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Two-body contact of a Bose gas near the superfluid—Mott-insulator transition
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The two-body contact is a fundamental quantity of a dilute Bose gas that relates the thermodynamics to the
short-distance two-body correlations. For a Bose gas in an optical lattice, near the superfluid—Mott-insulator
transition, we show that a “universal” contact C,,;, can be defined from the singular part P — Py of the pressure
(Pyu is the pressure of the Mott insulator). Its expression Cyniy = Cppc (|1 — nai|, a*) coincides with that of a
dilute Bose gas provided we consider the effective “scattering length” a* of the quasiparticles at the quantum
critical point (QCP) rather than the scattering length in vacuum, and the excess density |n — nyy| of particles (or
holes) with respect to the Mot insulator. Close to the transition, we find that the singular part 7" = n, — ™"
of the momentum distribution exhibits a high-momentum tail of the form ZgpCyniv/ |k|* over a broad region of
the Brillouin zone, where Zgp is the quasiparticle weight of the elementary excitations at the QCP. Our results
demonstrate that the notion of contact extends to strongly correlated lattice bosons, and we argue that the contact
Cuniv can be measured in state-of-the-art experiments on Bose gases in optical lattices and magnetic insulators.

DOI: 10.1103/35w3-7snk

Introduction. In a dilute, weakly interacting, Bose gas, the
equation of state depends on the atom mass and the s-wave
scattering length but is otherwise universal, i.e., indepen-
dent of microscopic details such as the precise shape of the
atom-atom interaction potential. Considering the scattering
length as an additional thermodynamic variable, in addition
to the usual variables (e.g., the chemical potential and the
temperature in the grand canonical ensemble), one can define
its thermodynamic conjugate, the so-called two-body contact
[1-3]. In a dilute gas, the contact relates the (universal) low-
temperature thermodynamics to the (universal) short-distance
behavior that appears in the two-body correlations or the
momentum distribution function [1-10]. To date, few mea-
surements have been made of the contact in Bose gases. In
addition to experiments in the thermal regime and quasipure
Bose-Einstein condensates [11-13], the contact has been de-
termined in a planar Bose gas in a broad temperature range
including normal and superfluid phases [14,15], and in a one-
dimensional Lieb-Liniger gas [16].

Strong correlations in a Bose gas can be achieved by
loading the gas into an optical lattice. It is then possible, by
varying the strength of the lattice potential and/or the density
i1, to induce a quantum phase transition between a superfluid
(SF) state and a Mott insulator (MI) where the mean number
of bosons per unit cell, n = 7i¢> (with £ the lattice spacing),
is integer [17]. When the phase transition is induced by a
density change, it belongs to the dilute-Bose-gas universality
class [18-20], i.e., it is similar to the quantum phase transition
between the vacuum state and the superfluid state obtained
by varying the chemical potential from negative to positive
values in a dilute gas. This property underpins most of our
understanding of the MI-SF transition. In three dimensions,
the transition (when induced by a density change) is mean-
field-like with a correlation-length exponent v = 1/2 and a
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dynamical critical exponent z = 2. Elementary excitations at
the quantum critical point (QCP) are quasiparticles (or quasi-
holes) that have many similarities with bosons in the absence
of the optical lattice: Their dispersion law Ey = k?/2m* is
quadratic in the low-energy limit, with an effective mass m*,
and their mutual interaction is determined by an effective
“scattering length” a* [21,22]. In the superfluid phase near
the QCP, the system behaves as a dilute gas of weakly in-
teracting quasiparticles (or quasiholes) with density |n — nyy|
where ny is the (integer) density of the Mott insulator. The
singular part P, = P — Py of the pressure—that is, the part
that is singular when crossing the MI-SF transition by vary-
ing the chemical potential or the density—takes the familiar
Bogoliubov form. It includes the Lee-Yang-Huang correc-
tion [20,23,24] in addition to the mean-field result, but with
the effective mass m* and the effective scattering length a*
replacing the bare boson mass and the scattering length in
vacuum [22].

In a dilute Bose gas loaded into an optical lattice, short-
distance two-body correlations (on scales smaller than the
interparticle distance d ~ 7~'/?) and the large-k behavior of
the momentum distribution ng are governed by Tan’s rela-
tions [1-3], with a contact whose value is modified by the
periodic lattice potential. Near the Mott transition, the filling
n=nt3 is close to an integer, and the contact theory does
not apply on scales comparable to or larger than the lattice
spacing ¢ 2 d. However, one may ask whether a “contact”
can be defined that, by analogy with the dilute gas, con-
trols ni at high momenta within the first Brillouin zone of
the periodic lattice (i.e., |k| < 7 /€). Because ng generally
contains a smooth background that remains finite as k ap-
proaches the zone boundary—for example, deep in the Mott
insulator ny ~ const fork € [—m /£, 7 /£]? [25]—ny does not
exhibit a universal 1/|k|* tail for |k| < 7 /¢. Consequently, the
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“contact,” if definable below 7 /¢, cannot be extracted from
the asymptotic form of ny.

In this Letter, from a strong-coupling random-phase ap-
proximation (RPA) [25-36], in the Bose-Hubbard model, we
show that a “universal” two-body contact can be defined from
the singular part of the pressure [37,38] in the superfluid phase
near the Mott transition. Its expression, Cyniy = Cppg(|n —
nmil, @*), is the same as in a dilute Bose gas provided we
consider the effective scattering length a* of the quasiparticles
at the QCP and the excess density |n — nyy| of particles (or
holes) with respect to the Mott insulator. We also determine
the singular part n,"* = n — n}!' of the momentum distribu-

tion, where )" is the distribution in the Mott insulator. We

find that 23" is well described by Zopny ¢, where n,® is the

Bogoliubov result expressed in terms of the effective mass
m* and the distance |t — u.| to the QCP (u. is the critical
value of the chemical potential at the transition), and Zgp is the
quasiparticle weight of the elementary excitations at the QCP.
Sufficiently close to the QCP, there is a broad momentum
range in the Brillouin zone where the momentum distribution
n,"® exhibits the high-momentum tail ZopCuniv/|K|*, as in a
dilute Bose gas but with an additional prefactor given by Zgp.

Strong-coupling RPA. The Bose-Hubbard model describes
bosons moving on a lattice. The (grand canonical) Hamilto-
nian is defined by

where v, and @J are annihilation and creation operators and
the discrete variable r labels the different sites of a cubic
lattice. The hopping matrix is defined by #.,» = —¢ if r and
r’ are nearest neighbors and #. = O otherwise. We denote
by U the on-site repulsion between bosons and set the lattice
spacing ¢ to unity (so that we do not distinguish between the
total number of sites N and the volume V = N£3). The mean
boson density 7 is fixed by the chemical potential .

The ground state of the system can be characterized by
the superfluid order parameter ¢,.(7) = ((t)) and the boson
propagator G(r —r', 7 —1') = —(T,lﬁr(t)l/}:,(t/)), where
Ue(r) = efl fl/}re_ﬁ T is the boson operator in the Heisen-
berg representation, t € [0, 8] is an imaginary time with
B =1/T — oo the inverse temperature (we set i = kg = 1
throughout), and 7 is a time-ordering operator. These quan-
tities can be obtained from the Gibbs free energy (which will
be referred to as the effective action following the field theory
terminology). Considering the hopping term at the mean-field
level, while treating exactly the local (on-site) correlations,
one obtains the strong-coupling RPA effective action
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FIG. 1. Phase diagram of the three-dimensional Bose-Hubbard
model obtained from the criterion Glf)i(ia)n =0)+D=0(D = 6t).

Each Mott lobe is labeled by the integer nyy giving the mean number
of bosons per site.

where Gy is the (single-site) propagator and g the effective
interaction in the local limit [36]. The value of the order
parameter ¢ (7) = ¢ is obtained by minimizing the effective
action. A nonzero value of the condensate density ny = |@o|>
implies spontaneous breaking of the U(1) symmetry and su-
perfluidity, while the Mott insulator corresponds to ny = 0.

Mott insulator and MI-SF transition. The MI-SF transition
corresponds to a change of sign of the quadratic term in
the effective action, i.e., Glgi(ia)n =0)+D =0, where D =
—tx—o = 6¢. In the plane (D/U, n/U), the phase diagram is
given by a series of Mott lobes w_(nyy) < 1 < w4 (mv),
labeled by the integer (mean) number of bosons per site ny =
nyr(w), as shown in Fig. 1, in agreement with previous mean-
field studies [25-27,39]. The position of the tip of the Mott
lobes is defined by D./U = 2nyy + 1 — 2(n§,H + nyp)'/? and
e = U(nMI — 1/2) — DC/Z. Since FRPA[O, 0] = F]OC[O, O], a
straightforward calculation gives the pressure Py = unyy —
(U /2)nvp(ny — 1) in the Mott insulator. The mean density
n = 0Py/d/ = nyp is constant and the compressibility x =
on/du vanishes. When p becomes larger (smaller) than p
(u—), the density deviates from nyy and the system becomes
superfluid.

Near the MI-SF transition, i.e., when p is close to u, (With
o = %), the propagator takes the quasiparticle form
Gk, i) ~ 200 3)
iw, — EY
in the low-energy limit. The one-particle excitation spectrum
Ep = a(k?/ 2m} 4+ A,) is particlelike for u near pu4 and
holelike for p near p_ (Fig. 2). The excitation gap A, =
a(y — ) vanishes linearly with p, — w, implying zv = 1.
At the QCP (1 = o), Ef = akz/Zm; so that z =2 and
v = 1/2. The spectral weight Zg, and the effective mass m,
(both positive) of the quasiparticles are defined by

Myat Gioc(0)

28y =T g o) 4)
P mr T U DG,.(0)

where myy = 1/2t is the effective mass of the free bosons

moving on the cubic lattice. It is natural to introduce the

quasiparticle interaction strength g% = g(ng)z. By analogy
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FIG. 2. Excitation energies in the Mott insulator (u = 0.9 ;,
left) and in the superfluid state (u = 1.1 ., right), along the Bril-
louin zone diagonal k = (k, k, k), for nyy = 1. The dashed lines
show the approximate low-energy forms, valid near k = 0, E;f =
K/ 2m* + puy — pand E = c|k| (with ¢ the sound velocity in the
superfluid state).

with the dilute Bose gas, we can then define an effective
“scattering length” a;; by 8rlyep, = 4ray /m} [22] (Fig. 3).
Superfluid phase and definition of the contact. In
the superfluid state, the condensate density ny = o(p —
Ma)/Z3pg is nonzero and the pressure is given by P = Pyi +

(1 — 1a)?/2Z8p8, 1.e.,
my

8ma

P =Py + (= pa) )

"
o

The singular part Py, = P — Py of the pressure exhibits the
standard (mean-field) Bogoliubov form but with the effective
mass m) and the effective scattering length g instead of
the bare boson mass and scattering length in vacuum, and
the distance |u — o] to the QCP rather than the chemical
potential. Note that Py, is independent of the quasiparticle
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FIG. 3. Effective mass m, (left) and effective scattering length a;
(right) vs D/D. at the quantum critical point between the Mott insu-
lator ny = 1 and the superfluid state, obtained from strong-coupling
RPA, nonperturbative functional renormalization group (FRG) [22],
and quantum Monte Carlo simulations (QMC) [40]. The green dotted
line in the right panel shows the (vacuum) scattering length aj, =~
1/[87 (/U + 0.1264)] of the bosons moving on the lattice [41]. The
strong-coupling RPA is reliable for the effective mass but less so for
the effective scattering length, even if the general trend is correct.

weight. The mean density

aP my
n=_—=nwu+ (= tta) (6)
o dral

and the condensate density

*
m(x

*
dral

no = Zp it — ol = Zpln —mal  (7)

can also be expressed in terms of m and a, whereas the
superfluid density n, is equal to |n — nyg| [36]. The depen-
dence of ng on the quasiparticle weight Zg, is due to the
Bose-Einstein condensation involving not particles but quasi-
particles (or quasiholes). Since Zop = m/m;, > 1 (Fig. 3), ng
is larger than |n — nyy|: The excess particles (holes) with
respect to the Mott insulator drag other particles (holes) into
the condensation.

We can now define a universal contact in the usual way,
i.e., by taking the derivative of the singular part of the pressure
with respect to the effective scattering length a?,

BPsing(M — Ma> m:;s a;)
ao(l/at) P
= VIm} (1w — pa)l, ®)

which is analog to the result of Bogoliubov’s theory for a
dilute Bose gas, but with the effective mass m, instead of the
bare boson mass. Alternatively, one can express the contact as
a function of the mean density,

Cuniv = VI4mak(n — n)]*. 9)

Cuniv = Sﬂmzv

We recover the Bogoliubov expression of the contact of
superfluid bosons with density |n — myy| and scattering
length a}.

Momentum distribution. In the superfluid state, the two
bands E;F of the Mott insulator split into four bands £&F as
shown in Fig. 2 [25,28,29,42]. Consider the case of particle
doping (i > @4 and n > nyy) where the positive energy band
E," of the Mott insulator becomes gapless (similar results are
obtained in the case of hole doping). In that case, the band
E,_ evolves into the band —&," and the band E,' into &_. Two
new bands, & and —&,_, appear in the superfluid. The band
& carries a negligible fraction of the spectral weight in the
vicinity of the transition.

Ignoring the contribution &k oNnp of the condensate, the
singular part n,"® = nx — n}' of the momentum distribution
can be written as

ni%(i“g =-8(-&) — S(=&H) + Smi(E,), (10)

where nkMI is the (u-independent) distribution in the Mott
insulator and S (—éf) [Smi(E, )] denotes the spectral weight
associated with the energy —Slf (Ey ) of the excitations in
the superfluid (Mott insulator) [43]. The gapped band is little
affected when p becomes larger than w, and S(—Sl:r ) is
essentially equal to Svii(E, ) near the transition. On the other
hand, although the band & carries most of the spectral weight
of the band E," of the Mott insulator, the gapless negative
energy band —&, gives a large contribution to the momentum
distribution for small momenta, as in a dilute superfluid gas.

This implies that )" is well approximated by —S(—&7).
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FIG. 4. Singular part n}"¢ = n, — nM" of the momentum distri-
bution, along the Brillouin zone diagonal k = (k, k, k), for D =
D./2 and p = 1.000005p4 (n = 1.0003), compared to —S(—&,)
(spectral weight of the negative gapless energy branch), Z&,nﬁ"g
[Eq. (11)], and ZapCuniv / V|k|* where C,yy is the contact defined from
the pressure [Eq. (8)]. The vertical dotted line shows the momentum

scale k, /+/3 where k, = 2(m| i — pq|)'"/2.

Furthermore, we find that —S(—& ) ~ Z&,n}i’og , where

1 —
nfogz___l_ €k + 1 — My a1

2 2 exlex +2(n — py)]
is the standard Bogoliubov result for bosons (ignoring the
contribution of the condensate) with dispersion €, = k?/ 2m?
and chemical potential © — p. When |k| is larger than

the characteristic momentum scale k, = 2[m* (1 — )12,

nEOg ~ Cuniv/VIK|* with the contact Cuyy defined by (8) so
that the momentum distribution [44],

+ .
sing ZQPCumv

AV TE (k. < |KI), 12)

exhibits a high-momentum tail ~1/|k|*, as in a dilute Bose
gas, provided the characteristic scale k, is small enough. This
requires the system to be sufficiently close to the QCP.
Figure 4 shows the momentum distribution obtained from
Eq. (10). The relation —S(—&,) =~ ngnEOg holds over the
entire Brillouin zone—except very close to the zone bound-
aries where the free dispersion # differs from k> /2mlat'—
D due to lattice effects—but the agreement between n,"°
and —S(=&,) breaks down when |k| 2 0.25 for k vary-
ing along the Brillouin zone diagonal. We believe that the
high-momentum tail Z&,Cuniv /V|k|* should be observed up
to the Brillouin zone boundaries. The momentum sum rule
n=ng+ Q)3 fd3k ny is only satisfied to within 10~* in
the case of Fig. 4. The slight difference between —S(—&,)
and Swi(E, ) at large momenta, which is also of the order

10~* and spoils the agreement between n,"® and —S(—¢&,),
is thus likely to be an artifact of the strong-coupling RPA.
This expectation is confirmed by a study of a hard-core boson
model—which should describe the hole-doped Mott insulator
nyp = 1 in the limit /U < 1—where the high-momentum
tail Z&,Cumv / V|k|4 is indeed observed up to the Brillouin zone
boundaries (see Fig. 6 in Ref. [36]).

The high-momentum tail of n,"* depends not only on the
contact but also on the quasiparticle weight Zgp. As pointed
out above, this is due to the role of quasiparticles (or quasi-

holes) in the condensation leading to superfluidity. If we
introduce the quasiparticle field /() = (Z§,)~"/*¢(7), one
finds that the quasiparticle condensate density 79 = no/Z3p =
fio(| — pol, m)) takes the usual Bogoliubov mean-field
expression [22], and the singular part of the momentum dis-
tribution ;"¢ ~ n°® is independent of Z&p.

Conclusion. The fact that the SF-MI transition belongs
to the dilute-Bose-gas universality class not only determines
the mean-field-like behavior of the transition. It also implies
that the superfluid phase, in the vicinity of the transition
occurring at 4 = 4 or u = p_, is well described by Bogoli-
ubov’s theory, provided we consider the excess of particles
(or holes) with respect to the Mott insulator. The elementary
excitations at the QCP are quasiparticles with effective mass
my,, effective scattering length a;, and spectral weight Zg,
(o« = =£). This allows us to define, from the singular part of the
pressure in the superfluid state, a universal two-body contact
Cuniv Which takes the usual Bogoliubov form when expressed
in terms of |n — ny| and a,. Remarkably, there is a broad
momentum range in the Brillouin zone where the singular
part m,"® = n — ni" of the momentum distribution exhibits a
high-momentum tail ZgPCuni\, /VIKk|*, as in a dilute Bose gas,
but with the quasiparticle weight as an additional prefactor.
This description of a strongly interacting superfluid system
has similarities with the case of a doped fermionic Mott insu-
lator, described by Fermi-liquid theory (and therefore by a few
effective parameters such as the quasiparticle effective mass
and the Landau parameters) as any other conventional metal
(strongly or weakly interacting).

Single-atom-resolved measurement of the momentum dis-
tribution [45—47] in a Bose gas loaded into an optical lattice
should allow the determination of ng in the vicinity of the
superfluid—Mott-insulator transition. Assuming a flat-box po-
tential, where the density # is controlled, the singular part n,
of the momentum distribution can be determined by tuning
the gas across the transition. Observation of the 1/|k|* tail
then gives ZgpCuniv. The condensate density ng being directly
obtained from ng_g, we deduce the effective scattering length
a* and the quasiparticle weight Zgp. A fit of n,® to the
Bogoliubov form (11) would provide us with the value of
the effective mass m*. Alternatively, m* can be obtained by
measuring the pressure [Eq. (5)] or the superfluid transition
temperature [22]. On the other hand, the momentum distribu-
tion of a Bose gas in an optical lattice can also be measured
in the high-momentum range |k| > 1/¢ (a range outside the
Bose-Hubbard model). At these short length scales, the sys-
tem behaves as a dilute gas and we expect a 1/|k|* tail with
a strength given by the “full” contact C, related to the total
pressure of the gas [36].

Similarly to the phenomenon of superfluidity, Bose-
Einstein condensation of magnons occurs in magnetic insu-
lators [48]. In the simplest cases, these systems are effectively
described by the Bose-Hubbard model in the hard-core limit,
with the applied external magnetic field playing the role of
the chemical potential. The paramagnetic state is analogous
to the Mott insulator, while the magnetically ordered state
corresponds to the superfluid state, and the quantum phase
transition between the two belongs to the dilute-Bose-gas
universality class [49]. The spin structure factor plays the role
of momentum distribution; the 1/|k|* tail can be measured by
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inelastic neutron scattering, whereas m* can be obtained from
the critical temperature. Therefore, universal contact, as well
as effective scattering length a* and effective mass m*, could
be measured in magnetic insulators.
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