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We present a strong-coupling expansion of the Bose-Hubbard model based on a mean-field treatment of
the hopping term, while onsite fluctuations are taken into account exactly. This random phase approximation
describes the universal features of the generic Mott-insulator–superfluid transition (induced by a density change)
and the superfluid state near the phase transition. The critical quasiparticles at the quantum critical point have a
quadratic dispersion with an effective mass m∗ and their mutual interaction is described by an effective s-wave
scattering length a∗. The singular part of the pressure takes the same form as in a dilute Bose gas, provided we
replace the boson mass m and the scattering length in vacuum a by m∗ and a∗, and the density n by the excess
density |n − nMI| of particles (or holes) with respect to the Mott insulator. We define a universal two-body contact
Cuniv that controls the high-momentum tail ∼1/|k|4 of the singular part nsing

k of the momentum distribution. We
also apply the strong-coupling RPA to a lattice model of hard-core bosons and find that the high-momentum
distribution is controlled by a universal contact, in complete agreement with the Bose-Hubbard model. Finally,
we discuss a continuum model of bosons in an optical lattice and define two additional two-body contacts: a
short-distance universal contact Csd

univ which controls the high-momentum tail of nsing
k at scales larger than the

inverse lattice spacing, and a full contact C, which controls the high-momentum tail of the full-momentum
distribution nk.

DOI: 10.1103/zhpw-crqc

I. INTRODUCTION

The Mott transition is a paradigmatic example of a quan-
tum phase transition induced by strong interactions between
particles; it has become central in the field of quantum gases.
Cold-atom experiments can implement both the fermionic
(metal-insulator) Mott transition and its bosonic analog, by
loading bosons into an optical lattice [1–7]. By varying the
strength of the optical lattice potential and/or the density, it is
possible to induce a transition from a superfluid (SF) state to a
Mott insulator (MI) where the mean number of bosons per site
is integer. When the phase transition is induced by a density
change, it belongs to the dilute-Bose-gas universality class,
i.e., it is similar to the quantum phase transition between the
vacuum state and the superfluid state obtained by varying the
chemical potential from negative to positive values in a dilute
Bose gas.

The MI-SF transition is often studied in the framework
of the Bose-Hubbard model, which describes bosons
moving on a lattice with an on-site interaction [8,9].
The main characteristics of the phase diagram are now
well understood from various approaches: strong-coupling
expansion [10–20], Green’s function method [21], mapping
on quantum rotor models [22–26], slave-boson technique
[27–30], time-dependent Gutzwiller approximation [31,32],
quantum Gutzwiller approach [33], dynamical mean-field
theory [34–38], variational method [39], variational cluster
approximation [40–43], nonperturbative functional renormal-
ization group (FRG) [44–48], mapping on the quantum

spherical model [49], and Monte Carlo simulations
[50–54].

Of particular interest is the behavior of the superfluid
phase near the SF-MI transition. The universality class of
the phase transition implies that the additional particles (or
holes) introduced in the Mott insulator behave as a dilute gas
of quasiparticles with an effective mass m∗ and an effective
s-wave scattering length a∗ [46,47]. The singular part of the
pressure (i.e., the part that is singular when crossing the tran-
sition by varying the chemical potential or the density) can be
written in the same scaling form as in the dilute Bose gas—as
obtained, for example, from Bogoliubov’s theory—provided
we replace the boson mass and the s-wave scattering length by
m∗ and a∗, and the density n by the excess density |n − nMI|
of particles (or holes) with respect to the Mott insulator. The
condensate and superfluid densities, expressed as a function
of m∗, a∗ and |n − nMI|, also take the same form as in a dilute
Bose gas.

In this paper, we describe a strong-coupling random phase
approximation (RPA) theory of the Bose-Hubbard model
[10–20], which captures the universal features of the MI-SF
transition as well as the superfluid phase near the transi-
tion; it is essentially equivalent to the approach proposed
in Ref. [12] based on two successive Hubbard-Stratonovich
transformations. In Refs. [44–48,55], the strong-coupling
RPA theory was used as the initial condition of the flow in
the nonperturbative FRG approach. In this paper, we show
that many qualitative results can be obtained without inte-
grating the nonperturbative flow equations. Moreover, the
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strong-coupling RPA allows one to explicitly compute a uni-
versal two-body contact Cuniv from the singular part of the
pressure [56]. We show that Cuniv, which depends on |n −
nMI| and the effective scattering length a∗, determines the
high-momentum tail Cuniv/|k|4 of the singular part of the mo-
mentum distribution nk in the superfluid phase (as discussed in
detail in the companion paper [57]), a physical quantity, which
is not readily available [58] from the nonperturbative FRG ap-
proach of Refs. [44–47,55]. We also apply the strong-coupling
RPA to a lattice model of hard-core bosons and find that the
high-momentum distribution is controlled by a universal con-
tact, in complete agreement with the Bose-Hubbard model. In
addition, we consider bosons in an optical lattice described
by a continuum model. We argue that at length scales smaller
than the optical lattice spacing, the boson system should be
seen as a dilute Bose gas. This leads us to define two addi-
tional contacts, a short-distance universal contact Csd

univ and
a full contact C, which depend on the scattering length in
vacuum a.

The outline of the paper is as follows. The Bose-Hubbard
model is discussed in Sec. II. We first determine the Gibbs free
energy (or effective action in the field-theory terminology)
in the strong-coupling RPA, which is based on a mean-field
treatment of the hopping term, while local (on-site) fluctua-
tions are taken into account exactly (Sec. II A). We recover
the phase diagram obtained in previous mean-field studies
[10–12]. We then determine the spectrum of the one-particle
excitations in the Mott insulator. The critical excitations at the
quantum critical point (QCP) that separates the Mott insulator
from the superfluid state are quasiparticles with quadratic
dispersion, effective mass m∗, and spectral weight ZQP. Their
mutual interaction is characterized by an effective scattering
length a∗ (Sec. II B). The singular part Psing(n − nMI, m∗, a∗)
of the pressure in the superfluid state, as well as the con-
densate and superfluid densities, take the usual Bogoliubov
expression. This leads us to define a universal contact Cuniv

from the derivative of Psing with respect to 1/a∗ (Sec. II C). In
Sec. II D, we determine the spectrum in the superfluid phase
and show that the singular part nsing

k = nk − nMI
k of the mo-

mentum distribution exhibits a high-momentum tail Cuniv/|k|4
over a wide range of momenta in the Brillouin zone provided
that the system is near the SF-MI transition (nMI

k denotes the
momentum distribution in the Mott insulator). In Sec. II E,
we discuss the universal properties of the superfluid phase
from a broader perspective based on the universality class of
the MI-SF transition. This allows us to express the contact
in terms of the universal scaling function that determines the
pressure and obtain the Lee-Huang-Yang correction, which is
not included in the strong-coupling RPA. In Sec. III we dis-
cuss the strong-coupling RPA in a lattice model of hard-core
bosons and recover the momentum distribution obtained from
a spin-wave analysis of the equivalent XY model [59]. We
find that the high-momentum limit exhibits a 1/|k|4 tail whose
strength is determined by a universal contact Cuniv, which can
be defined from the pressure. This confirms the result obtained
in the Bose-Hubbard model, but without the limitations of the
strong-coupling RPA in the latter, due to a slight violation
of the sum rule relating the momentum distribution to the
density. In Sec. IV, we consider bosons in an optical lattice

described by a continuum model and briefly discuss the link to
the Bose-Hubbard model. We define a short-distance universal
contact Csd

univ, which extends the definition of the previously
defined contact Cuniv to length scales smaller than the lattice
spacing, and a full contact C from the full pressure (including
both singular and regular parts). Contrary to the contact Cuniv

considered in the framework of the Bose-Hubbard model,
Csd

univ and C are defined from a derivative of the pressure with
respect to the inverse of the scattering length a in vacuum.
Using the effective description provided by the Bose-Hubbard
model to compute the pressure of the boson system in the op-
tical lattice, we obtain the expression of the contacts Csd

univ and
C in various cases (low-density limit, near the Mott insulator
nMI = 1, etc.).

II. BOSE-HUBBARD MODEL

The Bose-Hubbard model is defined by the (grand canoni-
cal) Hamiltonian

Ĥ =
∑
r,r′

tr,r′ψ̂†
r ψ̂r′ +

∑
r

(
−μψ̂†

r ψ̂r + U

2
ψ̂†

r ψ̂†
r ψ̂rψ̂r

)
,

(1)
where {r} denotes the N sites of a cubic lattice. We set the lat-
tice spacing � to unity (so that we do not distinguish between
the total number of sites N and the volume V = N�3). The
hopping matrix is defined by tr,r′ = −t if r and r′ are nearest
neighbors and tr,r′ = 0 otherwise. U is the on-site repulsion
between bosons and μ is the chemical potential. The partition
function can be written as a functional integral over a complex
field ψr(τ ) with the action

S[ψ∗, ψ] =
∫ β

0
dτ
∑
r,r′

tr,r′ψ∗
r ψr′ + Sloc[ψ∗, ψ], (2)

where

Sloc[ψ∗, ψ] =
∫ β

0
dτ
∑

r

(
− μψ∗

r ψr + U

2
|ψr|4

)
(3)

is the local part of the action. τ is an imaginary time and
β = 1/T → ∞ the inverse temperature. We set h̄ = kB = 1
throughout.

A. RPA effective action

In the presence of an external (complex) source Jr, the
partition function is given by

Z[J∗, J] =
∫

D[ψ∗, ψ] e−S[ψ∗,ψ]+∫ β

0 dτ
∑

r (J∗
r ψr+c.c.). (4)

We consider the intersite hopping term at the mean-field level,
i.e., we replace tr,r′ψ∗

r ψr′ by tr,r′ (ψ∗
r φr′ + φ∗

r ψr′ − φ∗
r φr′ )

where

φr(τ ) = 〈ψr(τ )〉 = δ ln Z[J∗, J]

δJ∗
r (τ )

,

φ∗
r (τ ) = 〈ψ∗

r (τ )〉 = δ ln Z[J∗, J]

δJr(τ )
(5)

are the expectation values of the boson field computed
in the presence of the external source. This mean-field
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decoupling of the intersite hopping term is familiar in the
context of mean-field studies of the Ising model. More for-
mally, we can decouple the hopping term by means of a
Hubbard-Stratonovich transformation and perform a saddle-
point approximation on the auxiliary field, but this leads to
the same partition function (see Appendix A). We thus obtain
the action

SRPA[ψ∗, ψ] =
∫ β

0
dτ
∑
r,r′

tr,r′ (ψ∗
r φr′ + φ∗

r ψr′ − φ∗
r φr′ )

+ Sloc[ψ∗, ψ] (6)

and the corresponding partition function

ZRPA[J∗, J] =
∫

D[ψ∗, ψ] e−SRPA[ψ∗,ψ]+∫ β

0 dτ
∑

r (J∗
r ψr+c.c.)

= Zloc[J̃∗, J̃] e
∫ β

0 dτ
∑

r,r′ tr,r′φ∗
r φr′ (7)

where

J̃∗
r = J∗

r −
∑

r′
tr,r′φ∗

r′ , J̃r = Jr −
∑

r′
tr,r′φr′ , (8)

and Zloc[J̃∗, J̃] is the partition function in the local (t = 0)
limit in the presence of the external source J̃r. In the following,
we will refer to SRPA and ZRPA as the RPA action and RPA
partition function, respectively.

The RPA effective action, or Gibbs free energy, is defined
as the Legendre transform of ln ZRPA[J∗, J],

�RPA[φ∗, φ] = − ln ZRPA[J∗, J] +
∫ β

0
dτ
∑

r

(J∗
r φr + c.c.)

= − ln Zloc[J̃∗, J̃] +
∫ β

0
dτ
∑
r,r′

tr,r′φ∗
r φr′

+
∫ β

0
dτ
∑

r

(J̃∗
r φr + c.c.), (9)

where the order parameter φ(∗)
r is defined by (5) with the par-

tition function Z[J∗, J] approximated by ZRPA[J∗, J]. Using
(7), we can relate the order parameter to the local partition
function [60],

φr(τ ) = δ ln Zloc[J̃∗, J̃]

δJ̃∗
r (τ )

,

φ∗
r (τ ) = δ ln Zloc[J̃∗, J̃]

δJ̃r(τ )
. (10)

From Eqs. (9)–(10), we deduce that

�RPA[φ∗, φ] = �loc[φ∗, φ] +
∫ β

0
dτ
∑
r,r′

tr,r′φ∗
r φr′ , (11)

where

�loc[φ∗, φ] = − ln Zloc[J̃∗, J̃] +
∫ β

0
dτ
∑

r

(J̃∗
r φr + c.c.)

(12)
is the effective action in the local limit, defined as the Legen-
dre transform of ln Zloc[J̃∗, J̃].

The state of the system in the absence of an external source
is obtained from the equation of state

δ�RPA[φ∗, φ]

δφr(τ )
= δ�RPA[φ∗, φ]

δφ∗
r (τ )

= 0. (13)

The order parameter takes a nonzero value φr(τ ) = φ0 in the
superfluid state and vanishes in the Mott insulator. The grand
potential is given by 	 = �RPA[φ∗

0 , φ0]/β. In the vicinity of
the SF-MI transition, the value of the order parameter is small
and we can expand �loc[φ∗, φ] to quartic order,

�loc[φ∗, φ] = �loc[0, 0] +
∑

r

{∫
τ,τ ′

φ∗
r (τ )�(2)

loc (τ −τ ′)φr(τ ′)

+ 1

4

∫
{τi}

�
(4)
loc (τ1, τ2, τ3, τ4)φ∗

r (τ1)φ∗
r (τ2)

× φr(τ3)φr(τ4)

}
, (14)

where we use the notation
∫
τ

≡ ∫ β

0 dτ , and

1

βN
�loc[0, 0] = −μnMI + U

2
nMI(nMI − 1) (15)

is the grand potential (per site) of the Mott insulator with
nMI ≡ nMI(μ) the mean density (i.e., the mean number of
bosons per site): nMI = 0 if μ < 0 and nMI − 1 < μ/U < nMI

if μ > 0. The two-point vertex �
(2)
loc = −G−1

loc is the inverse of
the local Green’s function (in the absence of source),

Gloc(iωn) = −〈ψr(iωn)ψ∗
r (iωn)〉loc

= nMI + 1

iωn + μ − UnMI
− nMI

iωn + μ − U (nMI − 1)
,

(16)

expressed here in Fourier space with ωn = 2nπT (n ∈ Z) a
Matsubara frequency. The four-point vertex

�
(4)
loc (iωn1 , iωn2 , iωn3 , iωn4 ) = −G(4)

loc

(
iωn1 , iωn2 , iωn3 , iωn4

)
∏4

j=1 Gloc(iωn j )

(17)

is related to the two-particle local Green’s function G(4)
loc, its

expression is given in Appendix B. We approximate the four-
point vertex by its static limit �

(4)
loc ({iωn j = 0}) = 2g, which

leads to

�RPA[φ∗, φ] = �loc[0, 0] +
∫

τ,τ ′

∑
r,r′

φ∗
r (τ )

[
tr,r′δ(τ − τ ′)

− δr,r′G−1
loc (τ − τ ′)

]
φr′ (τ ′) + g

2

∑
r

∫
τ

|φr|4.
(18)

The RPA effective action (14),(18) coincides with the effective
Wilsonian action obtained in Ref. [12] from two successive
Hubbard-Stratonovich transformations [61]. When the latter
is treated at the mean-field level, or by including Gaussian
fluctuations about the saddle-point approximation, it leads to
the same results as the RPA effective action.
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FIG. 1. Phase diagram of the three-dimensional Bose-Hubbard
model obtained from the criterion G−1

loc (iωn = 0) + D = 0 (D =
−tk=0 = 6t). Each Mott lobe is labeled by the integer nMI giving the
mean number of bosons per site. The trivial Mott insulator nMI = 0
corresponds to the vacuum.

B. Mott insulator and MI-SF transition

Since the order parameter φr vanishes in the Mott insulator,
the pressure is given by

PMI = − 1

βN
�loc[0, 0]

= μnMI − U

2
nMI(nMI − 1). (19)

The mean density n = ∂μPMI = nMI does not depend on the
chemical potential and the compressibility κ = ∂μn = ∂2

μPMI

vanishes: The system is incompressible.
The boson propagator is determined by the inverse of the

two-point vertex, i.e.,

G(k, iωn) = −
(

δ2�[φ∗, φ]

δφ∗
k (iωn)δφk(iωn)

∣∣∣∣
φ=φ∗=0

)−1

= Gloc(iωn)

1 − tkGloc(iωn)
, (20)

where

tk = −2t (cos kx + cos ky + cos kz ) (21)

is the Fourier transform of the hopping matrix tr,r′ and k
belongs to the Brillouin zone [−π, π ]3. The stability of the
Mott insulator requires −G(0, 0) > 0, so the MI-SF transi-
tion is obtained from the criterion G−1

loc (0) + D = 0 where
D = −tk=0 = 6t . It is convenient to use the notation δμ =
μ − U (x − 1) and x = nMI + 1/2. When nMI �= 0, the tran-
sition occurs when δμ = δμ± with

δμ± = −D

2
± 1

2
(D2 − 4DUx + U 2)1/2. (22)

The Mott insulator is stable for δμ− � δμ � δμ+ or, equiv-
alently, μ− � μ � μ+. For D = 0, μ+ = UnMI and μ− =
U (nMI − 1). The two solutions δμ± merge when D = Dc =
U [2nMI + 1 − 2(n2

MI + nMI)1/2] and are then equal to δμc =
−Dc/2. For D > Dc, there is no region of stability for the
Mott insulator. Thus, we obtain a series of Mott lobes, labeled
by the integer nMI, as shown in Fig. 1 and in agreement
with previous mean-field studies [10–12]. For nMI = 0, the

FIG. 2. Excitation energies in the Mott insulator (μ = 0.9 μ+,
left) and the superfluid state (μ = 1.1 μ+, right) for nMI = 1. The
dashed lines show the approximate low-energy forms, valid near
k = 0, E+

k = k2/2m∗
+ + μ+ − μ and E−

k = c|k| (with c the sound
velocity (54) in the superfluid state). � = (0, 0, 0), R = (π, π, π )
and X = (π, 0, 0).

equation G−1
loc (0) + D = 0 has a single solution μ+ = −D that

corresponds to the transition between vacuum and superfluid.
The spectrum in the Mott insulator is obtained from the

poles of G(k, iωn) after analytic continuation iωn → ω + i0+
to real frequency. For nMI �= 0, this gives two bands,

E±
k = −δμ + tk

2
± 1

2

(
t2
k + 4Uxtk + U 2

)1/2
, (23)

one with positive energy (E+
k ) and the other with negative

energy (E−
k ); see Fig. 2. For tk = 0 (i.e. t = 0), E+

k = −μ +
UnMI and E−

k = −μ + U (nMI − 1); one recovers the poles of
the local propagator Gloc(ω + i0+) corresponding to particle
and hole excitation on an isolated site. The energy E+

k is
minimum and E−

k maximum for k = 0. Since E±
k=0 = −δμ +

δμ± = −μ + μ±, the transition to the superfluid state occurs
when one of the two excitation bands becomes gapless. At the
tip of the Mott lobe, the two bands become gapless simulta-
neously. In the following, we focus on the generic transition
where μ+ − μ or μ − μ− vanishes (but not the two of them).
This implies that D2 − 4DUx + U 2 > 0 [see Eq. (22)] and the
dispersion is quadratic in the small-k limit,

Eα
k = α

(
�α + k2

2m∗
α

)
(k → 0), (24)

where

�α = −α(μ − μα ), (25)

mlat

m∗
α

= 1

2

[
α + 2Ux − D

(D2 − 4DUx + U 2)1/2

]
. (26)

Each band α = ± is characterized by an excitation gap �α

and an effective mass m∗
α . We denote the effective mass of the

free bosons moving on the cubic lattice by mlat = 1/2t (the
free dispersion tk = k2/2mlat − D is quadratic for k → 0). It
is easy to verify that �α and m∗

α are positive. At the QCP
μ = μα , �α vanishes and the critical mode has a quadratic
dispersion law, Eα

k = αk2/2m∗
α , while the other band re-

mains gapped (�−α > 0). We conclude that the dynamical
critical exponent takes the value z = 2. Furthermore, since
the gap vanishes linearly with μ − μα , the correlation-length
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FIG. 3. Effective mass m∗
α/mlat = 1/Zα

QP (left) and effective scat-
tering length a∗

α (right) vs D/Dc at the quantum critical point between
the Mott insulator nMI = 1 and the superfluid state, obtained from
strong-coupling RPA, nonperturbative functional renormalization
group (FRG) [47] and quantum Monte Carlo simulations (QMC)
[51]. The green dotted line in the right panel shows the (vacuum)
scattering length alat of the bosons moving on the lattice [Eq. (31)].

exponent ν satisfies zν = 1, which implies ν = 1/2. These ex-
ponents are characteristic of the dilute-Bose-gas universality
class [62,63]. For nMI = 0, there is a single excitation branch
E+

k = tk − μ, �+ = −μ + μ+ = −μ − D and m∗
+ = mlat .

To obtain the quasiparticle weight Zα
QP associated with the

critical quasiparticle excitations, we expand the propagator
(20) for small k and ωn,

G(k, iωn) � α
Zα

QP

iωn − α
(

k2

2m∗
α

+ �α

) , (27)

where

�α = −α
1 + DGloc(0)

DG′
loc(0)

, (28)

Zα
QP = mlat

m∗
α

= α
Gloc(0)

DG′
loc(0)

, (29)

with G′
loc(0) = ∂iωGloc(iω)|ω=0 (since T = 1/β → 0, the

Matsubara frequency ωn ≡ ω is a continuous variable). In
Appendix C, we show that the expression of �α and m∗

α in (28)
and (29) agree with the expressions (25) and (26) obtained
from the energy Eα

k .
Having identified the critical quasiparticles and their

spectral weight, it is natural to introduce the quasiparticle
interaction strength gα

R = g(Zα
QP)2. By analogy with the dilute

Bose gas, we then define an effective scattering length a∗
α by

gα
R

∣∣∣
μ=μα

= 4πa∗
α

m∗
α

. (30)

The quasiparticle weight Zα
QP = mlat/m∗

α and the effective
scattering length a∗

α as a function of D/Dc are shown in
Fig. 3 for the Mott insulator nMI = 1. The low accuracy of
a∗

α , compared to the FRG estimate, is not surprising, as a∗
α is

derived from the local four-point vertex and does not take into
account nonlocal corrections resulting from the hopping term.
Note that the quasiparticle weight Zα

QP is larger than unity
and the effective mass m∗

α smaller than mlat; this property is
also valid for nMI � 2. For the transition between the trivial
Mott insulator nMI = 0 (vacuum) and the superfluid state,

using μ+ = −D, m∗
+ = mlat and Eq. (B2), one finds a∗

+ =
1/[8π (t/U + 1/12)]. Since the ground state at the QCP is
the vacuum, the effective scattering length can be determined
exactly by solving the two-body problem and a∗

+ should be
compared with the scattering length

alat = 1

8π (t/U + A)
, A � 0.1264, (31)

of the free bosons moving on the cubic lattice [45].
We are now in a position to determine the momentum

distribution nMI
k = 〈ψ̂†

kψ̂k〉 in the Mott insulator. Writing the
propagator as

G(k, iωn) = SMI(E+
k )

iωn − E+
k

+ SMI(E−
k )

iωn − E−
k

, (32)

we obtain

nMI
k = −

∫ 0

−∞
dω A(k, ω) = −SMI(E

−
k ) (33)

for T → 0, where

A(k, ω) = − 1

π
Im[G(k, ω + i0+)]

= SMI(E
+
k )δ(ω − E+

k ) + SMI(E
−
k )δ(ω − E−

k )
(34)

is the spectral function and

SMI(E
+
k ) = δμ + Ux + E+

k

E+
k − E−

k

,

SMI(E
−
k ) = 1 − SMI(E

+
k ) (35)

are the spectral weights associated with the excitation energies
E+

k and E−
k , respectively. Note that SMI(E±

k ) and nMI
k are

independent of the chemical potential.

C. Superfluid phase: Universal contact Cuniv

In the superfluid state, the order parameter φr(τ ) = φ0 is
nonzero and the effective action is given by

�RPA[φ∗
0 , φ0]

= �loc[0, 0] + βN
{
−[D + G−1

loc (0)
]|φ0|2 + g

2
|φ0|4

}
.

(36)

Minimizing with respect to φ0, we obtain the condensate
density

n0 = |φ0|2 = D + G−1
loc (0)

g
= Zα

QP
m∗

α

4πa∗
α

|μ − μα|. (37)

The pressure P = −	/N = −�RPA[φ∗
0 , φ0]/βN is given by

P = PMI +
[
D + G−1

loc (0)
]2

2g

= PMI + m∗
α

8πa∗
α

(μ − μα )2, (38)
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with PMI the pressure of the (unstable) Mott insulator, and the
mean density reads

n = ∂P

∂μ
= nMI + m∗

α

4πa∗
α

(μ − μα ). (39)

The last expression in (37) and (38) is obtained using D +
G−1

loc (0) = |μ − μα|/Zα
QP for μ − μα → 0 and evaluating g at

μ = μα . The singular part Psing = P − PMI of the pressure,

Psing(μ − μα, m∗
α, a∗

α ) = m∗
α

8πa∗
α

(μ − μα )2

= 2πa∗
α (n − nMI)2

m∗
α

(40)

exhibits the standard Bogoliubov form but with the effective
mass m∗

α and the effective scattering length a∗
α instead of the

bare boson mass and scattering length in vacuum, and the
distance μ − μα (or |n − nMI|) to the critical point rather than
the chemical potential (or the density). From (37) and (39),
one obtains

n0 = Zα
QP|n − nMI|. (41)

The condensate density also takes the standard Bogoliubov
form but is multiplied by the quasiparticle weight Zα

QP. This
point is further discussed in Sec. II E.

It is also possible to compute the superfluid density. If the
order parameter φr = φ0eiθr varies slowly in space, with a
time-independent phase θr, the effective action increases by

��RPA[φ∗, φ] = β
n0

2mlat

∫
d3r (∇θr )2 (42)

to leading order in derivatives (taking the continuum limit).
The superfluid stiffness ρs = n0/mlat defines the superfluid
density ns via the relation ρs = ns/m∗

α , which gives

ns = m∗
α

mlat
n0 = n0

Zα
QP

= |n − nMI|. (43)

The superfluid density is thus given by the excess density of
particles (or holes) |n − nMI| with respect to the Mott insu-
lator. Since Zα

QP = mlat/m∗
α � 1 (see Fig. 3), the condensate

density n0 � Zα
QPns is larger than the superfluid density ns =

|n − nMI|: The excess particles (holes) with respect to the Mott
insulator drag other particles (holes) into the condensation.

These results are fully consistent with the FRG approach
[47]. In the latter, g is not simply given by the four-point vertex
in the local limit, but by its value at the QCP. Furthermore, the
thermodynamic relations include the Lee-Huang-Yang correc-
tions, which are absent in the strong-coupling RPA. We will
return to this point in Sec. II E.

We can now define a universal contact by taking the deriva-
tive of the singular part of the pressure with respect to the
effective scattering length a∗

α ,

Cuniv

V = 8πm∗
α

∂

∂ (1/a∗
α )

Psing(μ − μα, m∗
α, a∗

α )
∣∣∣
μ−μα,m∗

α

= [m∗
α (μ − μα )]2

= [4πa∗
α (n − nMI)]

2, (44)

which is analog to the result of Bogoliubov’s theory for a di-
lute Bose gas (ignoring the Lee-Huang-Yang correction), but

with the effective scattering length a∗
α and |n − nMI| instead

of the full density. The contact (44) can also be written as
Cuniv/V = (4πa∗

αns)2, an expression that is also valid in the
dilute Bose gas where Galilean invariance implies ns = n.

D. Spectrum and momentum distribution

The spectrum can be obtained from the poles of the propa-
gator or, equivalently, from the zeros of the determinant of the
two-point vertex

�(2)(k) =

⎛
⎜⎜⎜⎝

δ2�RPA

δφ∗
k δφk

δ2�RPA

δφ∗
k δφ∗

−k
δ2�RPA

δφ−kδφk

δ2�RPA

δφ−kδφ
∗
−k

⎞
⎟⎟⎟⎠
∣∣∣∣∣
φ

(∗)
r =φ

(∗)
0

(45)

with

�
(2)
φ∗φ (k, iωn) = tk − G−1

loc (iωn) + 2gn0,

�
(2)
φ∗φ∗ (k, iωn) = gφ2

0 (46)

and

�
(2)
φφ∗ (k, iωn) = �

(2)
φ∗φ (−k,−iωn),

�
(2)
φφ (k, iωn) = [�(2)

φ∗φ∗ (k, iωn)
]∗

, (47)

where we use the notation k = (k, iωn), �
(2)
φ∗φ =

δ2�RPA/δφ∗δφ, etc. For nMI �= 0, one obtains

det �(2)(k) = (iωn)4 + Bk(iωn)2 + Ck

ω2
n + (δμ + Ux)2

, (48)

where

Bk = −Ã2
k + 2B̃k + [D + G−1

loc (0)
]2

,

Ck = B̃2
k − [D + G−1

loc (0)
]2

(δμ + Ux)2 (49)

and

Ãk = 2δμ − 2
[
D + G−1

loc (0)
]− tk,

B̃k = −(δμ + Ux)
{
tk + 2

[
D + G−1

loc (0)
]}+ δμ2 − U 2

4
.

(50)

After analytic continuation iωn → ω + i0+, one finds the ze-
ros ±E±

k of the determinant (48),

E±
k =

[
−Bk

2
± 1

2

(
B2

k − 4Ck
)1/2
]1/2

. (51)

By inverting the two-point vertex (45), one finally obtains the
(normal) propagator

G(k) = (iωn + δμ + Ux)(iωn − z+
k )(iωn − z−

k )(
ω2

n + E+
k

2
)(

ω2
n + E−

k
2
) , (52)

where

z±
k = Ãk

2
± 1

2

(
Ã2

k − 4B̃k
)1/2

. (53)

In the superfluid state, the two bands E±
k of the Mott insulator

split into fours bands ±E±
k as shown in Fig. 2. The bands
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±E−
k are gapless with a linear spectrum ±c|k| in the small-

momentum limit. The velocity of the sound mode is given by

c =
(

2t
[
D + G−1

loc (0)
]

ā2 + 2b̄
[
D + G−1

loc (0)
]
)1/2

, (54)

where

ā = δμ2 + 2δμUx + U 2/4

(δμ + Ux)2
,

b̄ = U 2(x2 − 1/4)

(δμ + Ux)3
. (55)

The gapped excitations ±E+
k are sometimes referred to as

Higgs modes. In the superfluid phase near the vacuum (nMI =
0), one finds only two bands ±Ek with Ek = [(tk + D)(tk +
D + 2μ + 2D)]1/2, which gives the sound-mode velocity c =√

2t (μ + D).
Ignoring the contribution δk,0Nn0 of the condensate, in the

generic case (nMI �= 0) the momentum distribution is given by

nk = −
∫ 0

−∞
dω A(k, ω) = −S (−E−

k ) − S (−E+
k ), (56)

where

A(k, ω) = S (E+
k )δ(ω − E+

k ) + S (E−
k )δ(ω − E−

k )

+ S (−E+
k )δ(ω + E+

k ) + S (−E−
k )δ(ω + E−

k )
(57)

is the spectral function and

S
(
γ Eα

k

) = αγ

(
γ Eα

k + δμ + Ux
)(

γ Eα
k − z+

k

)(
γ Eα

k − z−
k

)
2Eα

k

(
E+

k
2 − E−

k
2
)

(58)
the spectral weight associated with the pole γ Eα

k (α, γ = ±)
of the propagator (52). The singular part of the momentum
distribution,

nsing
k = nk − nMI

k

= −S (−E−
k ) − S (−E+

k ) + SMI(E
−
k ), (59)

can be expressed in terms of the spectral weights in the super-
fluid state and Mott insulator.

Let us first discuss the case of particle doping (μ > μ+,
n > nMI) where the MI-SF transition occurs when the positive
energy band E+

k of the Mott insulator becomes gapless. In
that case, the band E−

k of the Mott insulator evolves into
the band −E+

k of the superfluid, and the band E+
k into the

band E−
k (Fig. 2). Two additional bands, E+

k and −E−
k , appear

in the superfluid. The band E+
k carries a negligible spectral

weight in the vicinity of the transition. Figure 4 shows the
momentum distribution for the doped Mott insulator nMI =
1. The gapped band E−

k is little affected when μ becomes
larger than μ+ and S (−E+

k ) is essentially equal to SMI(E−
k )

near the transition. On the other hand, although the band E−
k

carries most of the spectral weight of the band E+
k of the

Mott insulator, the gapless negative energy band −E−
k gives

a large contribution to the momentum distribution for small
momenta, as in a dilute superfluid gas. This implies that nsing

k
[Eq. (59)] is well approximated by −S (−E−

k ). Figure 5 (top
panel) shows that this is indeed the case for momenta that are

FIG. 4. Momentum distribution nk = −S(−E+
k ) − S(−E−

k ),
along the Brillouin zone diagonal k = (k, k, k), for the
particle-doped Mott insulator nMI = 1: μ = 1.000005μ+
(n = 1.0003) and D = Dc/2. The contribution n0Vδk,0 of the
condensate is not taken into account. The gapless band −E−

k
gives a significant contribution only near k = 0 (see left inset).
For larger values of k, the momentum distribution is essentially
due to the gapped band −E+

k whose contribution is very close to
nMI

k = −SMI(E−
k ) (see right inset).

not too large, but the agreement breaks down when |k| � 0.25
for k varying along the Brillouin zone diagonal, that is, well
before reaching the Brillouin zone boundary |k| = π

√
3; we

will come back to this point later. Furthermore, we find that
−S (−E−

k ) � Z+
QPnBog

+,k, where

nBog
α,k = −1

2
+ εα

k + |μ − μα|
2
√

εα
k

(
εα

k + 2|μ − μα|) (60)

is the standard Bogoliubov result for bosons (ignoring the
contribution of the condensate) with dispersion εα

k = k2/2m∗
α

and chemical potential |μ − μα|. When |k| is larger than
the characteristic momentum scale k∗ = 2(m∗

α|μ − μα|)1/2,
nBog

α,k � Cuniv/V|k|4 with the contact Cuniv defined by (44) so
that the momentum distribution [64]

nsing
k � Z+

QPCuniv

V|k|4 (k∗ � |k|) (61)

exhibits a high-momentum tail ∼1/|k|4, as in a dilute Bose
gas, provided the characteristic scale k∗ is sufficiently small.

In the case of hole doping (μ < μ−, n < nMI), using the
spectral weight normalization∑

α=±

[
S
(
Eα

k

)+ S
(− Eα

k

)] =
∑
α=±

SMI
(
Eα

k

) = 1, (62)

we can rewrite the momentum distribution as

nsing
k = S (E−

k ) + S (E+
k ) − SMI(E

+
k ). (63)

The positive energy band E+
k of the Mott insulator re-

mains gapped at the transition and S (E+
k ) � SMI(E+

k ) so that
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FIG. 5. Singular part nsing
k = nk − nMI

k of the momentum dis-
tribution, along the Brillouin zone diagonal k = (k, k, k), for
D = Dc/2. Top: μ = 1.000005μ+ (n = 1.0003); Bottom: μ =
0.99944μ− (n = 0.99972). The figure also shows Zα

QPnBog
α,k [Eq. (60)]

and Z+
QPCuniv/V|k|4 where Cuniv = V[m∗

+(μ − μ+)]2 is the contact.
The dash-dotted (blue) line corresponds to the contribution of the
gapless band with negative energy −E−

k (top) or positive energy E−
k

(bottom); see Eqs. (59) and (63). The vertical dotted line shows the
momentum scale k∗/

√
3 where k∗ = 2(m∗

α|μ − μα|)1/2.

nsing
k � S (E−

k ) is well approximated by the contribution of
the gapless band E−

k of the superfluid. Note that this positive
energy band is not occupied but can nevertheless be con-
sidered as an occupied hole band. The agreement between
nsing

k and S (E−
k ) over a large part of the Brillouin zone is

shown in Fig. 5 (bottom panel). We find that S (E−
k ) is well

approximated by Z−
QPnBog

−,k, where nBog
−,k is given by (60), and

we obtain nsing
k � Z−

QPCuniv/V|k|4 for k∗ � |k|.
Let us now discuss the disagreement between nsing

k and nBog
α,k

when |k| � 0.25 in Fig. 5. The momentum distribution must
satisfy the sum rules

nMI =
∫

d3k

(2π )3
nMI

k =
∫

d3k

(2π )3
[−S (E−

k )] (64)

and

n = n0 +
∫

d3k

(2π )3
nk

= n0 +
∫

d3k

(2π )3
[−S (−E−

k ) − S (−E+
k )], (65)

where the density n is given by (39). In the strong-coupling
RPA, these sum rules are not perfectly satisfied. For exam-
ple, in the case of Fig. 5, the integral over the momentum
distribution differs from the density n − n0 (or nMI) by about

10−4. This implies that the spectral weights SMI(E±
k ) and

S (±E±
k ) are probably only accurate to within 10−4. We there-

fore believe that the slight difference between −S (−E+
k ) and

−SMI(E−
k ) at large momenta (see the right inset in Fig. 4),

which spoils the agreement between nsing
k and −S (−E−

k ), is an
artifact of the strong-coupling RPA. We expect the agreement
between these two quantities, which is observed up to |k| �
0.25, to extend up to the Brillouin zone boundary—except
very close to the zone boundaries where the free dispersion
tk differs from k2/2mlat − D due to lattice effects—similarly
to what is observed for the agreement between −S (−E−

k ) [or
S (E−

k )] and Zα
QPnBog

α,k . This expectation is supported by a study
of a hard-core boson model (see Sec. III).

E. Universal thermodynamics

The universality of the equation of state of a dilute Bose
gas can be understood from the presence of a QCP at μ = 0
that separates the vacuum (μ � 0) from the superfluid state
(μ � 0) [62,63]. In the vacuum, the one-particle excitations
have energy ω = k2/2m + |μ| to that the correlation length
ξ = (2m|μ|)−ν diverges with the exponent ν = 1/2 when
approaching the QCP. At the QCP (μ = 0) the excitations
are gapless, ω = |k|z/2m, with a dynamical critical exponent
z = 2. A straightforward dimensional analysis of the Gaus-
sian action (corresponding to noninteracting bosons) shows
that in d dimensions the field has scaling dimension [ψ] =
(d + z − 2)/2 = d/2 while [μ] = 2 and [g] = 2 − d , where
g is the strength of the two-body interaction (assumed to
be local). For d > 2, the interaction is irrelevant (in the RG
sense) and μ is the only relevant variable; the Gaussian fixed
point is stable and the transition is mean-field-like. Standard
RG arguments [55,63] then imply that in three dimensions the
zero-temperature pressure can be written in the scaling form

P =
( m

2π

)3/2
μ5/2G(

√
ma2μ). (66)

The dependence of the universal scaling function G(x) on
ma2μ is due to the interaction g being dangerously irrele-
vant (in the RG sense) and taking the renormalized value
gR = 4πa/m (when expressed in dimensionful units) [63].
The two nonuniversal quantities that enter the equation of
state, namely the mass of the particle and the scattering length,
are properties of the critical excitations at the QCP (where the
ground state is the vacuum with μ = 0).

The density n = ∂P/∂μ and the compressibility κ =
∂n/∂μ are determined by the scaling function G and its deriva-
tives. The condensate density and the superfluid density also
satisfy scaling forms,

n0 =
(mμ

2π

)3/2
I (
√

ma2μ),

ns =
(mμ

2π

)3/2
J (
√

ma2μ). (67)

Since the superfluid density is given by the full density in a
Galilean-invariant system, i.e., ns = n = ∂P/∂μ, J is not an
independent scaling function but is given by

J (x) = 5

2
G(x) + x

2
G ′(x). (68)
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The universal scaling functions G and I can be computed in
the limit x � 1 from Bogoliubov’s theory,

P = mμ2

8πa

(
1 − 64

15π

√
ma2μ

)
,

n0 = mμ

4πa

(
1 − 20

3π

√
ma2μ

)
, (69)

which gives

G(x) =
√

π

2
√

2x

(
1 − 64

15π
x

)
,

I (x) =
√

π√
2x

(
1 − 20

3π
x

)
,

J (x) =
√

π√
2x

(
1 − 16

3π
x

)
,

(70)

where the subleading term comes from the Lee-Huang-Yang
correction [63,65,66].

A crucial property of the MI-SF transition of bosons in
a periodic potential is that is belongs to the dilute-Bose-gas
universality class when it is induced by a density change. This
implies that in the vicinity of the transition, the singular part
of physical quantities can be written in the same scaling form
as in the dilute Bose gas. For instance, the pressure reads [47]

P = Pc + nc(μ − μα )

+
(

m∗
α

2π

)3/2

|μ − μα|5/2G(
√

m∗
αa∗

α
2|μ − μα|), (71)

where Pc and nc = nMI are the pressure and density, respec-
tively, at the QCP and |μ − μα| = α(μ − μα ). The regular
part of the pressure is given by Pc + nc(μ − μα ). The two
nonuniversal parameters entering the singular part of the pres-
sure are the effective mass m∗

α of the quasiparticles at the QCP
and the effective scattering length a∗

α describing their mu-
tual interaction. The fact that the effective chemical potential
μ − μα enters the scaling function without an additional scale
factor is a nontrivial property that follows from the invariance
of the microscopic action in the semilocal (time-dependent)
gauge transformation

ψr(τ ) → ψr(τ )eiα(τ ), ψ∗
r (τ ) → ψ∗

r (τ )e−iα(τ ),

μ → μ + i∂τα(τ ). (72)

This invariance ensures in particular that the pressure is inde-
pendent of the quasiparticle weight Zα

QP [47]. The density and
superfluid density are given by

n = nMI + α

(
m∗

α|μ − μα|
2π

)3/2

J
(√

m∗
αa∗

α
2|μ − μα|),

ns =
(

m∗
α|μ − μα|

2π

)3/2

J
(√

m∗
αa∗

α
2|μ − μα|), (73)

where we have used (68) to express n in terms of J . The
superfluid density has no regular part, since it vanishes in
the Mott insulator. We conclude that the superfluid density is
given by the density of additional particles (or holes) intro-
duced in the Mott insulator,

ns = |n − nMI|. (74)

This is an exact result, inherited from the Galilean invariance
of the dilute Bose gas.

The condensate density satisfies the scaling form [47]

n0 = Zα
QP

(
m∗

α|μ − μα|
2π

)3/2

I
(√

m∗
αa∗

α
2|μ − μα|). (75)

Contrary to other physical quantities, it is not invariant in
the semilocal gauge transformation (72) and depends on the
quasiparticle weight Zα

QP. From a physical point of view, this is
because Bose-Einstein condensation involves quasi-particles
and not (bare) particles. Thus, if we define the quasiparticle
field ψ̄r(τ ) = ψr(τ )/(Zα

QP)1/2, we find that the quasiparticle
condensate density n̄0 = n0/Zα

QP is independent of the quasi-
particle weight. As noted in Sec. II C, the condensate density
n0 � Zα

QPns is larger than the superfluid density ns = |n −
nMI|; the small difference between the scaling functions I and
J due to the Lee-Huang-Yang correction cannot counterbal-
ance the effect of Zα

QP.
From (44) and (71), we obtain the scaling form of the

contact,

Cuniv

V = −
√

8

π
(m∗

α|μ − μα|)3a∗
α

2G ′(√m∗
αa∗

α
2|μ − μα|).

(76)
Using the explicit expression of G [Eqs. (70)], this gives

Cuniv

V = (m∗
α|μ − μα|)2, (77)

which is the result obtained in the strong-coupling RPA. Note
that there is no correction of order

√
m∗

αa∗
α

2|μ − μα|. From
the relation (73) between n − nMI and μ − μα and the explicit
expression of J , one finally obtains

Cuniv

V = [4πa∗
α (n − nMI)]

2

(
1 + 64

3

√
|n − nMI|a∗

α
3

π

)
. (78)

The subleading term is due to the Lee-Huang-Yang correction
in the expression of n − nMI as a function of μ − μα . The
strong-coupling RPA agrees with the scaling forms (71), (73),
(75), and (76) but the corresponding scaling functions do not
include the Lee-Huang-Yang correction.

III. HARD-CORE BOSONS

In this section, we consider a hard-core boson system
defined on a cubic lattice within the RPA. Somewhat surpris-
ingly, as already observed in Ref. [67], it allows recovering
the semiclassical approximation of the equivalent quantum
XY model to leading order in the 1/S expansion, evaluated
at S = 1/2. The Hamiltonian reads

Ĥ =
∑
r,r′

tr,r′ψ̂†
r ψ̂r′ − μ

∑
r

ψ̂†
r ψ̂r. (79)

The hard-core constraint is enforced by restricting the Hilbert
space on each site to the vacuum state |0〉r and the singly
occupied state ψ̂†

r |0〉r. In this restricted Hilbert space, the
boson operators satisfy the commutation relations [ψ̂r, ψ̂r′ ] =
[ψ̂†

r , ψ̂
†
r′ ] = 0 and

[ψ̂r, ψ̂
†
r′ ] = δr,r′ (1 − 2ψ̂†

r ψ̂r ). (80)
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The source-dependent partition function can be written as

Z[J∗, J] = Tr{Tτ e− ∫ β

0 dτ H̃ (τ )+∫ β

0 dτ
∑

r[J∗
r (τ )ψ̃r (τ )+H.c.]}, (81)

where τ should be understood as a formal time label allow-
ing the imaginary-time ordering operator Tτ to appropriately
interlace operators with no explicit time dependence. These
operators (denoted with a tilde) should not be confused with
the Heisenberg-picture operators, e.g. ψ̂r(τ ) = eτ Ĥ ψ̂re−τ Ĥ .
The generating functional of time-ordered correlation func-
tions is given by ln Z[J∗, J]. In particular, the expectation
value of the boson operator reads

φr(τ ) = 〈ψ̂r(τ )〉 = δ ln Z[J∗, J]

δJ∗
r (τ )

,

φ∗
r (τ ) = 〈ψ̂†

r (τ )〉 = δ ln Z[J∗, J]

δJr(τ )
. (82)

In the RPA, we compute the partition function using
a mean-field approximation for the hopping term, which
amounts to replacing tr,r′ψ̃†

r (τ )ψ̃r′ (τ ) by tr,r′ [ψ̃†
r (τ )φr′ (τ ) +

φ∗
r (τ )ψ̃r′ (τ ) − φ∗

r (τ )φr′ (τ )]. This allows us to write the parti-
tion function in the form (7) and obtain the effective action
(9) and the order parameter (10), so that we finally obtain
the RPA effective action (11). The only difference with the
Bose-Hubbard model is the explicit expression of the local
part. Using the results of [67], reproduced in Appendix D, one
finds the effective potential

V (|φ|2) = −D|φ|2 + Vloc(|φ|2)

= −D|φ|2 − μ

2
− |μ|

2

√
1 − 4|φ|2 (83)

and the two-point vertices (for a constant field φ)

�
(2)
φ∗φ (k, iωn) = −ZCiωn + V ′

loc(|φ|2) + |φ|2V ′′
loc(|φ|2) + tk,

�
(2)
φ∗φ∗ (k, iωn) = φ2V ′′

loc(|φ|2) (84)

and

�
(2)
φφ∗ (k, iωn) = �

(2)
φ∗φ (−k,−iωn),

�
(2)
φφ (k, iωn) = [�(2)

φ∗φ∗ (k, iωn)]∗, (85)

where ZC = − sgn(μ)/
√

1 − 4|φ|2 .
By minimizing V (|φ|2) we find that the ground state is

a trivial Mott insulator (vacuum) with vanishing pressure
PMI = 0 and vanishing density nMI = 0 when μ̄ < −1, and
a Mott insulator with PMI = μ and nMI = 1 when μ̄ > 1,
where μ̄ = μ/D. We denote by μ+ = −D the critical value
of the chemical potential at the transition between the vac-
uum and the superfluid, and by μ− = D the critical value
corresponding to the transition from the superfluid to the Mott
insulator with one boson per site. Contrary to Sec. II, where
we analyzed the upper and lower transition lines of a given
Mott lobe with fixed nMI, here we study the upper and lower
transition line of the two different Mott phases. The system
is superfluid when −1 < μ̄ < 1 with a condensate density
n0 = |φ|2 = 1

4 (1 − μ̄2). The pressure is given by

P = −V (n0) = (μ + D)2

4D
, (86)

and the density by

n = ∂P

∂μ
= μ + D

2D
. (87)

Near the transition to the Mott insulator (μ → μα), the con-
densate density

n0 = |n − nMI| (88)

is equal to the excess density of particles (or holes) with
respect to the Mott insulator.

A. Mott insulator

When φ = 0, the boson propagator is given by

G(k, iωn) = − sgn(μ)

iωn − Ek
, (89)

where

Ek = −μ − sgn(μ)tk. (90)

For μ near μα , it takes the quasiparticle form (27) with α =
− sgn(μ) and

Zα
QP = 1, m∗

α = mlat, �α = |μ| − D. (91)

At the QCP, the quasiparticles have a quadratic dispersion
with effective mass mlat = 1/2t and unit spectral weight. This
effective mass is also obtained in the Bose-Hubbard model in
the low-density limit and for the hole-doped Mott insulator
nMI = 1 in the limit t/U → 0 (Fig. 3). Note that the total
spectral weight in (89) is equal to −1 in the Mott insulator
nMI = 1 as particle excitations are suppressed by the hard-core
constraint. The momentum distribution is simply nMI

k = nMI.
The quasiparticle interaction strength g is defined by the

static limit of the four-point vertex �(4). The latter can be
obtained from the effective potential, i.e.,

g = 1

2

∂4V (|φ|2)

∂φ∗2∂φ2

∣∣∣∣
φ∗=φ=0

= 2|μ|. (92)

This result can also be obtained from the expression ob-
tained in the Bose-Hubbard model in the limit U → ∞,
Eq. (B3), for μ < 0 (μ > 0) in the case nMI = 0 (nMI = 1).
Since Zα

QP = 1, the effective scattering length is defined by
g|μ=μα

= 4πa∗/mlat ,

a∗ = Dmlat

2π
= 3

2π
, (93)

which, as expected, agrees with the infinite-U limit of a∗
+

obtained in the Bose-Hubbard model when nMI = 0. The
infinite-U limit of a∗

− obtained in the strong-coupling RPA is
different from (93), but the result obtained from the nonpertur-
bative FRG [47] agrees with a∗ in the limit t/U � 1 (Fig. 3);
including Gaussian fluctuations about the RPA calculation is
sufficient to recover the exact s-wave scattering length, given
by Eq. (31) in the limit t/U → 0 [68].
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B. Superfluid state

The pressure (86) and the density (87) can be written as

P = PMI + mlat

8πa∗ (μ − μα )2,

n = nMI + mlat

4πa∗ (μ − μα ). (94)

When the order parameter φr = φ0eiθr varies slowly in space,
with a time-independent phase θr, the variation of the effective
action (11) is entirely due to the hopping part since �loc[φ∗, φ]
does not change. Thus Eq. (42) still holds and we deduce the
superfluid density

ns = n0 = |n − nMI|. (95)

From (94), we obtain the universal contact

Cuniv

V = [mlat (μ − μα )]2

= [4πa∗(n − nMI)]
2, (96)

in agreement with what was found in the Bose-Hubbard
model.

The zeros of the determinant of the two-point vertex
�(2)(k, ω + i0+) give the spectrum ω = ±Ek, where

Ek = {(tk + D)[μ̄2(tk + D) + D(1 − μ̄2)]}1/2. (97)

When μ → −D, one recovers the dispersion and the veloc-
ity c = √

2t (μ + D) near the vacuum state obtained in the
Bose-Hubbard model. The (normal) propagator is obtained by
inverting �(2)(k, iωn),

G(k, iωn) = iωnμ̄ − D(1 − μ̄2)/2 − μ̄2(tk + D)

ω2
n + E2

k

, (98)

which gives the spectral function

A(k, ω) = S (Ek )δ(ω − Ek ) + S (−Ek )δ(ω + Ek ), (99)

with

S (±Ek ) = − μ̄

2
± D(1 − μ̄2) + 2μ̄2(tk + D)

4Ek
. (100)

The spectral function satisfies the sum rule∫ ∞

−∞
dω A(k, ω) = −μ̄, (101)

which is consistent with the general result [63]∫ ∞

−∞
dω A(k, ω) = 〈[ψ̂k, ψ̂

†
k ]〉, (102)

given the commutation relations (80). We recover the usual
normalization to unity only for μ̄ → −1 (and in the trivial
Mott insulator nMI = 0). When μ̄ > −1, part of the spectral
weight is suppressed by the hard-core constraint that prohibits
excitations with two or more bosons on the same site.

The momentum distribution is given by (ignoring the con-
tribution of the condensate)

nk = −
∫ 0

−∞
dω A(k, ω) = −S (−Ek ). (103)

This expression, with Eq. (100), was previously obtained from
a spin-wave analysis of the equivalent XY model [59]. For

FIG. 6. Same as Fig. 5 but for hard-core bosons near the transi-
tion between the superfluid state and the Mott insulator (with nMI = 0
or nMI = 1): |μ − μα| = 10−3 D. The Bogoliubov distribution nBog

k is
given by (108).

μ near μ+ = −D (low-density limit), there is no regular part
since nk vanishes in the trivial Mott insulator so that nsing

k =
nk. For μ near μ− = D, we use the normalization condition
(101) to write the momentum distribution as nk = S (Ek ) + μ̄

and consider the band Ek as an occupied hole band. This leads
us to define the singular part of the momentum distribution as

nsing
k = −S (−Ek ) − μ̄θ (μ̄)

= S (Ek ) + μ̄[1 − θ (μ̄)]. (104)

It is identical for the particle-doped Mott insulator nMI = 0
and the hole-doped Mott insulator nMI = 1, as required by
particle-hole symmetry,

〈ψ̂†
r ψ̂r〉

∣∣
μ=μ++�μ

= 〈ψ̂rψ̂
†
r 〉∣∣

μ=μ−−�μ

= 〈ψ̂†
r ψ̂r〉

∣∣
μ=μ−−�μ

−μ̄, (105)

using (80), i.e.,

nk
∣∣
μ=μ++�μ

= nk
∣∣
μ=μ−−�μ

−μ̄, (106)

where 0 � �μ < D.
When |μ − μα| � D, we recover the Bogoliubov

expression,

nsing
k � −1

2
+ tk + D + |μ − μα|

2[(tk + D)(tk + D + 2|μ − μα|]1/2
, (107)

of the momentum distribution of bosons with free dispersion
tk + D and chemical potential |μ − μα|. For |k| not too close
to the Brillouin zone boundary, we can approximate tk + D by
the quadratic dispersion εk = k2/2mlat , so that

nsing
k � −1

2
+ εk + |μ − μα|

2[εk(εk + 2|μ − μα|)]1/2

� Cuniv

V|k|4 (|k| � k∗), (108)

where k∗ = 2(mlat|μ − μα|)1/2 and Cuniv is the universal con-
tact defined in (96). In Fig. 6, we show that the momentum
distribution (104) is well approximated by the Bogoliubov
form (108) and exhibits the Cuniv/V|k|4 tail over a large mo-
mentum range. The momentum distribution does not perfectly
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satisfy the sum rule

n = n0 +
∫

d3k

(2π )3
nk (109)

in the superfluid phase [59] but, contrary to the case of the
Bose-Hubbard model, this has no dramatic consequence for
hard-core bosons since nk is fully determined by S (−Ek ) ≡
S (−E−

k ) due to the absence of the bands ±E+
k .

Thus, the hard-core boson model reproduces the thermo-
dynamics of the Bose-Hubbard model in the low-density limit
and for the hole-doped Mott insulator nMI = 1 in the limit
t/U → 0. The dispersion, spectral weight, effective mass, and
effective scattering length of the critical quasiparticles are also
identical in the two models. Of course, this is expected on
physical grounds. The fact that the hard-core boson model
clearly shows that the singular momentum distribution nsing

k ,
near the superfluid–Mott-insulator transition, exhibits a high-
momentum tail Cuniv/V|k|4 with a strength determined by the
universal contact strongly supports the conclusion reached in
the Bose-Hubbard model.

IV. BOSONS IN AN OPTICAL LATTICE

A dilute Bose gas in an optical lattice is described by the
effective low-energy Hamiltonian

Ĥ =
∫

d3r

{
ψ̂†(r)

[
− ∇2

2m
+ Vlat (r)

]
ψ̂ (r)

+ 1

2

4πa

m
ψ̂†(r)ψ̂†(r)ψ̂ (r)ψ̂ (r)

}
, (110)

where Vlat (r) is the optical lattice potential with period � (we
will not set � to unity in this section). The interaction potential
between atoms is approximated by a short-range pseudopo-
tential with a the s-wave scattering length in vacuum and
m the boson mass. The single-particle eigenstates are Bloch
wave functions, and an appropriate superposition of Bloch
states yields a set of Wannier functions that are well localized
on the individual lattice sites. The single-band Bose-Hubbard
Hamiltonian (1) provides us with an effective model that is
valid when excitations to the second band can be neglected
[9]. The hopping amplitude t and on-site interaction U ,

t = −
∫

d3r w∗(r − ri )

[
−∇2

2m
+ Vlat (r)

]
w(r − r j ),

U =4πa

m

W

�3
, W = �3

∫
d3r |w(r)|4, (111)

where {ri} denote the lattice sites (i.e., the minima of the
optical potential) and ri, r j are nearest neighbors, can be ex-
pressed in terms of the Wannier function w(r) associated with
the lowest-energy band.

Contrary to the Bose-Hubbard model, which describes the
system only at length scales larger than the optical lattice
spacing �, the Hamiltonian (110) can be used to understand
the physics at length scales smaller than �. At these length
scales, the boson system should be seen as a dilute gas sub-
jected to a periodic potential whose period � is much larger
than typical microscopic length scales such as the s-wave
scattering length a (typically of the order of the van der Waals

length [69]). At short distances (� �), we therefore expect
the contact to be defined by the scattering length in vacuum
a rather than the effective s-wave scattering length a∗

α intro-
duced in Sec. II. This leads us to consider the short-distance
universal contact

Csd
univ

V = 8πm
∂Psing(μ, m, a)

∂ (1/a)

∣∣∣∣
μ,m

, (112)

defined with the boson mass m and a derivative with respect
to 1/a. We expect the gas to exhibit a high-momentum tail
nsing

k � Csd
univ/V|k|4 in the singular momentum distribution

when |k| � 1/�, with an amplitude set by Csd
univ. In the Mott

insulator, there are no singular parts of the pressure and mo-
mentum distribution, and Csd

univ vanishes. A calculation of the
momentum distribution in this momentum range appears very
difficult as it would require to include many energy bands
of the optical lattice. However, the contact can be directly
computed from (112) since the pressure of the gas can be
obtained from the Bose-Hubbard model.

The reason for defining the contact in the Bose-Hubbard
model from the singular part of the pressure is that only this
part is associated with weakly interacting quasiparticles and
thus takes the same form as the pressure of a dilute Bose gas
provided we replace m and a by m∗

α and a∗
α . The full pressure is

dominated by the regular part PMI and the momentum distribu-
tion nk does not exhibit a 1/|k|4 tail (Fig. 4). However, in the
continuum model, since the gas behaves as a dilute Bose gas
at short distances, we expect a 1/|k|4 tail in the momentum
distribution nk for |k| � 1/� even in the Mott insulator. This
leads us to consider the full contact

C

V = 8πm
∂P(μ, m, a)

∂ (1/a)

∣∣∣∣
μ,m

, (113)

defined in the usual way, i.e., from a derivative of the total
pressure with respect to 1/a [70]. In the following, we denote
by n̄ the mean density of bosons and by n = n̄�3 (or nMI) the
mean number of bosons per site (i.e., per minimum of the
optical lattice).

A. Short-distance universal contact Csd
univ

In this section, we compute Csd
univ considering first the low-

density limit and then the hole-doped Mott insulator nMI = 1.

1. Low-density limit

At low density, near the vacuum-superfluid transition, the
chemical potential is close to μ+ = −D and the pressure is
given by

P = mlat

8πalat
(μ − μ+)2, (114)

since m∗
+ = mlat = 1/2t�2 and a∗

+ = alat = �/[8π (t/U + A)]
[Eq. (31)]. The density is given by

n̄ = ∂P

∂μ
= mlat

4πalat
(μ − μ+). (115)

Using

∂

∂a
= ∂U

∂a

∂

∂U
= U

a

∂

∂U
, (116)
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we obtain the two-body contact

Csd
univ

V = [mlat (μ − μ+)]264π2W
a2t2

�2U 2

= (4πan̄)2 W

(1 + AU/t )2
. (117)

Thus Csd
univ/V is equal to the contact (4πan̄)2 in the absence

of the optical lattice, corrected by a function of t/U and a
geometrical dimensionless factor W , which depends on the
Wannier function of the first energy band of the optical lattice
potential [Eq. (111)]. The limiting values of the contact, for
weak and strong on-site interactions, are

Csd
univ

V =
{

(4πan̄)2W if U � t,
(4πan̄)2W t2

A2U 2 if U � t .
(118)

As expected, the short-distance universal contact is deter-
mined by the scattering length in vacuum a.

Since the pressure has no regular part in the low-density
limit (P vanishes in the trivial Mott insulator nMI = 0), the
short-distance universal contact Csd

univ is equal to the full
contact C.

2. Hole-doped Mott insulator nMI = 1

For a doped Mott insulator with an arbitrary value of nMI,
the two-body contact is given by

Csd
univ

V = 8πm
∂

∂ (1/a)

m∗
α

8πa∗
α

(μ − μα )2

∣∣∣∣
μ,m

= (μ − μα )2a24π
W

�3

(
m∗

α

a∗
α

2

∂a∗
α

∂U
− 1

a∗
α

∂m∗
α

∂U

)

+ (μ − μα )8πm∗
α

Wa2

�3a∗
α

∂μα

∂U
. (119)

In the following, we consider the hole-doped Mott insulator
nMI = 1 in the limit D � Dc. The FRG shows that a∗

− � alat

(Fig. 3), while m∗
− � mlat (1 − 4D/U ) [Eq. (26)]. This leads to

Csd
univ

V =
[

4πa
(n − nMI)

�3

]2

W

(
t

U

)2( 1

A2
− 24

A

)

+
(

16π2a2 |n − nMI|
�6

)
144W

t2

U 2
. (120)

Note that the first contribution is negative since 1/A2 −
24/A < 0. The second, dominant (for small |n − nMI|), con-
tribution comes from the dependence of μ− on a.

B. Full contact C

When computing the full contact away from the low-
density limit, we can ignore the singular part of the pressure,
which gives a subleading contribution, and thus assume that
the system is in the Mott insulating phase. As we will see, the
strong-coupling RPA gives a contact, which vanishes when
nMI = 1. To obtain a nonvanishing result in that case, we
must include Gaussian fluctuations of the hopping term. The
calculation, detailed in Appendix E, gives the pressure

P = 1

�3

[
μnMI − U

2
nMI(nMI − 1) + 6nMI(nMI + 1)

t2

U

]

(121)

to order t2/U , where the first two terms come from the
mean-field (RPA) pressure and the last one from Gaussian
fluctuations. We deduce the contact

C

V = 16π2a2 nMI(nMI − 1)

�6
W + 48πnMI(nMI + 1)

mat2

�3U
.

(122)

The last term can be rewritten by introducing the recoil energy
ER = k2/2m with k = 2π/λ and λ = 2� the wavelength of the
laser light creating the optical lattice,

C

V = 16π2a2 nMI(nMI − 1)

�6
W + 24π3nMI(nMI + 1)

a

�5

t2

UER
.

(123)

When nMI = 1, the contact is fully determined by quantum
fluctuations associated with the hopping term. In other cases,
the ratio between the second and first terms in (123) is of order

�U

aER

t2

U 2
. (124)

Although U�/aER is typically in the range 10–100 for small
values of nMI [9], the smallness of t/U � (1/6)(2nMI + 1 −
2
√

n2
MI + nMI ) ensures that the ratio (124) is much smaller

than unity; the contact is dominated by the RPA (mean-field)
contribution.

Comparing the short-distance universal contact to the full
contact, we obtain

Csd
univ

C
∼
{|n − nMI| t2

U 2 if nMI � 2,

|n − nMI|W aER
�U if nMI = 1,

(125)

i.e. Csd
univ/C � |n − nMI|, assuming that Eq. (120), which was

derived for nMI = 1, gives the correct order of magnitude for
any nMI � 2. As expected, the short-distance contact associ-
ated with the singular part of the pressure is small compared
to the full contact.

V. CONCLUSION

The strong-coupling RPA theory of the Bose-Hubbard
model is based on a mean-field treatment of the hopping
term while on-site fluctuations are taken into account exactly.
Although we have focused on the generic Mott transition, it
also applies to the transition induced by a change of the ratio
t/U at fixed density. In Refs. [44–48,55], the strong-coupling
RPA theory was used as the initial condition of the flow in the
nonperturbative FRG approach. In this paper, we have shown
that many qualitative results can be obtained without inte-
grating the nonperturbative flow equations. In particular, the
strong-coupling RPA captures the universal behavior of the
superfluid state near the phase transition to the Mott insulator.
Moreover, it allows one to define a universal contact that con-
trols the high-momentum tail Cuniv/|k|4 of the singular part
of the momentum distribution function, a physical quantity,
which is not readily available [58] from the nonperturbative
FRG approach of Refs. [44–47,55]. The strong-coupling RPA
also applies to hard-core bosons, giving results similar to
those of the Bose-Hubbard model.
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The existence of a (universal) two-body contact in a
strongly correlated Bose gas near the Mott transition is due
to the excess of particles, with respect to the Mott insulator,
behaving as a dilute Bose gas, which is a consequence of the
superfluid–Mott-insulator transition belonging to the dilute-
Bose-gas universality class. In a continuum model of bosons
in an optical lattice, the definition of the universal contact can
be extended to length scales shorter than the lattice spacing
�; in addition, one can define a full contact that controls the
1/|k|4 tail of the full momentum distribution function in the
range |k| � 1/�. In a companion paper [57], we have argued
that universal and full contacts can be measured in Bose gases
in optical lattices, and in magnetic insulators.

ACKNOWLEDGMENTS

We thank D. Clément and T. Chalopin for useful dis-
cussions and comments, and B. Capogrosso-Sansone for
providing us with the QMC data [51] shown in Fig. 3. M.B.
was supported by a Charpak fellowship and the Labex CEMPI

(Grant No. ANR-11-LABX-0007-01). A.R. is supported in
part by an IEA CNRS project, and by the “PHC COGITO”
program (Project No. 49149VE) funded by the French Min-
istry for Europe and Foreign Affairs, the French Ministry for
Higher Education and Research, and the Croatian Ministry of
Science and Education.

DATA AVAILABILITY

The data that support the findings of this article are not
publicly available. The data are available from the authors
upon reasonable request.

APPENDIX A: HUBBARD-STRATONOVICH
TRANSFORMATION

In this Appendix, we show how Eqs. (6) and (7) can be
obtained from a Hubbard-Stratonovich transformation. We
start from the action (2) and decouple the hopping term by
means of an auxiliary complex field ϕr. We thus rewrite the
partition function as

Z[J∗, J] = N
∫

D[ψ∗, ψ, ϕ∗, ϕ] e−Sloc[ψ∗,ψ]−∫ β

0 dτ {∑r,r′ ϕ∗
r t−1

r,r′ϕr′ −i
∑

r (ϕ∗
r ψr+c.c.)−∑r (J∗

r ψr+c.c.)}
, (A1)

where N = det(t−1). By performing the Gaussian functional integration over the field ϕ, we recover the original action S[ψ∗, ψ]
of the Bose-Hubbard model. This integration can be carried out only if t−1

r,r′ is a positive matrix, which is not the case since the
matrix tr,r′ has eigenvalues tk = −2t (cos kx + cos ky + cos kz ). These eigenvalues can be made positive by adding a (local) term
Cψ∗

r ψr with C > 6t in the hopping part of the action and subtracting this term from the local action Sloc in order to leave the
complete action unchanged. We ignore this issue, which is not relevant to the discussion that follows.

In the RPA, the functional integral on ϕ is realized via a saddle-point approximation (the constant N can then be omitted),

ZRPA[J∗, J] =
∫

D[ψ∗, ψ] e−Sloc[ψ∗,ψ]−∫ β

0 dτ {∑r,r′ ϕ∗
r t−1

r,r′ϕr′ −i
∑

r (ϕ∗
r ψr+c.c.)−∑r (J∗

r ψr+c.c.)}
, (A2)

where the value of the auxiliary field is obtained from the
saddle-point equations

δ ln ZRPA[J∗, J]

δϕ∗
r (τ )

= δ ln ZRPA[J∗, J]

δϕr(τ )
= 0, (A3)

i.e.,

ϕr = i
∑

r′
tr,r′φr′ , ϕ∗

r = i
∑

r′
tr,r′φ∗

r′ , (A4)

where φ(∗)
r = 〈ψ (∗)

r 〉. Note that the field iϕ(∗)
r is real, which

ensures that the hopping part of the action in (A2) is real.
Inserting (A4) into Eq. (A2), we recover the RPA action (6).

APPENDIX B: LOCAL VERTICES �
(2)
loc AND �

(4)
loc

In the local limit t = 0, the one- and two-particle Green’s
functions can be calculated considering a single site and
the states |p〉 = (p!)−1/2(ψ̂†)p|0〉 (p � 0 integer), which are
eigenstates of the local Hamiltonian Ĥloc with eigenvalues
εp = −μp + (U/2)p(p − 1) [12]. The two-point local vertex
�

(2)
loc (iωn) is equal to −1/Gloc(iωn) with Gloc given by (16).

The static limit of the (connected) two-particle Green’s
function is given by [12]

Ḡ(4)
loc = − 4(nMI + 1)(nMI + 2)

[2μ − (2nMI + 1)U ](UnMI − μ)2

− 4nMI(nMI − 1)

[μ − U (nMI − 1)]2[U (2nMI − 3) − 2μ]

+ 4nMI(nMI + 1)

(μ − UnMI)[−μ + U (nMI − 1)]2

+ 4nMI(nMI + 1)

(μ − UnMI)2[−μ + U (nMI − 1)]

+ 4n2
MI

[−μ + U (nMI − 1)]3
+ 4(nMI + 1)2

(μ − UnMI)3
. (B1)

The static limit �̄
(4)
loc of the four-point vertex is equal to

−Ḡ(4)
loc/Gloc(iωn = 0)4. In the trivial Mott insulator nMI = 0

(i.e., the vacuum), one has

g = 1

2
�̄

(4)
loc = 2μU

2μ − U
(nMI = 0). (B2)

In the low-density limit, where μ � −6t , one deduces g � U
if U � t .

043304-14



STRONG-COUPLING RANDOM-PHASE-APPROXIMATION … PHYSICAL REVIEW A 112, 043304 (2025)

In the hard-core limit U → ∞, the two possible Mott
phases are nMI = 0 and nMI = 1 for μ < 0 and μ > 0, respec-
tively. The static local Green’s function becomes Gloc(iωn =
0) = −1/|μ|, while Ḡ(4)

loc = −4/|μ|3. One has

g = 2|μ|, (B3)

in agreement with (B2) in the same limit.

APPENDIX C: EXCITATION GAP AND EFFECTIVE MASS
IN THE MOTT INSULATOR

The excitation gap obtained from the pole of the propagator
is given by (28). Since Gloc(iωn) is actually a function of iωn +
μ, ∂μGloc(iω) = ∂iωG(iω). It follows that

1 + DGloc(0) � 1 + DGloc(0)|δμ=δμα

+ D(δμ − δμα )∂μGloc(0)

� D(δμ − δμα )G′
loc(0) (C1)

for δμ close to δμα (for a given α). We conclude that the
expression of �α in (28) agrees with (25) in the limit δμ −
δμα → 0.

At the transition, 1 + DGloc(0) → 0 so that the effective
mass (29) obtained from the pole of the propagator satisfies

mlat

m∗
α

� −α
Gloc(0)2

G′
loc(0)

. (C2)

Using

Gloc(0) = δμ + Ux

δμ2 − U 2/4
(C3)

and

G′
loc(0) = −δμ2 + 2δμUx + U 2/4

(δμ2 − U 2/4)2
, (C4)

we obtain

mlat

m∗
α

= α
(δμα + Ux)2

δμ2
α + 2δμαUx + U 2/4

(C5)

for δμ → δμα . On the other hand, Eq. (22) implies

δμα + Ux = 1

2
(αA + B),

δμ2
α + 2δμαUx + U 2

4
= A

2
(A + αB), (C6)

where A = (D2 − 4UDx + U 2)1/2 and B = 2Ux − D, and we
finally obtain

mlat

m∗
α

= α

2

(
1 + α

B

A

)
(C7)

in agreement with the expression (26) deduced from the
energy Eα

α .

APPENDIX D: HARD-CORE BOSONS: LOCAL LIMIT

In this Appendix, we discuss the local limit (t = 0) of the
hard-core boson model defined by (79). In the presence of a
time-independent source, the single-site Hamiltonian reads

Ĥloc = −μψ̂†ψ̂ − J∗ψ̂ − Jψ̂† (D1)

and the Hilbert space is restricted to the vacuum state |0〉 and
the singly occupied state |1〉 = ψ̂†|0〉. The two eigenstates are
given by

|±〉 = |J|2
|J|2 + E2±

(
|0〉 − E±

J∗ |1〉
)

(D2)

with eigenenergies

E± = −μ

2
± 1

2

√
μ2 + 4|J|2. (D3)

In the zero-temperature limit, the expectation value φ = 〈ψ̂〉
of the boson operator is given by

φ = −∂E−
∂J∗ = J√

μ2 + 4|J|2
. (D4)

The effective potential is given by the Legendre transform of
the ground-state energy,

Vloc(|φ|2) = E− + J∗φ + φ∗J

= −μ

2
− |μ|

2

√
1 − 4|φ|2, (D5)

where we have used (D4) to express J (∗) as a function of φ(∗).
Normal and anomalous propagators are defined by

Gn(τ ) = −〈Tτ ψ̂ (τ )ψ̂†(0)〉 + |〈ψ̂〉|2,
Gan(τ ) = −〈Tτ ψ̂ (τ )ψ̂ (0)〉 + 〈ψ̂〉2. (D6)

A straightforward calculation gives

Gn(iωn) = − |A+−|2
iωn + E+ − E−

+ |A−+|2
iωn − E+ + E−

,

Gan(iωn) = −A+−A−+
2(E+ − E−)

ω2
n + (E+ − E−)2

, (D7)

where

A+− = 〈+|ψ̂ |−〉 = −E−
φ

|μ|
√

|φ|−2 − 4,

A−+ = 〈−|ψ̂ |+〉 = −E+
φ

|μ|
√

|φ|−2 − 4. (D8)

By inverting the matrix

−
(

Gn(iωn) Gan(iωn)
Gan(iωn)∗ Gn(−iωn)

)
, (D9)

one obtains the two-point vertices

�
(2)
φ∗φ (iωn) = |A+−|2(iωn + �E ) − |A−+|2(iωn − �E )

1 − 4|φ|2 ,

�
(2)
φ∗φ∗ (iωn) = −A+−A−+

2�E

1 − 4|φ|2 (D10)

and

�
(2)
φφ∗ (iωn) = �

(2)
φ∗φ (−iωn),

�
(2)
φφ (iωn) = [�(2)

φ∗φ∗ (iωn)
]∗

, (D11)

with �E = E+ − E−. Using (D3), (D4), and (D8), we finally
obtain

�
(2)
φ∗φ (iωn) = iωn

sgn(μ)√
1 − 4|φ|2

+ ∂2Vloc(|φ|2)

∂φ∗∂φ
,
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�
(2)
φ∗φ∗ (iωn) = ∂2Vloc(|φ|2)

∂φ∗2
, (D12)

where

∂2Vloc(|φ|2)

∂φ∗∂φ
= V ′

loc(|φ|2) + |φ|2V ′′
loc(|φ|2),

∂2Vloc(|φ|2)

∂φ∗2
= φ2V ′′

loc(|φ|2). (D13)

Equations (D5) and (D12), (D13) agree with the results of
Ref. [67].

APPENDIX E: PRESSURE OF THE MOTT INSULATOR

In this Appendix, we compute the pressure in the Mott
insulator by including fluctuations of the auxiliary field about
its mean-field value ϕr = 0. This can be done by starting from
the partition function (A1) with J∗ = J = 0 and integrating
out the ψ field in a cumulant expansion,

Z = N
∫

D[ψ∗, ψ, ϕ∗, ϕ] e−Sloc[ψ∗,ψ]−∫ β

0 dτ
∑

r,r′ ϕ∗
r t−1

r,r′ϕr′ −S′[ψ∗,ψ,ϕ∗,ϕ]

= NZloc

∫
D[ϕ∗, ϕ] e− ∫ β

0 dτ
∑

r,r′ ϕ∗
r t−1

r,r′ϕr′ + 1
2 〈S′[ψ∗,ψ,ϕ∗,ϕ]2〉loc

= NZloc

∫
D[ϕ∗, ϕ] e−∑k,ωn |ϕk (iωn )|2[t−1

k −Gloc (iωn )]

= Zloc

∏
k,ωn

[1 − tkGloc(iωn)]−1, (E1)

where

S′[ψ∗, ψ, ϕ∗, ϕ] = −i
∫ β

0
dτ
∑

r

(ϕ∗
r ψr + c.c.) (E2)

and Zloc is the partition function in the local limit. We have
used the fact that the first cumulant 〈S′〉loc vanishes. We thus
obtain the grand potential

	 = 	loc + 1

β

∑
k,ωn

ln[1 − tkGloc(iωn)]eiωn0+
(E3)

where the Matsubara sum can be written as

1

β

∑
k,ωn

ln

[
(iωn − E+

k )(iωn − E−
k )(

iωn + δμ + U
2

)(
iωn + δμ − U

2

)
]

eiωn0+
(E4)

and we have added the usual convergence factor eiωn0+
. Using

1

β

∑
ωn

ln(−iωn + a)eiωn0+ = 1

β
ln(1 − e−βa) if a > 0,

1

β

∑
ωn

ln(iωn − a)eiωn0+ = 1

β
ln(e−βa − 1) if a < 0,

(E5)
we obtain the pressure P = −	/N in the zero-temperature
limit,

P = μnMI − U

2
nMI(nMI − 1) + 1

V
∑

k

(
E−

k + δμ + U

2

)
,

(E6)

which yields (121) to order t2/U .
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