CECAM Workshop

Mesoscopic Modeling in Physics of Molecular and Cell Biology Toulouse, october 10-13, 2016

Finite-size scaling analysis of super-resolution imaging of epigenetic domains

Maria Barbi Antony Lesage, Jean-Marc Victor

LPTMC, University Pierre & Marie Curie and CNRS GDR 3536 « ADN »

Chromatin organization

Cortini et al - Rev. Mod. Phys, 2016

Epigenetic colors

Filion et al. – Cell, 2010

« topologically associating domains » (TADs)

Sexton et al – Cell, 2012

Nora, Dekker, Heard - Bioessays, 2013

Polymer models

Radius of gyration:

$$R_G^2 = \left\langle \frac{1}{2N} \sum_{i=1}^N \sum_{j=1}^N (r_i - r_j)^2 \right\rangle$$

Power law and Flory exponent:

$$R_G \sim N^{\nu}$$

- Random Walk <u>coil</u> $\nu = 1/2$
- Self-Avoiding Walk (SAW) coil $\nu = 3/5$
- Equilibrium <u>globule</u> $\nu = 1/3$
- Fractal globule $\nu = 1/3$

LETTER

doi:10.1038/nature16496

Super-resolution imaging reveals distinct chromatin folding for different epigenetic states

Alistair N. Boettiger¹, Bogdan Bintu¹, Jeffrey R. Moffitt¹, Siyuan Wang¹, Brian J. Beliveau², Geoffrey Fudenberg³, Maxim Imakaev³, Leonid A. Mirny³, Chao-ting Wu² & Xiaowei Zhuang¹

how to interpret the experimental scaling laws?

A polymer with N identical monomers:

coil-globule transition

depending on the ratio between :

- ϵ interaction energy per monomer
- $k_{B}T\,$ thermal energy
 - (*K* Kuhn length = segment length)

A polymer with N identical monomers:

A polymer with N identical monomers:

(*K* Kuhn length = segment length)

A polymer with N identical monomers:

 $k_{B}T\,$ thermal energy

(*K* Kuhn length = segment length)

A polymer with N identical monomers:

(K Kuhn length = segment length)

• Big polymers are globule

Nucleic Acids Research Advance Access published August 4, 2014

Nucleic Acids Research, 2014 1 doi: 10.1093/nar/gku698

Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains

Daniel Jost¹, Pascal Carrivain², Giacomo Cavalli^{2,*} and Cédric Vaillant^{1,*}

Research article Special Issues

Chromatin epigenomic domain folding: size matters

Bertrand R. Caré^{1,2,3}, Pierre-Emmanuel Emeriau^{1,2,3}, Ruggero Cortini^{1,2,3}, Jean-Marc Victor^{1,2,3,} ▲, ×

20 / 55; intra-color interaction
$$U = \begin{cases} -\varepsilon \left[1 - e^{-a(r-r_0)^2}\right] & \text{if } 0 \le r \le r_{\max} \\ 0 & \text{if } r > r_{\max} \end{cases}$$

The coil-globule transition: model

«Interacting Self Avoiding Walk » (ISAW) model

 $\sqrt{5/4}$

Order parameter:

Dimensionned order parameter:

$$\hat{t} = N^{1/2} \left(\frac{N}{r_G^3}\right)$$
$$s = L^{1/2} \left(\frac{L}{R_G^3}\right)^{5/4}$$

Free energy: $\beta F_L(s) = A_1 N^{1/2} s + A_2 s^2 + A_3 N^{-1/3} s^{-2/3} + 1.13 \ln s$

 $A_1 A_2$ and A_3 depends on the 3 physical parameters : the energy ϵ , the Kuhn length *K* and the compaction α

JB Imbert, A Lesne, and JM Victor - PRE 56, 5630, 1997

The coil-globule transition: model

Working hypothesis:

ε, *K*, α are specific for a given state

Goal:

Fit $A_1 A_2$ and A_3 over the whole set of data, for each state

Free energy: $\beta F_L(s) = A_1 N^{1/2} s + A_2 s^2 + A_3 N^{-1/3} s^{-2/3} + 1.13 \ln s$

 $A_1 A_2$ and A_3 depends on the 3 physical parameters : the energy ε , the Kuhn length *K* and the compaction α

JB Imbert, A Lesne, and JM Victor - PRE 56, 5630, 1997

Fitting approach and result

= maximum likehood + Bayesian inference

(Data (points) from Boettinger et al. 2016)

Results (0)

It is possible to fit the data with this model

(Data (points) from Boettinger et al. 2016)

Results (1)

All three states are at the coil-globule transition

Results (2)

Fits give $\varepsilon \sim 0.3 \text{ k}_{\text{B}}\text{T}$ per Kuhn segment (for all...)

Results (3)

Fits give $\varepsilon \sim 0.3 \text{ k}_{\text{B}}$ T per Kuhn segment (for all...) But the Kuhn length K is different for different states:

State	K[bp]	$\alpha [\mathrm{bp/nm}]$
Active	203 ± 93	6.2 ± 3.1
Inactive	154 ± 50	6.5 ± 2.3
Repres.	50 ± 8	5.8 ± 1.1

smaller Kuhn length.. (similar compaction)

...hence larger energy/bp from active to repressed

Results (4)

Up to a VERY small persistence length! $(K = 2 L_P)$

Work in progress

Thank you for you attention,

and thanks to members of M3V Group at LPTMC-upmc :

- Jean-Marc Victor
- Annick Lesne
- Julien Mozziconacci
- Bertrand Caré (postdoc ANR/INCa, 2013-2015)
- Ruggero Cortini (postdoc ANR/INCa, 2013-2015)
- Antony Lesage (Master student, starting PhD) << who did the work!

The drosophila nucleus is a copolymer brush

Jost et al, NAR 2014

$$U_{i,j} = (U_{ns} + U_s) \exp(-\frac{r_{i,j}^2}{a^2}) \text{ if i and j are of the same color}$$
$$U_{i,j} = U_{ns} \exp(-\frac{r_{i,j}^2}{a^2}) \text{ if i and j are of different colors}$$

osmotically balanced methanol-free formaldehyde in PBS

how to interprete the experimental scaling laws?

AIMS Biophysics, 2015, 2(4): 517-530. doi: 10.3934/biophy.2015.4.517

Research article Special Issues

Chromatin epigenomic domain folding: size matters

Bertrand R. Caré^{1,2,3}, Pierre-Emmanuel Emeriau^{1,2,3}, Ruggero Cortini^{1,2,3}, Jean-Marc Victor^{1,2,3}, [▲], [∞]

$$\theta(N) = \theta_{\infty} \left(1 - \frac{c}{N^{1/2}} \right)$$
$$\Delta T(N) \sim \frac{1}{N^{1/2}}$$

« A key prediction of the model is that <u>chromatin compaction should</u> <u>increase with block size</u> for a given epigenomic state (i.e. for a given interaction between beads of chromatin in a block). »

Bayesian inference

Active

Inactive

Repressed

coming back to the adimensional model

 a_2, a_3 constants, determined by simulations

 $a_1(U/k_BT)$

$$a_1 = A_1 \left(\frac{A_3}{a_3}\right)^{\frac{3}{2}} \rightarrow \beta \varepsilon$$

$$K_{bp} = \frac{A_2}{a_2} \left(\frac{A_3}{a_3}\right)^3$$

$$K_{nm} = \left(\frac{A_2}{a_2}\right)^{\frac{3}{5}} \left(\frac{A_3}{a_3}\right)^{\frac{7}{5}}$$

coming back to the adimensional model

physical data \rightarrow dimensionless quantities

 \rightarrow can be compared with simulations of model polymers

