M2 Quantum Physics — Academic year 2025-2026
Quantum-condensed-matter field theory

Tutorial class 2: Functional integral for a non-interacting boson gas

We consider a non-interacting boson gas with grand canonical Hamiltonian
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where {|a), €4} denotes a basis in which the one-body Hamiltonian is diagonal. The partition function can

be written as
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1) Calculation of the partition function with discrete times

1.1) Recall the result of the Gaussian integral
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where M(®) is a positive definite Hermitian N x N matriz and @Z)/(:gé a c-number.
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1.2) Deduce the expression of the partition function (2).

The action can be written as
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where S(@ is the N x N matrix
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witha=1— %‘fa. Expanding with respect to the first line, one obtains
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which is the standard expression for non-interacting bosons.

2) Continuous-time limit

2.1) Give the expression of the action S[y*, ] obtained from (2) in the continuous-time limit Yy o — Vo (T)
(t €10,08]). Express S[Y*,¢] as a function of the Fourier-transformed fields
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where wy, = 2nmT (n € Z) is a bosonic Matsubara frequency.
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2.2) Compute, in the continuous-time limit, the pmpagator G(a,iwy,) = — (Yo (iwn )0k (iwy)) and the parti-

tion function. Is the thermodynamic potential Q = —4 an well defined?
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The partition function vanishes, Z = 0, and the thermodynamic potential € is not defined (the sum over
Matsubara frequencies does not converge).

2.3) What is the expression of the mean particle number <N> that can be derived from € obtained in question
(2.2)? Compare with the result obtained from (2) before taking the continuous-time limit. How should we
modify the expression of Q1 obtained in question 2.2 to obtain the correct result?

From (13), one finds

(N) = — w BZM z ==Y G(a,7=0). (14)
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This should be compared with the result obtained from the discrete-time expression for the partition function,
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Thus, the correct expression in the continuum-time limit should be
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This result can also be obtained by noting that, in the continuum-time limit, the chemical potential term
is ud, Vi (TT)Ya(r), with 9% evaluated at a time infinitesimally larger 1,. In question (3), we will see
that the Matsubara sum in (16) yields the expected result (N) = > np({), with np the Bose-Einstein
distribution function.

To reproduce (16) from (N) = —d/du, one has to consider the following expression of the grand
potential,
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In the following, we will see that this definition yields the known expression of the grand potential of
non-interacting bosons.

2.4) Express (N) as a time-ordered correlation function of the operators 1o () = eTﬂi/}ae_TH and @ZL(T) =

eTHLZAJl[e_TH. Show that the corresponding expression in the functional integral formalism agrees with the
discrete-time formulation.

In the functional integral formalism, this becomes

(N) =Y @alrH)al(r) == Gla,7=07). (19)
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3) Matsubara frequency sums

We now consider both bosons and fermions. The fermionic Matsubara frequencies are defined by w, =
2n+1)7nT (n € Z).

3.1) Compute the frequency sum
eiwnn
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in the complex plane along the circle C of radius R — oo centered at the origin z = 0. Deduce the expression
of the expectation value <J\7> as a function of the occupation number n¢(&q).

The factor e”n(z) ensures that the integral I over the contour C vanishes in the limit R — co. We can
also evaluate I by the residue theorem. Besides the poles of n¢(z) at the Matsubara frequencies w,, (with
residues (/[3), there is a pole at z = &, so that

I=> Res(iw,) + Res(&) = (S +n¢(€) =0, (22)
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iwn — & np(§) (fermions).
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3.2) We want to compute the sum (with & > 0 for bosons)
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from the integral
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Why is it not possible to choose the same contour C as in question 3.1¢ By choosing an appropriate
contour, show that the sum (24) can be expressed as an integral over a real variable. Compute this integral
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From the result obtained in question 2.3, find the usual expression of the grand potential of a non-interacting
boson gas.
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The function In(—z + &) has a branch on the real axis for z larger than {. We should therefore consider

the following contour (the figure corresponds to the bosonic case)
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The integral vanishes on the circular part of the contour as R — co. The contour along the branch cut gives
the contribution

[e'e] € & €
1:/ dng(e)ln(—e—in—i-f)—l-/ ing(e)ln(—e+in+£)

- uT o 2m
— [ senclln(—e—in+ ) - cc) 1)
=)o 2in ¢ e “e
where £~ = £ — 0T Using
¢d —Be
ng(e)zﬁil 1—¢e™P, (28)
and integrating by parts,
< d d
I= —é . ﬁ In ‘1 — (e P %[ln(—e —in+§) —c.c.]
> d
= —g . i In ‘1 — Ce P  [~2imd(e — £)]
_< e
_6111(1 Ce ) (29)
since £ > 0 for bosons (¢ = 1). On the other hand, the residue theorem gives
I= g D " In(—iwy + e, (30)
Wn,

4



From (29) and (30), we finally deduce
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For bosons, this yields the familiar expression of the grand potential,
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3.3) Compute the sums

Z Go(k, iw,)Go(k + q, iw, + iw,), (33)
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where w, = (2n+ 17T, w, = 2vrT, and Go(k,iw,) = (iw, — &) L. [Hint: use the result found for the sum
S in Eq. (20).]
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using (23). Note that adding the factor ™" in the second line is harmless since the sum converges.
Similarly, one finds
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3.4) Show that the sum
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can be directly expressed in terms the generalized Rieman Zeta function
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without performing an integral in the complex plane. The final result can be simplified using ((z,1/2) =
(2% —1)¢(2) where ((z) = >_,2y n~* is the Riemann zeta function.
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