Tutorial class 2: Functional integral for a non-interacting boson gas

We consider a non-interacting boson gas with grand canonical Hamiltonian

$$\hat{H} = \sum_{\alpha} \xi_{\alpha} \hat{\psi}_{\alpha}^{\dagger} \hat{\psi}_{\alpha} \qquad (\xi_{\alpha} = \epsilon_{\alpha} - \mu), \tag{1}$$

where $\{|\alpha\rangle, \epsilon_{\alpha}\}$ denotes a basis in which the one-body Hamiltonian is diagonal. The partition function can be written as

$$Z = \lim_{N \to \infty} \int \prod_{k=1}^{N} d(\psi_k^*, \psi_k) \exp\left\{-\sum_{\alpha} \sum_{k=1}^{N} \left[\psi_{k,\alpha}^* \left(\psi_{k,\alpha} - \psi_{k-1,\alpha}\right) + \frac{\beta}{N} \xi_{\alpha} \psi_{k,\alpha}^* \psi_{k-1,\alpha}\right)\right]\right\},\tag{2}$$

where $\psi_{k,\alpha}^{(*)}$ is a c-number, $\psi_{N,\alpha}=\psi_{0,\alpha},\,\psi_{N,\alpha}^*=\psi_{0,\alpha}^*$ and

$$d(\psi_k^*, \psi_k) = \prod_{\alpha} \frac{d\Re[\psi_{k,\alpha}]d\Im[\psi_{k,\alpha}]}{\pi}.$$
 (3)

1) Calculation of the partition function with discrete times

1.1) Recall the result of the Gaussian integral

$$\int \prod_{k=1}^{N} d(\psi_k^*, \psi_k) \exp\left\{-\sum_{\alpha} \sum_{k,k'=1}^{N} \psi_{k,\alpha}^* M_{k,k'}^{(\alpha)} \psi_{k',\alpha}\right\},\tag{4}$$

where $M^{(\alpha)}$ is a positive definite Hermitian $N \times N$ matrix and $\psi_{k,\alpha}^{(*)}$ a c-number.

$$\int \prod_{k=1}^{N} d(\psi_k^*, \psi_k) \exp\left\{-\sum_{\alpha} \sum_{k,k'=1}^{N} \psi_{k,\alpha}^* M_{k,k'}^{(\alpha)} \psi_{k',\alpha}\right\} = \prod_{\alpha} \left[\det M^{(\alpha)}\right]^{-1}$$
 (5)

1.2) Deduce the expression of the partition function (2).

The action can be written as

$$S = \sum_{\alpha} \sum_{k,k'=1}^{N} \psi_{k,\alpha}^* S_{k,k'}^{(\alpha)} \psi_{k',\alpha}, \tag{6}$$

where $S^{(\alpha)}$ is the $N \times N$ matrix

$$S^{(\alpha)} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 & -a \\ -a & 1 & 0 & & & 0 \\ 0 & -a & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & -a & 1 & 0 \\ 0 & \cdots & \cdots & 0 & -a & 1 \end{pmatrix}$$
 (7)

with $a = 1 - \frac{\beta}{N} \xi_{\alpha}$. Expanding with respect to the first line, one obtains

$$\lim_{N \to \infty} \det S^{(\alpha)} = \lim_{N \to \infty} \left[1 + (-a)(-1)^{N-1}(-a)^{N-1} \right] = 1 - e^{-\beta \xi_{\alpha}},\tag{8}$$

so that

$$Z = \lim_{N \to \infty} \prod_{\alpha} \left[\det S^{(\alpha)} \right]^{-1} = \prod_{\alpha} \left(1 - e^{-\beta \xi_{\alpha}} \right)^{-1}, \tag{9}$$

which is the standard expression for non-interacting bosons.

2) Continuous-time limit

2.1) Give the expression of the action $S[\psi^*, \psi]$ obtained from (2) in the continuous-time limit $\psi_{k,\alpha} \to \psi_{\alpha}(\tau)$ $(\tau \in [0, \beta])$. Express $S[\psi^*, \psi]$ as a function of the Fourier-transformed fields

$$\psi_{\alpha}(i\omega_n) = \frac{1}{\sqrt{\beta}} \int_0^\beta d\tau \, e^{i\omega_n \tau} \psi_{\alpha}(\tau), \qquad \psi_{\alpha}^*(i\omega_n) = \frac{1}{\sqrt{\beta}} \int_0^\beta d\tau \, e^{-i\omega_n \tau} \psi_{\alpha}^*(\tau), \tag{10}$$

where $\omega_n = 2n\pi T \ (n \in \mathbb{Z})$ is a bosonic Matsubara frequency.

$$S[\psi^*, \psi] = \int_0^\beta d\tau \sum_\alpha \psi_\alpha^*(\tau) (\partial_\tau + \xi_\alpha) \psi_\alpha(\tau)$$
$$= \sum_{\alpha, \omega_n} \psi_\alpha(i\omega_n) (-i\omega_n + \xi_\alpha) \psi_\alpha(i\omega_n)$$
(11)

2.2) Compute, in the continuous-time limit, the propagator $G(\alpha, i\omega_n) = -\langle \psi_{\alpha}(i\omega_n)\psi_{\alpha}^*(i\omega_n)\rangle$ and the partition function. Is the thermodynamic potential $\Omega = -\frac{1}{\beta} \ln Z$ well defined?

$$G(\alpha, i\omega_n) = -\frac{1}{Z} \int \mathcal{D}[\psi^*, \psi] \,\psi_\alpha(i\omega_n) \psi_\alpha^*(i\omega_n) e^{-S[\psi^*, \psi]} = \frac{1}{i\omega_n - \xi_\alpha},\tag{12}$$

and

$$Z = \int \mathcal{D}[\psi^*, \psi] e^{-S[\psi^*, \psi]} = \prod_{\alpha, \omega_n} (-i\omega_n + \xi_\alpha)^{-1}$$

$$\Omega = -\frac{1}{\beta} \ln Z = \frac{1}{\beta} \sum_{\alpha, \omega_n} \ln(-i\omega_n + \xi_\alpha).$$
(13)

The partition function vanishes, Z = 0, and the thermodynamic potential Ω is not defined (the sum over Matsubara frequencies does not converge).

2.3) What is the expression of the mean particle number $\langle \hat{N} \rangle$ that can be derived from Ω obtained in question (2.2)? Compare with the result obtained from (2) before taking the continuous-time limit. How should we modify the expression of Ω obtained in question 2.2 to obtain the correct result?

From (13), one finds

$$\langle \hat{N} \rangle = -\frac{\partial \Omega}{\partial \mu} = -\frac{1}{\beta} \sum_{\alpha, \omega_n} \frac{1}{i\omega_n - \xi_\alpha} = -\sum_{\alpha} G(\alpha, \tau = 0).$$
 (14)

This should be compared with the result obtained from the discrete-time expression for the partition function,

$$\langle \hat{N} \rangle = -\frac{\partial \Omega}{\partial \mu} = \frac{1}{N} \sum_{\alpha,k} \langle \psi_{k,\alpha}^* \psi_{k-a,\alpha} \rangle = \sum_{\alpha} \langle \psi_{k,\alpha}^* \psi_{k-a,\alpha} \rangle \quad \text{(time-translation invariance)}. \tag{15}$$

Thus, the correct expression in the continuum-time limit should be

$$\langle \hat{N} \rangle = \sum_{\alpha} \langle \psi_{\alpha}^{*}(\tau) \psi_{\alpha}(\tau^{-}) \rangle = -\sum_{\alpha} G(\alpha, \tau = 0^{-}) = -\frac{1}{\beta} \sum_{\alpha, \omega_{n}} \frac{e^{i\omega_{n}0^{+}}}{i\omega_{n} - \xi_{\alpha}}.$$
 (16)

This result can also be obtained by noting that, in the continuum-time limit, the chemical potential term is $\mu \sum_{\alpha} \psi_{\alpha}^*(\tau^+) \psi_{\alpha}(\tau)$, with ψ_{α}^* evaluated at a time infinitesimally larger ψ_{α} . In question (3), we will see that the Matsubara sum in (16) yields the expected result $\langle \hat{N} \rangle = \sum_{\alpha} n_B(\xi_{\alpha})$, with n_B the Bose-Einstein distribution function.

To reproduce (16) from $\langle \hat{N} \rangle = -\partial \Omega/\partial \mu$, one has to consider the following expression of the grand potential,

$$\Omega = \frac{1}{\beta} \sum_{\alpha, \omega_n} \ln(-i\omega_n + \xi_\alpha) e^{i\omega_n 0^+}.$$
 (17)

In the following, we will see that this definition yields the known expression of the grand potential of non-interacting bosons.

2.4) Express $\langle \hat{N} \rangle$ as a time-ordered correlation function of the operators $\hat{\psi}_{\alpha}(\tau) = e^{\tau \hat{H}} \hat{\psi}_{\alpha} e^{-\tau \hat{H}}$ and $\hat{\psi}_{\alpha}^{\dagger}(\tau) = e^{\tau \hat{H}} \hat{\psi}_{\alpha}^{\dagger} e^{-\tau \hat{H}}$. Show that the corresponding expression in the functional integral formalism agrees with the discrete-time formulation.

$$\langle \hat{N} \rangle = \sum_{\alpha} \langle \hat{\psi}_{\alpha}^{\dagger} \hat{\psi}_{\alpha} \rangle$$

$$= \frac{1}{Z} \sum_{\alpha} \text{Tr} \left[e^{-\beta \hat{H}} \hat{\psi}_{\alpha}^{\dagger} \hat{\psi}_{\alpha} \right]$$

$$= \frac{1}{Z} \sum_{\alpha} \text{Tr} \left[e^{-\beta \hat{H}} \hat{\psi}_{\alpha}^{\dagger}(\tau) \hat{\psi}_{\alpha}(\tau) \right] \quad \text{(follows from cyclic invariance of the trace)}$$

$$= \sum_{\alpha} \langle T_{\tau} \hat{\psi}_{\alpha}^{\dagger}(\tau^{+}) \hat{\psi}_{\alpha}(\tau) \rangle. \tag{18}$$

In the functional integral formalism, this becomes

$$\langle \hat{N} \rangle = \sum_{\alpha} \langle \psi_{\alpha}^{*}(\tau^{+}) \psi_{\alpha}(\tau) \rangle = -\sum_{\alpha} G(\alpha, \tau = 0^{-}).$$
 (19)

3) Matsubara frequency sums

We now consider both bosons and fermions. The fermionic Matsubara frequencies are defined by $\omega_n = (2n+1)\pi T$ $(n \in \mathbb{Z})$.

3.1) Compute the frequency sum

$$S = \frac{1}{\beta} \sum_{\omega_n} \frac{e^{i\omega_n \eta}}{i\omega_n - \xi} \quad (\eta \to 0^+), \tag{20}$$

by considering the integral

$$I = \oint_{\mathcal{C}} \frac{dz}{2i\pi} \frac{e^{\eta z}}{z - \xi} n_{\zeta}(z), \qquad n_{\zeta}(z) = \frac{1}{e^{\beta z} - \zeta}$$
 (21)

in the complex plane along the circle C of radius $R \to \infty$ centered at the origin z = 0. Deduce the expression of the expectation value $\langle \hat{N} \rangle$ as a function of the occupation number $n_{\zeta}(\xi_{\alpha})$.

The factor $e^{\eta z} n_{\zeta}(z)$ ensures that the integral I over the contour \mathcal{C} vanishes in the limit $R \to \infty$. We can also evaluate I by the residue theorem. Besides the poles of $n_{\zeta}(z)$ at the Matsubara frequencies ω_n (with residues ζ/β), there is a pole at $z = \xi$, so that

$$I = \sum_{\omega_n} \operatorname{Res}(i\omega_n) + \operatorname{Res}(\xi) = \zeta S + n_{\zeta}(\xi) = 0, \tag{22}$$

i.e.

$$\frac{1}{\beta} \sum_{\omega_n} \frac{e^{i\omega_n \eta}}{i\omega_n - \xi} = \begin{cases} -n_B(\xi) & \text{(bosons)}, \\ n_F(\xi) & \text{(fermions)}. \end{cases}$$
 (23)

3.2) We want to compute the sum (with $\xi > 0$ for bosons)

$$S = \frac{1}{\beta} \sum_{\omega_n} \ln(-i\omega_n + \xi) e^{i\omega_n \eta}$$
 (24)

from the integral

$$I = \oint_{\mathcal{C}} \frac{dz}{2i\pi} \ln(-z + \xi) n_{\zeta}(z) e^{\eta z}.$$
 (25)

Why is it not possible to choose the same contour C as in question 3.1? By choosing an appropriate contour, show that the sum (24) can be expressed as an integral over a real variable. Compute this integral using

$$n_{\zeta}(\epsilon) = \frac{\zeta}{\beta} \frac{d}{d\epsilon} \ln \left| 1 - \zeta e^{-\beta \epsilon} \right|. \tag{26}$$

From the result obtained in question 2.3, find the usual expression of the grand potential of a non-interacting boson gas.

The function $\ln(-z+\xi)$ has a branch on the real axis for z larger than ξ . We should therefore consider the following contour (the figure corresponds to the bosonic case)

The integral vanishes on the circular part of the contour as $R \to \infty$. The contour along the branch cut gives the contribution

$$I = \int_{\xi^{-}}^{\infty} \frac{d\epsilon}{2i\pi} n_{\zeta}(\epsilon) \ln(-\epsilon - i\eta + \xi) + \int_{\infty}^{\xi^{-}} \frac{d\epsilon}{2i\pi} n_{\zeta}(\epsilon) \ln(-\epsilon + i\eta + \xi)$$
$$= \int_{\xi^{-}}^{\infty} \frac{d\epsilon}{2i\pi} n_{\zeta}(\epsilon) [\ln(-\epsilon - i\eta + \xi) - \text{c.c.}]$$
(27)

where $\xi^- = \xi - 0^+$. Using

$$n_{\zeta}(\epsilon) = \frac{\zeta}{\beta} \frac{d}{d\epsilon} \ln \left| 1 - \zeta e^{-\beta \epsilon} \right|, \tag{28}$$

and integrating by parts,

$$I = -\frac{\zeta}{\beta} \int_{\xi^{-}}^{\infty} \frac{d\epsilon}{2i\pi} \ln\left|1 - \zeta e^{-\beta\epsilon}\right| \frac{d}{d\epsilon} [\ln(-\epsilon - i\eta + \xi) - \text{c.c.}]$$

$$= -\frac{\zeta}{\beta} \int_{\xi^{-}}^{\infty} \frac{d\epsilon}{2i\pi} \ln\left|1 - \zeta e^{-\beta\epsilon}\right| [-2i\pi\delta(\epsilon - \xi)]$$

$$= \frac{\zeta}{\beta} \ln\left(1 - \zeta e^{-\beta\xi}\right), \tag{29}$$

since $\xi > 0$ for bosons ($\zeta = 1$). On the other hand, the residue theorem gives

$$I = \frac{\zeta}{\beta} \sum_{\omega_n} \ln(-i\omega_n + \xi) e^{i\omega_n \eta}.$$
 (30)

From (29) and (30), we finally deduce

$$S = \frac{1}{\beta} \sum_{\alpha} \ln \left(1 - \zeta e^{-\beta \xi} \right). \tag{31}$$

For bosons, this yields the familiar expression of the grand potential,

$$\Omega = \frac{1}{\beta} \sum_{\alpha, \omega_n} \ln(-i\omega_n + \xi_\alpha) e^{i\omega_n 0^+} = \frac{1}{\beta} \sum_{\alpha} \ln\left(1 - e^{-\beta\xi_\alpha}\right). \tag{32}$$

3.3) Compute the sums

$$S_1 = \frac{1}{\beta} \sum_{\omega_n} G_0(\mathbf{k}, i\omega_n) G_0(\mathbf{k} + \mathbf{q}, i\omega_n + i\omega_\nu), \tag{33}$$

$$S_2 = \frac{1}{\beta} \sum_{\omega_n} G_0(\mathbf{k}, i\omega_n) G_0(\mathbf{q} - \mathbf{k}, i\omega_\nu - i\omega_n), \tag{34}$$

where $\omega_n = (2n+1)\pi T$, $\omega_{\nu} = 2\nu\pi T$, and $G_0(\mathbf{k}, i\omega_n) = (i\omega_n - \xi_{\mathbf{k}})^{-1}$. [Hint: use the result found for the sum S in Eq. (20).]

$$S_{1} = \frac{1}{\beta} \sum_{\omega_{n}} G_{0}(k) G_{0}(k+q)$$

$$= \frac{1}{\beta} \sum_{\omega_{n}} \frac{e^{i\omega_{n}\eta}}{i\omega_{\nu} + \xi_{\mathbf{k}} - \xi_{\mathbf{k}+\mathbf{q}}} \left(\frac{1}{i\omega_{n} - \xi_{\mathbf{k}}} - \frac{1}{i\omega_{n} + i\omega_{\nu} - \xi_{\mathbf{k}+\mathbf{q}}} \right)$$

$$= \frac{n_{F}(\xi_{\mathbf{k}}) - n_{F}(\xi_{\mathbf{k}+\mathbf{q}})}{i\omega_{\nu} + \xi_{\mathbf{k}} - \xi_{\mathbf{k}+\mathbf{q}}},$$
(35)

using (23). Note that adding the factor $e^{i\omega_n\eta}$ in the second line is harmless since the sum converges. Similarly, one finds

$$S_2 = \frac{1}{\beta} \sum_{\omega_n} G_0(\mathbf{k}, i\omega_n) G_0(\mathbf{q} - \mathbf{k}, i\omega_\nu - i\omega_n) = \frac{n_F(\xi_{\mathbf{k}}) + n_F(\xi_{\mathbf{q} - \mathbf{k}}) - 1}{i\omega_\nu - \xi_{\mathbf{k}} - \xi_{\mathbf{q} - \mathbf{k}}}.$$
 (36)

3.4) Show that the sum

$$S = \frac{1}{\beta} \sum_{\omega_n} \frac{1}{|\omega_n|^3} \quad (\omega_n = (2n+1)\pi T) \tag{37}$$

can be directly expressed in terms the generalized Rieman Zeta function

$$\zeta(z,q) = \sum_{n=0}^{\infty} \frac{1}{(n+q)^z}$$
(38)

without performing an integral in the complex plane. The final result can be simplified using $\zeta(z, 1/2) = (2^z - 1)\zeta(z)$ where $\zeta(z) = \sum_{n=1}^{\infty} n^{-z}$ is the Riemann zeta function.

$$S = \frac{1}{\beta} \sum_{\omega_n} \frac{1}{|\omega_n|^3} = \frac{1}{4\pi^3 T^2} \sum_{n=0}^{\infty} \frac{1}{\left(n + \frac{1}{2}\right)^3} = \frac{1}{4\pi^3 T^2} \zeta\left(3, \frac{1}{2}\right) = \frac{7\zeta(3)}{4\pi^3 T^2},\tag{39}$$