A new quasi mono-energetic ultra short and highly charged electron beam of interest for high energy femtochemistry

Victor Malka

Laboratoire LOA, ENSTA - CNRS - École Polytechnique, 91761 Palaiseau cedex, France

Laser
Plasma
Electron Beam
Gas-Jet
Nozzle

170 +/-20MeV
500 pC
6 mrad

International Conference on
Transient Chemical Structures in Dense Media.
14-16 march 2005
<table>
<thead>
<tr>
<th>SPL</th>
<th>FBC</th>
<th>ELF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y. Glinec</td>
<td>B. Brozek-Pluska</td>
<td>F. Burgy</td>
</tr>
<tr>
<td>J. Faure</td>
<td>A. Hallou</td>
<td>B. Mercier</td>
</tr>
<tr>
<td>J.J. Santos</td>
<td>B. D. Gliger</td>
<td>J.Ph. Rousseau</td>
</tr>
<tr>
<td>S. Fritzler</td>
<td>Y. Gauduel</td>
<td></td>
</tr>
<tr>
<td>V. Malka</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Collaborators

- A. Pukhov
- CEA/DAM Ile-de-France, France
- E. Lefebvre (simulations)

T. Hosokai University of Tokyo, Japan

Founding: CARE EEC contract FP6
Why use a Plasma?

- Superconducting RF-Cavities: $E_z = 55 \text{ MV/m}$
- Plasma is an Ionized Medium \rightarrow High Electric Fields

\[E_z \sim n_e \sim \sqrt{n_e} \]

for 1% Density Perturbation at 10^{17} cc^{-1} 0.3 GV/m
for 100% Density Perturbation at 10^{19} cc^{-1} 300 GV/m

And now $> 1 \text{ TV/m}$

\Rightarrow Size and of cost Reduction
How to excite Relativistic Plasma waves?

The laser wake field

Electron density perturbation

Laser pulse

\[F \approx -\text{grad } I \]

Phase velocity \(v_{\phi_{\text{pw}}} \approx v_{\text{glaser}} \)

\(\approx \) close to \(c \)

Analogy with a boat

\[\tau_{\text{laser}} \approx \frac{T_p}{2} \]

\(\Rightarrow \) Short laser pulse

\(\tau_{\text{laser}} \approx 200 \text{ fs for } n_e = 10^{17} \text{cm}^{-3} \)

Tajima&Dawson, PRL79
Review of some Former Experiments on Electron Beam Generation

<table>
<thead>
<tr>
<th>Lab</th>
<th>Year</th>
<th>Process</th>
<th>E_L</th>
<th>Rate</th>
<th>E_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAL</td>
<td>1995*</td>
<td>SMLWF</td>
<td>50 J</td>
<td>20 min</td>
<td>44 MeV</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>SMLWF</td>
<td>50 J</td>
<td>20 min</td>
<td>100 MeV</td>
</tr>
<tr>
<td>NRL</td>
<td>1997</td>
<td>SMLWF</td>
<td>5 J</td>
<td>5 min</td>
<td>30 MeV</td>
</tr>
<tr>
<td>MPQ</td>
<td>1999</td>
<td>DLA</td>
<td>0.2 J</td>
<td>10 Hz</td>
<td>10 MeV</td>
</tr>
<tr>
<td>LOA</td>
<td>1999</td>
<td>SMLWF</td>
<td>0.6 J</td>
<td>10 Hz</td>
<td>70 MeV</td>
</tr>
<tr>
<td>LOA</td>
<td>2001</td>
<td>FLWF</td>
<td>1 J</td>
<td>10 Hz</td>
<td>200 MeV</td>
</tr>
</tbody>
</table>

Large scale, energetic laser, with low repetition rate
Salle Jaune Laser

5-pass Amp. : 200 mJ

8-pass pre-Amp. : 2 mJ

Stretcher : 500 pJ, 400 ps

Oscillator : 2 nJ, 15 fs

Nd:YAG : 10 J

4-pass, Cryo. cooled Amp. : < 3.5 J, 400 ps

After Compression :
1 J, 30 fs, 0.8 mm,
10 Hz, 10⁻⁷
Interaction chamber (inside)
Summary of FLWF previous results

Experiments

3D PIC simulations

Low Normalized Emittance

Emittance is indeed comparable with todays Accelerators

$E_{e^-} = \sim 55 \text{ MeV}$ $\epsilon^n = \sim 3 \pi \text{ mm mrad}$

S. Fritzler et al., PRL 04
Experimental Setup: single shot measurement

- Laser
- Nozzle
- Magnets
- Lanex
- ICT
- CCD
Recent results on e-beam: Energy distribution improvements

Charge in [150–190] MeV: (500 ± 200) pC

Divergence = 6 mrad
J. Faure et al., C. Geddes et al., S. Mangles et al., in Nature 30 September 2004
Laser particle acceleration could help in reducing the size of accelerators

- fs/ps: higher rep. Rate, lower cost, better e-beam
- Laser particle acceleration has been demonstrated
 - Energy gains of 1 MeV to 200 MeV
 - E-fields of 1 GV/m to 1000 GV/m
 - Good quality
- And now: mono energetic high quality e-beam
- Bullet regime: promising for multi or single stage accelerator (charge, duration)

Next Step:
- Stability & reproducibility
- Electron sources up to ≈ 1 GeV, 1cm ($nC, <1$ ps)
- Compact X ray beam and compact (synchrotron, XFEL)
Some Applications ...

1) Based on the ultra short property of the electron bunch

Chemistry
Radiolysis
Some applications:

1) Based on the ultra short duration of the e-bunch:

\[
\text{H}_2\text{O} \quad \overset{\text{e}^-}{\longrightarrow} \quad \text{(e}^-, \text{OH}^-, \text{H}_2\text{O}_2, \text{H}_3\text{O}^+, \text{H}_2, \text{H}^+)
\]

Very important for:
- Biology
- Ionising radiations effects

In collaboration with Y. Gauduel’s group
Recent results on Femtolysis:

Water radiolysis with femtosecond electron pulses

B. Brozek-Pluska et al., Radiation and Chemistry, 72, 149-159 (2005)
Some Applications ...

2) Based on the collimated property of the electron beam

Non destructive Material inspection

\(\gamma \) Radiography
Example of applications: on the spatial quality benefit
High resolution γ radiography

2.5mm tantalum at 3mm of the nozzle center
Aluminium 7.5mm thick to scatter electrons
BGO screen at 1.6m from the nozzle, 600 μm pixels size
17cm magnet length (B of 0.1T)
20 mm diameter object in Tungsten, at 35cm of the nozzle

In collaboration with L. Le-Dain, S. Darbon from CEA Mourainviller and DAM
\(\gamma \)-radiography results

Higher resolution: of the order of 400 \(\mu \text{m} \)

Some Applications ...

X-rays: diffraction, medicine, \(\gamma\)-rays: radiography

Medicine
Radiotherapy
Proton-therapy
PET

Electrons and Protons
generated by
Laser-Plasma Interactions

Accelerator Physics

Chemistry
Radiolysis

LOA
A revolution is coming...one of the most evolving field in Science, a wonderful tool for academic formation.