
M2 Quantum Physics – Academic year 2025-2026
Quantum-condensed-matter field theory

Tutorial class 2: Functional integral for a non-interacting boson gas

We consider a non-interacting boson gas with grand canonical Hamiltonian

Ĥ =
∑
α

ξαψ̂
†
αψ̂α (ξα = ϵα − µ), (1)

where {|α⟩, ϵα} denotes a basis in which the one-body Hamiltonian is diagonal. The partition function can
be written as

Z = lim
N→∞

∫ N∏
k=1

d(ψ∗
k, ψk) exp

{
−
∑
α

N∑
k=1

[
ψ∗
k,α (ψk,α − ψk−1,α) +

β

N
ξαψ

∗
k,αψk−1,α)

]}
, (2)

where ψ
(∗)
k,α is a c-number, ψN,α = ψ0,α, ψ

∗
N,α = ψ∗

0,α and

d(ψ∗
k, ψk) =

∏
α

dℜ[ψk,α]dℑ[ψk,α]
π

. (3)

1) Calculation of the partition function with discrete times

1.1) Recall the result of the Gaussian integral∫ N∏
k=1

d(ψ∗
k, ψk) exp

{
−
∑
α

N∑
k,k′=1

ψ∗
k,αM

(α)
k,k′ψk′,α

}
, (4)

where M (α) is a positive definite Hermitian N ×N matrix and ψ
(∗)
k,α a c-number.

∫ N∏
k=1

d(ψ∗
k, ψk) exp

{
−
∑
α

N∑
k,k′=1

ψ∗
k,αM

(α)
k,k′ψk′,α

}
=

∏
α

[
detM (α)

]−1
(5)

1.2) Deduce the expression of the partition function (2).

The action can be written as

S =
∑
α

N∑
k,k′=1

ψ∗
k,αS

(α)
k,k′ψk′,α, (6)

where S(α) is the N ×N matrix

S(α) =



1 0 · · · · · · 0 −a
−a 1 0 0

0 −a . . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . . −a 1 0
0 · · · · · · 0 −a 1


(7)
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with a = 1− β
N ξα. Expanding with respect to the first line, one obtains

lim
N→∞

detS(α) = lim
N→∞

[
1 + (−a)(−1)N−1(−a)N−1

]
= 1− e−βξα , (8)

so that

Z = lim
N→∞

∏
α

[
detS(α)

]−1
=

∏
α

(
1− e−βξα

)−1
, (9)

which is the standard expression for non-interacting bosons.

2) Continuous-time limit

2.1) Give the expression of the action S[ψ∗, ψ] obtained from (2) in the continuous-time limit ψk,α → ψα(τ)
(τ ∈ [0, β]). Express S[ψ∗, ψ] as a function of the Fourier-transformed fields

ψα(iωn) =
1√
β

∫ β

0
dτ eiωnτψα(τ), ψ∗

α(iωn) =
1√
β

∫ β

0
dτ e−iωnτψ∗

α(τ), (10)

where ωn = 2nπT (n ∈ Z) is a bosonic Matsubara frequency.

S[ψ∗, ψ] =

∫ β

0
dτ

∑
α

ψ∗
α(τ)(∂τ + ξα)ψα(τ)

=
∑
α,ωn

ψα(iωn)(−iωn + ξα)ψα(iωn) (11)

2.2) Compute, in the continuous-time limit, the propagator G(α, iωn) = −⟨ψα(iωn)ψ∗
α(iωn)⟩ and the parti-

tion function. Is the thermodynamic potential Ω = − 1
β lnZ well defined?

G(α, iωn) = − 1

Z

∫
D[ψ∗, ψ]ψα(iωn)ψ

∗
α(iωn)e

−S[ψ∗,ψ] =
1

iωn − ξα
, (12)

and

Z =

∫
D[ψ∗, ψ] e−S[ψ

∗,ψ] =
∏
α,ωn

(−iωn + ξα)
−1

Ω = − 1

β
lnZ =

1

β

∑
α,ωn

ln(−iωn + ξα).

(13)

The partition function vanishes, Z = 0, and the thermodynamic potential Ω is not defined (the sum over
Matsubara frequencies does not converge).

2.3) What is the expression of the mean particle number ⟨N̂⟩ that can be derived from Ω obtained in question
(2.2)? Compare with the result obtained from (2) before taking the continuous-time limit. How should we
modify the expression of Ω obtained in question 2.2 to obtain the correct result?

From (13), one finds

⟨N̂⟩ = −∂Ω
∂µ

= − 1

β

∑
α,ωn

1

iωn − ξα
= −

∑
α

G(α, τ = 0). (14)

This should be compared with the result obtained from the discrete-time expression for the partition function,

⟨N̂⟩ = −∂Ω
∂µ

=
1

N

∑
α,k

⟨ψ∗
k,αψk−a,α⟩ =

∑
α

⟨ψ∗
k,αψk−a,α⟩ (time-translation invariance). (15)
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Thus, the correct expression in the continuum-time limit should be

⟨N̂⟩ =
∑
α

⟨ψ∗
α(τ)ψα(τ

−)⟩ = −
∑
α

G(α, τ = 0−) = − 1

β

∑
α,ωn

eiωn0+

iωn − ξα
. (16)

This result can also be obtained by noting that, in the continuum-time limit, the chemical potential term
is µ

∑
α ψ

∗
α(τ

+)ψα(τ), with ψ∗
α evaluated at a time infinitesimally larger ψα. In question (3), we will see

that the Matsubara sum in (16) yields the expected result ⟨N̂⟩ =
∑

α nB(ξα), with nB the Bose-Einstein
distribution function.

To reproduce (16) from ⟨N̂⟩ = −∂Ω/∂µ, one has to consider the following expression of the grand
potential,

Ω =
1

β

∑
α,ωn

ln(−iωn + ξα)e
iωn0+ . (17)

In the following, we will see that this definition yields the known expression of the grand potential of
non-interacting bosons.

2.4) Express ⟨N̂⟩ as a time-ordered correlation function of the operators ψ̂α(τ) = eτĤ ψ̂αe
−τĤ and ψ̂†

α(τ) =

eτĤ ψ̂†
αe−τĤ . Show that the corresponding expression in the functional integral formalism agrees with the

discrete-time formulation.

⟨N̂⟩ =
∑
α

⟨ψ̂†
αψ̂α⟩

=
1

Z

∑
α

Tr
[
e−βĤ ψ̂†

αψ̂α
]

=
1

Z

∑
α

Tr
[
e−βĤ ψ̂†

α(τ)ψ̂α(τ)
]

(follows from cyclic invariance of the trace)

=
∑
α

⟨Tτ ψ̂†
α(τ

+)ψ̂α(τ)⟩. (18)

In the functional integral formalism, this becomes

⟨N̂⟩ =
∑
α

⟨ψ∗
α(τ

+)ψα(τ)⟩ = −
∑
α

G(α, τ = 0−). (19)

3) Matsubara frequency sums

We now consider both bosons and fermions. The fermionic Matsubara frequencies are defined by ωn =
(2n+ 1)πT (n ∈ Z).

3.1) Compute the frequency sum

S =
1

β

∑
ωn

eiωnη

iωn − ξ
(η → 0+), (20)

by considering the integral

I =

∮
C

dz

2iπ

eηz

z − ξ
nζ(z), nζ(z) =

1

eβz − ζ
(21)

in the complex plane along the circle C of radius R→ ∞ centered at the origin z = 0. Deduce the expression
of the expectation value ⟨N̂⟩ as a function of the occupation number nζ(ξα).

The factor eηznζ(z) ensures that the integral I over the contour C vanishes in the limit R→ ∞. We can
also evaluate I by the residue theorem. Besides the poles of nζ(z) at the Matsubara frequencies ωn (with
residues ζ/β), there is a pole at z = ξ, so that

I =
∑
ωn

Res(iωn) + Res(ξ) = ζS + nζ(ξ) = 0, (22)
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i.e.
1

β

∑
ωn

eiωnη

iωn − ξ
=

{
−nB(ξ) (bosons),
nF (ξ) (fermions).

(23)

3.2) We want to compute the sum (with ξ > 0 for bosons)

S =
1

β

∑
ωn

ln(−iωn + ξ)eiωnη (24)

from the integral

I =

∮
C

dz

2iπ
ln(−z + ξ)nζ(z)e

ηz. (25)

Why is it not possible to choose the same contour C as in question 3.1? By choosing an appropriate
contour, show that the sum (24) can be expressed as an integral over a real variable. Compute this integral
using

nζ(ϵ) =
ζ

β

d

dϵ
ln
∣∣∣1− ζe−βϵ

∣∣∣ . (26)

From the result obtained in question 2.3, find the usual expression of the grand potential of a non-interacting
boson gas.

The function ln(−z+ ξ) has a branch on the real axis for z larger than ξ. We should therefore consider
the following contour (the figure corresponds to the bosonic case)

The integral vanishes on the circular part of the contour as R→ ∞. The contour along the branch cut gives
the contribution

I =

∫ ∞

ξ−

dϵ

2iπ
nζ(ϵ) ln(−ϵ− iη + ξ) +

∫ ξ−

∞

dϵ

2iπ
nζ(ϵ) ln(−ϵ+ iη + ξ)

=

∫ ∞

ξ−

dϵ

2iπ
nζ(ϵ)[ln(−ϵ− iη + ξ)− c.c.] (27)

where ξ− = ξ − 0+. Using

nζ(ϵ) =
ζ

β

d

dϵ
ln
∣∣∣1− ζe−βϵ

∣∣∣ , (28)

and integrating by parts,

I = − ζ

β

∫ ∞

ξ−

dϵ

2iπ
ln
∣∣∣1− ζe−βϵ

∣∣∣ d
dϵ

[ln(−ϵ− iη + ξ)− c.c.]

= − ζ

β

∫ ∞

ξ−

dϵ

2iπ
ln
∣∣∣1− ζe−βϵ

∣∣∣ [−2iπδ(ϵ− ξ)]

=
ζ

β
ln
(
1− ζe−βξ

)
, (29)

since ξ > 0 for bosons (ζ = 1). On the other hand, the residue theorem gives

I =
ζ

β

∑
ωn

ln(−iωn + ξ)eiωnη. (30)
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From (29) and (30), we finally deduce

S =
1

β

∑
α

ln
(
1− ζe−βξ

)
. (31)

For bosons, this yields the familiar expression of the grand potential,

Ω =
1

β

∑
α,ωn

ln(−iωn + ξα)e
iωn0+ =

1

β

∑
α

ln
(
1− e−βξα

)
. (32)

3.3) Compute the sums

S1 =
1

β

∑
ωn

G0(k, iωn)G0(k+ q, iωn + iων), (33)

S2 =
1

β

∑
ωn

G0(k, iωn)G0(q− k, iων − iωn), (34)

where ωn = (2n+1)πT , ων = 2νπT , and G0(k, iωn) = (iωn− ξk)−1. [Hint: use the result found for the sum
S in Eq. (20).]

S1 =
1

β

∑
ωn

G0(k)G0(k + q)

=
1

β

∑
ωn

eiωnη

iων + ξk − ξk+q

(
1

iωn − ξk
− 1

iωn + iων − ξk+q

)
=
nF (ξk)− nF (ξk+q)

iων + ξk − ξk+q
, (35)

using (23). Note that adding the factor eiωnη in the second line is harmless since the sum converges.
Similarly, one finds

S2 =
1

β

∑
ωn

G0(k, iωn)G0(q− k, iων − iωn) =
nF (ξk) + nF (ξq−k)− 1

iων − ξk − ξq−k
. (36)

3.4) Show that the sum

S =
1

β

∑
ωn

1

|ωn|3
(ωn = (2n+ 1)πT ) (37)

can be directly expressed in terms the generalized Rieman Zeta function

ζ(z, q) =
∞∑
n=0

1

(n+ q)z
(38)

without performing an integral in the complex plane. The final result can be simplified using ζ(z, 1/2) =
(2z − 1)ζ(z) where ζ(z) =

∑∞
n=1 n

−z is the Riemann zeta function.

S =
1

β

∑
ωn

1

|ωn|3
=

1

4π3T 2

∞∑
n=0

1(
n+ 1

2

)3 =
1

4π3T 2
ζ

(
3,

1

2

)
=

7ζ(3)

4π3T 2
, (39)
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