Phase transition-like behavior in a low-pass filter

H. Krivine®
Laboratoire de Physique Theque et Modées Statistiques, Ba100, 91405 Orsay Cedex, France

A. Lesne
Laboratoire de Physique Theque des Liquides, Universiteierre et Marie Curie, Case Courrier 121,
4 Place Jussieu, 75252 Paris Cedex 05, France

(Received 11 March 2002; accepted 23 August 2002

We discuss an iterative electric circuit for which the limits of infinite number of elements and zero
dissipation in each element do not commute. The circuit is taken from the Feynman lectures, where
it was argued on physical considerations that an infinite circuit made only of inductances and
capacitances would behave as a dissipative system with nonvanishing resistance below a threshold
frequency. The understanding of this behavior requires that the two limits be taken in the appropriate
order. This simple example illustrates that caution in multiple limiting procedures is necessary to
obtain the correct physical behavior. A close analogy with the standard ferromagnetic transition of
the Ising model is drawn. @003 American Association of Physics Teachers.
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. INTRODUCTION 2—27,2-7,7,=0, (4

In physics courses, caution when taking infinite limits is
often considered as a useless subtlety by studemis to
speak of their teachersMany interesting physical properties 7 7

i i 1 1
can however be missed because of the improper use of math- - ~14 /1 +Z,7Z,. (5)
ematical techniques. One of the most famous examples is the 2 4
incorrect treatment of phase transitions by Mayevhich ) ] _
was corrected by Lee and Yang in 1953he latter proved The sequence in E¢3) converges to the fixed poiat only
that in the thermodynamic limithat is, when the numbeéy  if the mapf is contracting, which requires thet' (z)[<1 in
of atoms tends to infinity a rigorous treatment of the parti- the neighborhood af* .> We thus have to study the modulus
tion function is sufficient to explain the possible discontinu-of
ity of the specific heat and compressibility of a real ffuid
without any assumptions beyond the usual postulates of sta-
tistical mechanics. Unfortunately, this proof is a bit tedious
and is not included in undergraduater even graduaje
courses. In this paper we address a simpler problem consid- We now consider the case where each section is composed

which admits the roots:

Z, \?

f'(z*)= 7 +2,

(6)

ered by Feynmahnthat illustrates the same point. of an inductancé. and a capacitancé (see Fig. 2 In this
case the impedances afg=iL v andZ,=1/iCw, wherew
[I. AN ITERATIVE ELECTRICAL CIRCUIT is the frequency of the electric current. A consequence of Eq.

(5) is that there are two cases separated by the critical fre-
quencyw.=2/\/LC.
o> w.. In this case, the roots given by

1
2y =2t (1) Lo Py
Zi+£ Z*ZiT(li _(1)_;> (7)
2

Zy

Let z, be the impedance of an electric circuit madenof
sections as indicated in Fig. 1. It is easy to show that

Namely, the circuit withn+1 sections can be viewed as a are purely imaginary.

circuit composed of an impedangg in series with two im- w<w,.. In this second case’ is given by
pedance<Z, and z, in parallel. The problem is to find the

limiting value ofz, whenn goes to infinity. Mathematically, Lo/ wg

this problem amounts to investigating the convergence of the Z*= S 1= N2 71 (8)

recursion relatior(1), given the initial condition
2,=2,+7,. (2)  which contains aonvanishing real part
It is easy to recover, by recursion, th@tis purely imagi-
nary for alln. Therefore, the sequence cannot converge for
w<w;, because the limit is necessarily a fixed point and the

The limit, if any, is necessarily a fixed point of the map:

z—f(2)=2,+ 1 1 3 fixed points in this case contain a real part. A straightforward
7t calculation shows thalf’(z*)|=1, for all <., which
2 confirms the nonconvergence of the sequence.
The fixed-point equatior= f(z) reads If w>w., we obtain
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Fig. 1. Ladder(electrig circuit composed of sections. r
1 2 Fig. 3. A section of the ladder composed of imperfect impedances.
f'(z*)= . 9
(z%) 2 \/ " 9
1-— 1=\ 1-— iLw+r (Lo+r)2  iLo+r
we o 7*¥ = —2 + 2 + r (11)
The study of the functiory=2x(1%y1—1/x) with x>1 iCot+—
shows thatf’(z*)| is always<1 for the choice of thet o
sign and>1 for the other choice. The first fixed point is then Equation(11) contains a real parta dissipative termthat
the limit of the sequencezf). obviously depends on. But the limit of the real part of*
whenr—0 does not vanistand leads rigorously to Feyn-
[ll. RESOLUTION OF PARADOX man’s limit* of z,,,
In the second case, whete<w., we are faced with the Lw| wg
paradox of a purely imaginary sequence having a limit with =~ I+ P 1|.

a nonvanishing real part. From a mathematical point of view
the situation is clear: in the second case the sequence di other words, Feynman's limit is recovered by taking
verges, whereas it converges in the first case. Nevertheleddn, .o lim,_..z,(r) and not lim_ . lim,_z,(r), which
Feynman states that even in the second case, where one stifles not exist.
expects a purely imaginary limit, the fixed point, despite its If perfect capacitances did exist, a peculiar behavior would
real part, is the correct value of the impedance of the infinitedbe expected in this kind of low-bass filter far<w;. In-
ladder network. According to Feynman, this real part origi-deed, forr=0, there is no stable limiting behavior fas
nates in the fact that in amfinite circuit, “energy can be < . It is enlightening to consider the recursion relation
continually absorbed from the generator at a constant rat§n+l=f(zn,r=0,w) in the framework of discrete dynamical
and flows constantly out into the network thus creating a systems. A bifurcation occurs at=w,, where the pair of
dlsglpatlon described by the real partzif. But this expla- _ purely imaginary fixed pointérespectively, stable and un-
nation cannot be exempted from a correct mathematical 1Usstablg collapse and is replaced by a pair of cent@eutrally
tification. It only means that it should be possible to explaing,pa focusedor w< w. . In the latter case, the trajectory of
the paradox. . . the dynamical systentthat is, the impedance of a ladder
A possible way to resolve the paradox is to take into ac aving an increasing number of eleméntshich theoreti-
count that inductances and capacitances are never p(_arfect.ilg"y sticks to the imaginary axis, will then be extremely
3|rnpl|fy{ let us add, as indicated in Fig. 3, a sm_aII res'_StanCPsensitive to any minute fluctuation, shifting from one side to
r in series to each inductance and a large re_ss_taﬁimem the other of the imaginary axis, thus making large excursions
parallel to each capacitanda standard description of the around the centers. The physical implication for an actual
imperfect, hence dissipative character of inductances and cgystem is that the observed response of the ladder would be
pacitancep If w<wc, a straightforward, although tedious highly sensitive to any surrounding noise.
calculation gives to first-order in(z* is the fixed point with This example teaches us two things. First, as stated by
+ sign): Feynman, it points out that dissipation might occur in a sys-
tem not because of a local mechanism dissipating energy or

2 . .. .
r Loct+riCoc matter, that is, friction of some kind, but merely because

1%\ | — 2
[F"(z9)]=1- Eg 2 +0O(r9). (10 energy may be dissipated into more and more spatially dis-
1-— tant degrees of freedoliand not by feeding degrees of free-
@We dom at lower and lower scaledn the above example, the
Equation(10) implies that for allr #0, the transformatioi ~ limit N— oo has to be taken before the limit-0 to recover
is contracting, hence* is also the limit. This limit is given the actual behavior of a real circuit. Another illuminating
by Eq. (5): example of this mechanism is provided by the behavior of a

system consisting of a single heavy mass embedded in an
infinite square lattice of springs and masSes.

L L L L The circuit example reminds us of a crucial caveat ubig-
W -------------- 00000 uitous in critical phenomena. The behavior observed at a
l L macroscopic scale is identified with the behavior of an ide-

C c C c alized system obtained after taking various limits: infinite

T T T T size, critical temperature, and zero field for instance. But
------------------------- often, these limits do not commute, and hence care has to be

' taken in order that the idealized limit system actually fits
Fig. 2. Ladder circuit composed of pure impedances and capacitances. reality. The basic mechanism of the spontaneous magnetiza-
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An interesting problem would be to develop for the circuit
example a finite-size scaling analysis allowing us to recon-
cile the analytical finite-size behavior and the singular limit
behavior, and hence to reconcile experimental or numerical
studies and theoretical analysis.

In general, much care should be taken whenever the van-
ishing of a small parameter qualitatively modifies the
asymptotic behaviofnumber of particleN—co for a many-
body system at equilibrium or time—c for a dynamical
system, which prevents a naive series expansion and pertur-
bative analysis from giving the correct physical beha®ior.
The difficulty is currently overcome by resorting to scaling
theory or more powerful renormalization-group methdds.
Such mathematical breakdowns hint at profound physical pe-
culiarities, such as dissipation of a new kind, criticalfty,
bifurcations!! or catastrophe¥ This point is best stated by

® ' Michael Berry: “These noanalyticities, obstructions to naive

reduction... should not be regarded as a nuisance. On the

Fig. 4. Bifurcation diagram of a ladder composed of imperfect impedance%ontrary, they are pointers to new physics, important features
and conductances. The real paxts of the fixed-pointsz* of Eq. (1) are  of the world like turbulence and critical behavior, inhabiting

drawn vs the frequency for L=1, C=1, ry=1, and different values af. ; 13
Two values ofr >0, namelyr=0.1 andr=0.2 are showr{thin lines to- the asymptotic borderland between theonég'

gether with the singular limiting case=0 (bold line). Dashed lines corre-
spond to the unstable branches. The branches are smooth far>aby
whereas a bifurcation occurs i =2 whenr =0. Note the analogy with the
phase diagram of the Ising mod&F corresponds to the order parametér
(magnetizatiop w to the control parametef (temperaturg andr to the
symmetry-breaking magnetic field.
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