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We discuss an iterative electric circuit for which the limits of infinite number of elements and zero
dissipation in each element do not commute. The circuit is taken from the Feynman lectures, where
it was argued on physical considerations that an infinite circuit made only of inductances and
capacitances would behave as a dissipative system with nonvanishing resistance below a threshold
frequency. The understanding of this behavior requires that the two limits be taken in the appropriate
order. This simple example illustrates that caution in multiple limiting procedures is necessary to
obtain the correct physical behavior. A close analogy with the standard ferromagnetic transition of
the Ising model is drawn. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION

In physics courses, caution when taking infinite limits
often considered as a useless subtlety by students~not to
speak of their teachers!. Many interesting physical propertie
can however be missed because of the improper use of m
ematical techniques. One of the most famous examples is
incorrect treatment of phase transitions by Mayer,1 which
was corrected by Lee and Yang in 1953.2 The latter proved
that in the thermodynamic limit~that is, when the numberN
of atoms tends to infinity!, a rigorous treatment of the part
tion function is sufficient to explain the possible discontin
ity of the specific heat and compressibility of a real flui3

without any assumptions beyond the usual postulates of
tistical mechanics. Unfortunately, this proof is a bit tedio
and is not included in undergraduate~or even graduate!
courses. In this paper we address a simpler problem con
ered by Feynman4 that illustrates the same point.

II. AN ITERATIVE ELECTRICAL CIRCUIT

Let zn be the impedance of an electric circuit made ofn
sections as indicated in Fig. 1. It is easy to show that

zn115Z11
1

1

Z2
1

1

zn

. ~1!

Namely, the circuit withn11 sections can be viewed as
circuit composed of an impedanceZ1 in series with two im-
pedancesZ2 and zn in parallel. The problem is to find the
limiting value ofzn whenn goes to infinity. Mathematically
this problem amounts to investigating the convergence of
recursion relation~1!, given the initial condition

z15Z11Z2 . ~2!

The limit, if any, is necessarily a fixed point of the map:

z→ f ~z!5Z11
1

1

Z2
1

1

z

. ~3!

The fixed-point equationz5 f (z) reads
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z22Z1z2Z1Z250, ~4!

which admits the roots:

z* 5
Z1

2
6AZ1

2

4
1Z1Z2. ~5!

The sequence in Eq.~3! converges to the fixed pointz* only
if the mapf is contracting, which requires thatu f 8(z)u,1 in
the neighborhood ofz* .5 We thus have to study the modulu
of

f 8~z* !5S Z2

z* 1Z2
D 2

. ~6!

We now consider the case where each section is comp
of an inductanceL and a capacitanceC ~see Fig. 2!. In this
case the impedances areZ15 iLv andZ251/iCv, wherev
is the frequency of the electric current. A consequence of
~5! is that there are two cases separated by the critical
quencyvc52/ALC.

v.vc . In this case, the roots given by

z* 5 i
Lv

2
S 16A12

vc
2

v2D ~7!

are purely imaginary.
v,vc . In this second case,z* is given by

z* 5
Lv

2
S i 6Avc

2

v2 21D , ~8!

which contains anonvanishing real part.
It is easy to recover, by recursion, thatzn is purely imagi-

nary for all n. Therefore, the sequence cannot converge
v,vc , because the limit is necessarily a fixed point and
fixed points in this case contain a real part. A straightforwa
calculation shows thatu f 8(z* )u51, for all v,vc , which
confirms the nonconvergence of the sequence.

If v.vc , we obtain
31/ajp/ © 2003 American Association of Physics Teachers
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f 8~z* !5F 1

12
2v2

vc
2 S 16A12

vc
2

v2D G
2

. ~9!

The study of the functiony52x(16A121/x) with x.1
shows thatu f 8(z* )u is always,1 for the choice of the1
sign and.1 for the other choice. The first fixed point is the
the limit of the sequence (zn).

III. RESOLUTION OF PARADOX

In the second case, wherev,vc , we are faced with the
paradox of a purely imaginary sequence having a limit w
a nonvanishing real part. From a mathematical point of vi
the situation is clear: in the second case the sequence
verges, whereas it converges in the first case. Neverthe
Feynman states that even in the second case, where on
expects a purely imaginary limit, the fixed point, despite
real part, is the correct value of the impedance of the infin
ladder network. According to Feynman, this real part ori
nates in the fact that in aninfinite circuit, ‘‘energy can be
continually absorbed from the generator at a constant
and flows constantly out into the network,’’4 thus creating a
dissipation described by the real part ofz* . But this expla-
nation cannot be exempted from a correct mathematical
tification. It only means that it should be possible to expla
the paradox.

A possible way to resolve the paradox is to take into
count that inductances and capacitances are never perfec
simplify, let us add, as indicated in Fig. 3, a small resista
r in series to each inductance and a large resistancer 0

2/r in
parallel to each capacitance~a standard description of th
imperfect, hence dissipative character of inductances and
pacitances!. If v,vc , a straightforward, although tediou
calculation gives to first-order inr (z* is the fixed point with
1 sign!:

u f 8~z* !u512
r

2r 0
2

Lvc1r 0
2Cvc

A12
v2

vc
2

1O~r 2!. ~10!

Equation~10! implies that for allrÞ0, the transformationf
is contracting, hencez* is also the limit. This limit is given
by Eq. ~5!:

Fig. 1. Ladder~electric! circuit composed ofn sections.

Fig. 2. Ladder circuit composed of pure impedances and capacitanc
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z* 5
iLv1r

2
1A~ iLv1r !2

4
1

iLv1r

iCv1
r

r 0
2

. ~11!

Equation~11! contains a real part~a dissipative term! that
obviously depends onr . But the limit of the real part ofz*
when r→0 does not vanishand leads rigorously to Feyn
man’s limit4 of zn ,

Lv

2 F i 1Avc
2

v2 21G .

In other words, Feynman’s limit is recovered by takin
limr→0 limn→`zn(r ) and not limn→` limr→0zn(r ), which
does not exist.

If perfect capacitances did exist, a peculiar behavior wo
be expected in this kind of low-bass filter forv,vc . In-
deed, forr 50, there is no stable limiting behavior forv
,vc . It is enlightening to consider the recursion relatio
zn115 f (zn ,r 50,v) in the framework of discrete dynamica
systems. A bifurcation occurs atv5vc , where the pair of
purely imaginary fixed points~respectively, stable and un
stable! collapse and is replaced by a pair of centers~neutrally
stable focuses! for v,vc . In the latter case, the trajectory o
the dynamical system~that is, the impedance of a ladde
having an increasing number of elements!, which theoreti-
cally sticks to the imaginary axis, will then be extreme
sensitive to any minute fluctuation, shifting from one side
the other of the imaginary axis, thus making large excursi
around the centers. The physical implication for an act
system is that the observed response of the ladder woul
highly sensitive to any surrounding noise.

This example teaches us two things. First, as stated
Feynman, it points out that dissipation might occur in a s
tem not because of a local mechanism dissipating energ
matter, that is, friction of some kind, but merely becau
energy may be dissipated into more and more spatially
tant degrees of freedom~and not by feeding degrees of free
dom at lower and lower scales!. In the above example, th
limit N→` has to be taken before the limitr→0 to recover
the actual behavior of a real circuit. Another illuminatin
example of this mechanism is provided by the behavior o
system consisting of a single heavy mass embedded in
infinite square lattice of springs and masses.6

The circuit example reminds us of a crucial caveat ub
uitous in critical phenomena. The behavior observed a
macroscopic scale is identified with the behavior of an id
alized system obtained after taking various limits: infin
size, critical temperature, and zero field for instance. B
often, these limits do not commute, and hence care has t
taken in order that the idealized limit system actually fi
reality. The basic mechanism of the spontaneous magne

Fig. 3. A section of the ladder composed of imperfect impedances.

.
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tion of an iron sample is captured by the Ising model.7 The
order in which the limits are taken is again crucial: one fi
has to introduce a small external magnetic fieldH, and then
take the limitN→` (N being the number of atoms of th
sample! and finally the limitH→0 in that order. The mag
netization plays a role analogous to the dissipative part of
impedance and the Curie temperatureTc , above which any
spontaneous magnetization is destroyed, a role analogo
the cutoff frequencyvc .

The analogy between the ladder behavior and ferrom
netism can be pursued further. Let us consider again the
cursion relation in Eq.~1! as a discrete dynamical system
For r .0, there are two branches of fixed points, one sta
and one unstable. The limiting behavior of these branche
singular and is not the same as the picture obtained for
50. The singularity of the limiting behaviorr→0 is shown
in Fig. 4, where the real partx* of the fixed pointsz* is
plotted as a function of the control parameterv for different
values ofr (r .0 andr 50). Such a bifurcation diagram i
quite similar to the phase diagramM (H,T) plotted as a func-
tion of T for different values ofH (H.0 andH50). The
importance of the order in which the limitsN→` ~evolution
toward the stable fixed point, if any! andr→0 is thus graphi-
cally recovered. Figure 4 reveals a deep analogy betw
bifurcations and phase transitions.

Fig. 4. Bifurcation diagram of a ladder composed of imperfect impedan
and conductances. The real partsx* of the fixed-pointsz* of Eq. ~1! are
drawn vs the frequencyv for L51, C51, r 051, and different values ofr .
Two values ofr .0, namelyr 50.1 andr 50.2 are shown~thin lines! to-
gether with the singular limiting caser 50 ~bold line!. Dashed lines corre-
spond to the unstable branches. The branches are smooth for anyr .0,
whereas a bifurcation occurs invc52 whenr 50. Note the analogy with the
phase diagram of the Ising model:x* corresponds to the order parameterM
~magnetization!, v to the control parameterT ~temperature!, and r to the
symmetry-breaking magnetic fieldH.
33 Am. J. Phys., Vol. 71, No. 1, January 2003
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An interesting problem would be to develop for the circu
example a finite-size scaling analysis allowing us to rec
cile the analytical finite-size behavior and the singular lim
behavior, and hence to reconcile experimental or numer
studies and theoretical analysis.

In general, much care should be taken whenever the v
ishing of a small parameter qualitatively modifies t
asymptotic behavior~number of particlesN→` for a many-
body system at equilibrium or timet→` for a dynamical
system!, which prevents a naive series expansion and per
bative analysis from giving the correct physical behavio8

The difficulty is currently overcome by resorting to scalin
theory or more powerful renormalization-group method9

Such mathematical breakdowns hint at profound physical
culiarities, such as dissipation of a new kind, criticality10

bifurcations,11 or catastrophes.12 This point is best stated by
Michael Berry: ‘‘These noanalyticities, obstructions to nai
reduction... should not be regarded as a nuisance. On
contrary, they are pointers to new physics, important featu
of the world like turbulence and critical behavior, inhabitin
the asymptotic borderland between theories.’’13

ACKNOWLEDGMENTS

It is a pleasure to thank P. Leboeuf for suggesting t
problem to us and providing a critical reading of the man
script and O. Bohigas and J. Treiner for the improveme
they proposed. We also greatly acknowledge anonymous
erees for their careful reading and helpful criticisms.

a!Present address: Unite´ de recherche de l’Universite´ de Paris XI associe´e
au CNRS; electronic mail: krivine@ipno.in2p3.fr

1J. E. Mayer and M. G. Mayer,Statistical Mechanics~Wiley, New York,
1940!, Chap. 13.

2C. N. Yang and T. D. Lee, ‘‘Statistical theory of equations of state a
phase transitions,’’ Phys. Rev.87, 404–409~1952!.

3An observable signature of this discontinuity is critical opalescence.
4R. P. Feynman,The Feynman Lectures on Physics~Addison–Wesley,
Reading, MA, 1964!, Vol. II, p. 22-12.

5The additional condition, not discussed here, requires that the sequ
actually reaches the neighborhood ofz* , where u f 8(z)u,1. In other
words, the initial condition should belong to the basin of attraction~with
respect to the transformationf ) of the stable fixed-pointz* .

6R. J. Rubin, ‘‘Statistical dynamics of simple cubic lattices. Model for t
study of Brownian motion,’’ J. Math. Phys.1, 309–318~1960!; 2, 373–
386 ~1961!.

7E. Ising, ‘‘Beitrag zur Theorie des Ferromagnetismus,’’ Z. Phys.31, 252–
258 ~1925!.

8A. H. Nayfeh,Perturbation Methods~Wiley, New York, 1973!.
9A. Lesne,Renormalization Methods~Wiley, New York, 1998!.

10N. Goldenfeld,Lectures on Phase Transitions and the Renormalizat
Group ~Addison–Wesley, Reading, MA, 1992!.

11J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Sys
tems and Bifurcations of Vector Fields~Springer, Berlin, 1983!.

12R. Thom, Structural Stability and Morphogenesis~Benjamin, Reading,
MA, 1975!.

13M. Berry, ‘‘Some quantum-to-classical asymptotics,’’ in Les Houch
1989, Session LII,Chaos and Quantum Physics, edited by M. J. Giannoni,
A. Voros, and J. Zinn-Justin~Elsevier, Amsterdam, 1990!, pp. 251–304.

s

33H. Krivine and A. Lesne


