance is an ordinary differential equation where a multiplicative

small parameter appears in front of a highest-order time derivative:

�dx=dt ¼ f ðx; YÞ
dY=dt ¼ gðx; YÞ

�
ð1Þ

The dependence on � is termed singular, insofar as the behavior of the solution for

�! 0 qualitatively differs from the behavior of the solution for � ¼ 0. Equations of

this kind are known for long in control theory (the slow variable Y is controlled by

the experimenter and the slaving of the fast variables x to Y is designed by the

engineer) and in physics (where the slow variable Y is some macroscopic observable

and the dependence of the fast variables x onto Y is usually derived using mean-

field-like arguments). The idea is to exploit time-scale separation to decouple slow

and fast variables and get formally independent time evolutions. The first step is to

solve the equation for the fast variable x at fixed value of Y. This step, called a

quasi-static or parametric approximation since Y is considered as a constant

parameter, yields the value X(Y) such that f[X(Y),Y]: 0. Then, focusing on the slow

behavior, we plug the stationary value X(Y) into the evolution of Y to obtain a closed

equation:

dY=dt ¼ g½XðYÞ; Y � � GðYÞ ð2Þ
This second step is called a quasi-stationary approximation since it amounts to

identify the fast variables with their stationary value (i.e. such that the right hand-

side f of dx/dt vanishes) in the slow evolution. The small parameter � re-enters

when, in a possible third step, one looks for the detailed evolution of the fast

variable x (Lesne 2006; Nayfeh 1973). Fast variables elimination when the fast

dynamics is non-autonomous can be found in Artstein (1999).

Based on scale separation, slow-fast decoupling methods may be seen as a

temporal analog of a mean-field approach (Lesne 2006). Plugging the closure

relation x = X(Y) into the dynamics of Y yields a dimensionally reduced self-

consistent equation for the macroscopic variable Y. These methods illustrate the

general philosophy according which reduction of the dimension of the complete

description and extraction of a relevant macroscopic description may be achieved in
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describing only quantities varying at macroscopic scales (Castiglione et al. 2008;

Givon et al. 2004). In a biological context, this approach has been implemented e.g.

in the study of biochemical networks (Radulescu et al. 2008). Often a clue is to

consider the evolution of quantities averaged in phase space, for instance the

moments of the microscopic variables (Dieckmann and Law 2000) or aggregated

variables associated with a coarse-grained version of the initial model (Auger et al.

2008; Gaveau et al. 1999). Time-scale separation is also a strong argument to

eliminate fast oscillating variables X by averaging their oscillations at fixed Y and

plugging their average value hXiY in the equation describing the evolution of the

slow variable Y (Bogoliubov and Mitropolskii 1961; Nayfeh 1973; Sanders et al.

2007). Derivation of the dimensionally-reduced dynamics for time-averaged

variables is described e.g. in Acharya and Sawant (2006).

In the above analysis, self-consistent equations are given. In practice, it is another

matter to get there and to delineate slow and fast variables. I claim that a radically

new approach is necessary to fully capture the multiscale logic of living systems.

Indeed, due to its evolutionary imprint, the articulation between the levels of

organization of a biological system cannot in general be expressed as a system of

coupled equations for the local and the global variables. Each level often requires to

be described in its own formalism, thus reducing the applicability of standard slow-

fast decomposition methods. Singular perturbations and decoupling of slow and fast

variables remain relevant in a biological context in cases where a local mechanism

or functional process can actually be described using a coupled set of differential
equations involving a small parameter in the above singular way. A well-known

example is the derivation of Michaelis-Menten kinetics for enzymatic catalysis; the

small parameter � is there related to the ratio of enzyme concentration to substrate

concentration (the enzyme is present in minute amount), and the fast variable is the

concentration of the intermediary complex made of the enzyme and the substrate

(Lesne 2006; Murray 2003). Other applications can be found e.g. in the context of

population dynamics (El Hajji and Rapaport 2009).

9 Unravelling the Coevolved Consistency of Living Systems

Considering now living systems, the relationship between the state or evolution of

the elements and the higher-level processes or superstructures cannot, most often, be

expressed as a system of coupled equations for the individual and collective

variables using mean-field-like arguments. Natural selection has been at work, at the

organism and even at the species level, to produce the observed functioning of

living systems. The ensuing coevolution of the various components of organisms led

to the appearance of tinkered entities (like allosteric enzymes) and coordinated

processes, which cannot be understood using only physical arguments. I mean here

that their appearance do not correspond to any reasonably probable physical event.

This evolutionary design of living systems biased the generic physical behavior and

harnessed the physical laws to produce adapted and regulated organisms. Although

never being in contradiction with the laws of physics (this question was warmly
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debated in the past), living systems differ from inanimate systems in an irreducible

way (Polanyi 1968; Schrödinger 1944).

To substantiate these claims, let us go back to the example of ferromagnetism (see

Sect. 7). A spin does not ‘‘know’’ that it participates to the mean-field heff; it only

experiences interactions with its nearest neighbors. In contrast, although the overall

conformation of a chromatin loop is determined by the assembly of nucleosomes and

DNA, this loop actually behaves as an autonomous entity, endowed with a

topological invariant, its linking number. Due to this conservation law, any local

DNA or nucleosome modification will be perceived at any other place. Another

example is transcriptional regulation in a bacterial cell (Muskhelishvili et al. 2010).

The cell is sensitive at the level of its metabolism to a change in the environment. It

experiences a metabolic switch which in turn controls an adapted switch in gene

expression via a coordinated interplay between the pattern of DNA-bound proteins,

the molecular composition of the polymerase and the spatial distribution of DNA

supercoiling. The association of these factors is an instance of coadaptation achieved

by means of natural selection, with no physical necessity In living systems, the

evolutionary imprint reflects in a stronger downward causation than in physical

systems. As if, in ferromagnetism, some source of variability would have produced

different values for the spins and natural selection would have selected the

distribution of values yielding the best magnet (best in a sense to be specified

according to the biological context, either the most efficient, or the most robust, or

the most adapted, or the most tunable).

My point is that self-consistent approaches can be extended far beyond mean-

field models and tailored to capture the above specificity of living systems. This

point has been addressed several times on epistemological grounds, e.g. (Ellis 2005;

Polanyi 1968) but more rarely as a practical methodology. Let us explain the

scheme in general terms before giving some examples. Effective parameters

involved in the minimal modeling of elementary actors (Sect. 4) are seen as the loci

where some functional knowledge about top-down regulation can be injected:

dependence of effective structural features (e.g. the gaping angle) of the nucleosome

onto the overall conformation of the chromatin fiber and higher levels of

organization, dependence of the effective parameters describing the nucleosome

structure on the level of supercoiling of the chromatin fiber, dependence of the

effective bacterial growth rate onto some features (assumed or measured) of the

biofilm. In a complementary step, some prior analysis or experimental knowledge is

used to delineate how effective constraints or inputs encapsulating top-down

influences in a compact way depend on the elementary features and mechanisms. In

short, each level embeds entries that are fed by the other levels, and produces

outputs feeding the other levels, as represented in Fig. 1. Running the different parts

of the model in following this loop should yield a stable picture, in which inputs and

outputs of each part are no longer updated. This achieves the integration of bottom-

up and top-down influences and yields an ‘‘operationally closed’’ description,

according to the terminology used in (Muskhelishvili et al. 2010).

In the case of biological systems, in contrast to self-consistent approaches

encountered in physics, the relations h = H(r), Fig. 1, expressing how the features

h of emergent processes and superstructures depend on the effective parameters
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r describing the elements, do not simply follow from an averaging approach.

Neither do the relations r = R(h), capturing how the elements r are affected by the

higher-level features h, follow from a mean-field approximation. They involve a

wealth of intermediary mechanisms and ingredients, all devised and tuned by

numerous runs of natural selection. In particular, these two relations are not simply

the inverse one of the other (in which case the self-consistent scheme would be a

mere tautology). Part of the articulation may be done ‘‘by hand’’ using some

biological knowledge, mainly the identification of the coordinating go-between

(Bécavin et al. 2010; Lesne et al. 2012; Malo et al. 2010, 2012) allowing us to

bridge in a mechanistic way what is otherwise a statistical relationship (i.e. a

correlation). This bridge, termed structural coupling in Muskhelishvili et al. (2010),

amounts to a short-cut of the (often contingent) evolutionary history. I underline that

the aim is to devise a self-consistent scheme, not necessarily within the restricted

setting of self-consistent equations. Each level may demand to be described in its

own relevant formalism or theoretical framework. Accordingly, the microscopic

variables r and the macroscopic variables h may well belong to different settings,

e.g. the variables r to a molecular dynamics or multi-agent simulation, and the

variables h to a partial differential equation. The proposed approach may not be

tractable in any situation, since it requires as an input in the modeling some prior

biological functional knowledge and understanding of the elementary biological

mechanisms. It rather arrives in a second step, when several pieces of understanding

at different levels are gathered and need to be articulated in an integrated scenario.

• A first and already mentioned example is provided by the topological constraints

experienced by a DNA molecule when its ends are anchored. Its linking number

Lk is conserved and provides a global feature of the molecular assembly. The

overall conformation of the DNA molecule is characterized by its writhe Wr, and

featureseffective inputs

boundary

h=H(r)r=R(h)

microscopic

variables r

conditions

constraints

variables h

(low) level

macroscopic (high) level

collective
behavior

emergent

Fig. 1 Proposed self-consistent scheme for modeling biological systems. The expression
h = H(r) indicates in a compact way how the features h of emergent processes and superstructures
depend on the effective parameters r describing the elements in a minimal way. Similarly
r = R(h) summarizes how the elements are affected by the higher-level entities. They are not the
inverse one of the other. The terms ‘‘microscopic’’ and ‘‘macroscopic’’ denote two different levels of
organization, e.g. individual and population level (e.g. bacteria and biolfilms), or molecular and organite
or cell level (e.g. DNA and chromatin fiber)
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Lk - Wr corresponds to its total twist Tw. Any local modification of DNA

molecule, e.g. a local structural change induced by some protein binding, should

be compensated so as to ensure the conservation of Lk. Such coordination of

local events by global topological constraints is essential in procaryote

transcriptional regulation (Travers and Muskhelishvili 2005). The same

statement applies to the chromatin fiber in eukaryotes (Lesne and Victor

2006). The elastic coefficients of the chromatin fiber depend on the atomic

details of its local architecture. Conversely, fiber supercoiling and balance

between toroidal and plectonemic conformations induce mechanical constraints

and strains down to the base-pair level.

• We have shown in Bécavin et al. (2010) that RNA-polymerase activity within a

condensed chromatin loop is possibly coordinated with a conformational change

of nucleosomes downwards. RNA-polymerase activity generates supercoiling

h in the chromatin fiber, described as a continuous elastic filament. In turn,

supercoiling h induces a conformational change of some nucleosomes (individ-

ual state r), described as a transition between discrete states (nucleosome and

reversome) and measured by the local density of reversomes. These transitions

partly relax torsional constraints (i.e. induce a decrease of h) while allowing

polymerase to process by providing a permissive substrate (polymerase can pass

through a reversome), which in turn increases h again. Quantitatively, the self-

consistent scheme bridges on the one hand the results of in vitro micro-

manipulations (Bancaud et al. 2007) and modeling of the nucleosome structure

(Zlatanova et al. 2009) with, on the other hand, the activity of RNA-polymerase,

generating torsional constraints and requiring a permissive state of the

nucleosome. The mediation is achieved by the coordinating influence of fiber

supercoiling, and described using a partial differential equation for the

propagation of torsional constraints in the chromatin fiber (Bécavin et al.

2010; Lesne et al. 2012).

• The proposed scheme has been implemented in Malo et al. (2010, 2012) to

construct an integrated scenario of metastatic escape based on partial in vitro

experiments. The principle is to bridge a system of ordinary differential

equations describing in a minimal way the physiological switch of the cell

between a proliferating and a migrating state, with a multi-agent simulation for

the growing tumor, i.e. a population of cells. The coordinating intermediary is

here the state-dependent secretion by the cells of proteins able to collectively

modify the surroundings and induce a change of the cell physiological state.

• A last example, quite similar to the previous one, is provided by bacterial

biofilms (Deygout et al. 2013). Emergent properties of the bacterial population

and, above all, the biofilm it secretes may exert feedbacks onto the very behavior

of individuals, which conversely control the biofilm composition and geometry.

The modeling challenge is to bridge a bottom-up approach, in which some

emergent features are derived from a microscopic model, for instance an IBM

simulation, with a top-down approach in which some global features control the

IBM evolution. This scheme seems similar in spirit to the multiscale simulation

proposed by E and Engquist (2003; E et al. 2009) in hydrodynamics. However,

the key difference is that top down constraints cannot be computed using some
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mean-field argument or more refined closure relations. They originate from a

new entity, the biofilm, which does not reduce to the average or collective

behavior of the bacterial population, but involves their secretion of a highly

structured extracellular matrix. In principle, it could be possible to include the

secretion of the bacteria and its regulation (and several other relevant

physiological processes) in the IBM. In practice, a realistic simulation of a

biofilm involving all the relevant physiological details for the bacterial cells is

simply out of reach computationally, and would anyway raise huge difficulties

regarding the robustness of the results. We need to recourse to a short-cut,

namely devising a minimal model for a bacterial cell, involving only a few

effective parameters that at the same time summarize the individual features

controlling the biofilm properties and reflect the response of a bacterial cell to

the constraints exerted by the biofilm. The difficulty is the identification and

computation of these parameters, which essentially involves experimental

knowledge and possibly an auxiliary microscopic simulation.The challenge is to

quantitatively account for remarkable behaviors such as species coexistence

(whereas the macroscopic mean-field equations predict the persistence of a

single species and exclusion of the other ones), functional differentiation, spatial

segregation, and other complex features of the bacterial population within a

biofilm.

Self-consistency implicitly evokes self-consistent equations of physics involv-

ing continuous variables or fields. However, in principle, the proposed self-

consistent scheme could fit in a discrete setting, as shown also by the above

examples involving transitions between discrete states. Part of the difficulty in

bridging discrete and continuous views might well originates in our descriptions

(Lesne 2007). The Sorites (heap) paradox, like the paradox of Achilles and the

tortoise, can be nowadays solved by the mathematical notion of limit, which was

unknown to the ancient Greeks. Passing to the limit allows one to reach at infinity

an entity of possibly different nature than the steps leading to it, e.g. continuous

whereas the steps are discrete (continuous limit, involved e.g. in describing the

DNA molecule, made of discrete base pairs, as a continuous elastic filament, Sect.

4), or conversely discrete whereas the steps are continuous (step-wise limit of a

sequence of increasingly steeper sigmoidal curves). The notion of emergence can

be formulated is such terms: as summarized by Anderson (1972), ‘‘more is

different’’. Another clue is to place the description at the unifying level of

probability distributions, either for discrete-valued or continuous-valued variables

[see (Lesne and Benecke 2008a, b) in which this framework has been developed

for the features involved in eukaryote transcriptional regulation]. However,

another facet of the difficulty is more intrinsic, and refers to the articulation

between digital and analog informations. It relates to the question of biological

codes, namely information storing, transfer and processing specific to living

systems, much discussed since Schrödinger (1944). Inspiring insights about this

delicate and still largely open issue as well as a way to solve it in the context of

prokaryote transcriptional regulation can be found in Marr et al. (2008;

Muskhelichivili et al. 2010).
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10 Conclusion

The first challenge of a multiscale analysis is to articulate experimental data,

knowledge and models available at various levels. The aims are to bridge

observations at different scales, to confront observations with mechanisms

envisioned at another scale, and to integrate partial models into a consistent and

explanatory account of the biological function.

The second and far more difficult challenge is to unravel the multiscale logic of

living systems. Strikingly, collective effects may as a whole exert a feedback on the

very properties of elementary ingredients and endow them with new functionalities.

A specific multiscale approach is thus required to capture the architecture of

biological systems and their regulation. A main guideline is their inter-level

consistency, reflecting that evolution occurred jointly at all the levels of their

organization. I propose an approach that makes use not only of effective parameters

encapsulating at a given scale lower-level details, but also of effective inputs

encapsulating the influences and constraints coming from superstructures and

higher-level processes. It is then completed by writing the self-consistency of these

reciprocal couplings and influences. This amounts to considering elements and

elementary mechanisms within their higher-level context, instead of in isolation. In

this way, reductionist and holist views of biological systems are reconciled, which

paves the way for systems biology.

I finally underline that the very notion of what is a model prevents from devising

an ‘‘all-purposes’’ model and replacing the study of the system by questions

addressed on this model. To be fruitful, a model has to be specific to the investigated

issue. It should ignore degrees of freedom irrelevant to this issue and its

characteristic scales. Similarly, a multiscale model should not intend to keep track

of all details at all scales but only of the relevant details, whatever their scales,

essential to the biological function and its regulation.
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